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Local brain oscillations and interregional connectivity
differentially serve sensory and expectation effects
on pain
Felix S. Bott1, Moritz M. Nickel1, Vanessa D. Hohn1, Elisabeth S. May1, Cristina Gil Ávila1,
Laura Tiemann1, Joachim Gross2, Markus Ploner1*

Pain emerges from the integration of sensory information about threats and contextual information such as an
individual’s expectations. However, how sensory and contextual effects on pain are served by the brain is not
fully understood so far. To address this question, we applied brief painful stimuli to 40 healthy human partic-
ipants and independently varied stimulus intensity and expectations. Concurrently, we recorded electroenceph-
alography. We assessed local oscillatory brain activity and interregional functional connectivity in a network of
six brain regions playing key roles in the processing of pain. We found that sensory information predominantly
influenced local brain oscillations. In contrast, expectations exclusively influenced interregional connectivity.
Specifically, expectations altered connectivity at alpha (8 to 12 hertz) frequencies from prefrontal to somatosen-
sory cortex. Moreover, discrepancies between sensory information and expectations, i.e., prediction errors, in-
fluenced connectivity at gamma (60 to 100 hertz) frequencies. These findings reveal how fundamentally
different brain mechanisms serve sensory and contextual effects on pain.
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INTRODUCTION
Pain serves to protect the body. To this end, the brain translates
sensory information about potential threat into an unpleasant expe-
rience and protective behavioral responses. However, this transla-
tion is shaped not only by sensory but also by contextual
information, such as an individual’s expectations (1–3). Expecta-
tions can yield powerful and clinically relevant changes of the
pain experience, for example, through placebo and nocebo effects
(4–7). Moreover, contextual and expectation effects are particularly
relevant for pathological aberrations of the pain experience in
chronic pain disorders (8–10).
In the brain, pain is associated with complex patterns of neural

activity in somatosensory, insular, cingulate, and prefrontal cortices
as well as subcortical brain areas (11, 12). Neurophysiological
studies using electroencephalography (EEG), magnetoencephalog-
raphy (MEG), and intracranial recordings have shown that this
brain network yields complex temporal-spectral patterns of neural
responses including evoked potentials and oscillatory responses at
alpha (8 to 12 Hz), beta (13 to 30 Hz), and gamma (30 to 100 Hz)
frequencies (13). In addition, it is increasingly recognized that not
only the local brain activity but also the communication between
brain regions, i.e., interregional brain connectivity, critically
shapes the experience of pain (14–20).
Recent studies have started to unravel how these complex spatial-

temporal-spectral patterns of brain activity serve sensory and con-
textual effects on pain. Functional magnetic resonance imaging
(fMRI) studies have revealed that these effects are served by differ-
ent spatial patterns of brain activity. For instance, patterns of brain
activity termed the neurologic pain signature (NPS) and the

stimulus intensity–independent pain signature (SIIPS) are particu-
larly sensitive to sensory and contextual effects on pain, respectively
(21, 22). EEG studies have indicated that the temporal-spectral pat-
terns of sensory and contextual effects on pain also differ (23–25).
Specifically, evoked potentials and oscillatory responses to noxious
stimuli are more sensitive to sensory information than to expecta-
tions (23–25). In contrast, the temporal-spectral pattern of expecta-
tion effects on pain has remained largely unclear so far. Mechanistic
considerations suggest that contextual effects on pain such as expec-
tations might be particularly shaped by interregional top-down
connectivity between supra-modal and sensory brain regions at
alpha and beta frequencies (13). Moreover, predictive coding (PC)
frameworks of brain function (26, 27) propose that discrepancies
between sensory and expectation effects, i.e., prediction errors
(PEs), are mediated by brain oscillations and connectivity at
gamma frequencies (28–30). However, direct evidence for these hy-
potheses on how sensory and expectation effects on pain are imple-
mented by local brain activity and interregional connectivity is
lacking so far.
To better understand and directly compare how local brain os-

cillations and interregional connectivity serve sensory and contex-
tual effects on pain, we reanalyzed data from an EEG experiment in
which brief painful stimuli were applied to healthy human partici-
pants (23). Therein, sensory and contextual information was mod-
ulated by varying stimulus intensity and expectations about
upcoming stimulus intensity, respectively. A previous analysis of
the experiment focused on the functional significance of EEG re-
sponses that are commonly analyzed to assess the cerebral process-
ing of pain (23). To this end, we analyzed evoked and oscillatory
EEG responses in electrode space. We found clear evidence that
these EEG responses are involved in signaling sensory information.
By contrast, a Bayesian analysis provided evidence against an in-
volvement of these responses in signaling expectations or PEs. It,
thus, remained unclear, how the brain serves expectations and
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PEs in the processing of pain. Considering the complexity of expec-
tation effects, we hypothesized that they are particularly served by
interregional connectivity in brain networks associated with pain.
Therefore, in the present study, we set out to assess and directly
compare how local oscillatory brain activity and interregional con-
nectivity in a core network of six brain regions associated with the
processing of pain serve the effects of stimulus intensity and expec-
tations on pain.

RESULTS
To investigate how the brain serves sensory and contextual influenc-
es on pain, we used a probabilistic cueing paradigm. We applied
brief painful heat stimuli to the left hand and independently mod-
ulated stimulus intensity and expectations in a 2 × 2 factorial design.
To modulate stimulus intensity, we applied painful stimuli of two
different levels [high intensity (hi) and low intensity (li)]. To mod-
ulate expectations, the painful stimuli were preceded by one of the
two visual cues, probabilistically indicating the intensity of the sub-
sequent stimulus. The high expectation (HE) cue was followed by a
hi stimulus in 75% of the trials and by a li stimulus in 25% of the
trials. Conversely, the low expectation (LE) cue was followed by a hi
stimulus in 25% of the trials and by a li stimulus in 75% of the trials.
The experiment thus comprised four trial types (Fig. 1A): hi, HE
(hiHE); hi, LE (hiLE); li, HE (liHE); li, LE, (liLE). In each trial,
after the painful stimulus, the participants were asked to provide a
rating of the perceived pain intensity on a numerical rating scale
ranging from 0 (no pain) to 100 (maximum tolerable pain).
Figure 1B shows the sequence of a single trial. The experiment in-
cluded 160 trials per participant.
We analyzed oscillatory brain activity and functional connectiv-

ity in a network of six brain regions (Fig. 2) known to play key roles

in the cerebral processing of pain (31). The brain regions were the
contralateral primary somatosensory cortex (S1), the contra- and
ipsilateral parietal operculum (cPO and iPO, respectively; including
the secondary somatosensory cortex and parts of the insular cortex),
the anterior cingulate cortex (ACC), and the contra- and ipsilateral
prefrontal cortex (cPFC and iPFC, respectively). Some of these brain
regions are particularly associated with processing of sensory infor-
mation (S1, cPO, and iPO), whereas others are more associated with
supramodal cognitive and emotional processes (ACC, cPFC, and
iPFC) (11, 12). Coordinates for these six regions of interest
(ROIs) were taken from human intracranial recordings that repre-
sent the gold standard for electrophysiological brain responses to
pain stimuli (31). To assess oscillatory brain activity, we calculated
frequency-specific power in source space. To assess functional con-
nectivity between brain regions, we calculated the debiased weight-
ed phase lag index (dwPLI) (32). Both local activity and
interregional connectivity were assessed in the alpha (8 to 12 Hz),
beta (14 to 30 Hz), and gamma (60 to 100 Hz) frequency bands.
These frequency bands are known to exhibit changes in oscillatory
power in response to brief painful stimuli (33–36) and play key roles
in interregional communication in the brain (37). In addition, to
assess the dominant direction of information flow in selected con-
nections and frequency bands, we computed an asymmetry index
on the basis of the partial directed coherence (PDC) measure (38)
of directed functional connectivity.
To relate brain activity and connectivity to sensory and expecta-

tion effects on pain, we defined different patterns describing the re-
lation between response variables and experimental manipulations
(39, 40). In particular, these patterns characterize how neural phe-
nomena and pain ratings are linked to intensity, expectations, or
discrepancies thereof (PEs) across the four trial types (Fig. 3). To
formally link the data to these patterns, we performed repeated
measures analyses of variance (rmANOVAs) (41) with the indepen-
dent variables intensity and expectation. In these rmANOVAs, fea-
tures signaling stimulus intensity and expectations would manifest
as main effects, whereas features signaling PEs would manifest as
interactions without distinguishing between absolute and aversive
definitions of PEs. To allow for the interpretation of negative find-
ings, we specifically performed Bayesian rmANOVAs (41). Results
of frequentist analyses are provided in the SupplementaryMaterials.

The effects of stimulus intensity and expectations on pain
intensity ratings
Figure 4 shows pain intensity ratings for the four trial types. Anal-
yses of pain ratings provided decisive evidence for main effects of
intensity [Bayes factor (BF) = 1.1 × 1021] and expectation
(BF = 5.5 × 102) on pain ratings. Specifically, as expected, hi
stimuli yielded higher pain ratings than li stimuli, and HE cues
yielded higher pain ratings than LE cues. Moreover, there was mod-
erate evidence against an interaction effect of intensity and expec-
tation (BF = 0.27). Thus, the results confirmed that stimulus
intensity and expectations shaped pain ratings.

The effects of stimulus intensity and expectations on local
oscillatory brain activity
We first assessed how brief noxious stimuli influenced local oscilla-
tory brain activity in the six ROIs. Time-frequency representations
(TFRs; Fig. 5) indicated that noxious stimuli suppressed alpha and
beta activity in all ROIs and increased gamma activity

Fig. 1. Experimental design. (A) Probabilities of different pain stimulus intensities
[low intensity (li) and high intensity (hi)] for different levels of expectation [low ex-
pectation (LE) and high expectation (HE)]. (B) In each trial, a cuewas presented that
probabilistically predicted the intensity of a subsequent painful stimulus. Three
seconds after the stimulus, a verbal pain rating was obtained from the participants.
In 10% of the trials (catch trials), participants were visually prompted to indicate by
a button press whether a HE or a LE cue had been presented to ensure that par-
ticipants continuously paid attention to the visual cues. More details on the exper-
imental design can be found in (23).
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predominantly in S1. In addition, noxious stimuli yielded increases
of activity at frequencies below 8 Hz, which reflect evoked potentials
analyzed previously (23).
Next, we assessed how stimulus intensity and expectations influ-

ence local brain activity in our core network associated with pain
processing. We therefore determined the power of brain activity
in the six ROIs at alpha, beta, and gamma frequencies averaged
across the 1-s poststimulus interval. The results of Bayesian rmA-
NOVAs with the factors intensity and expectation are shown in
Fig. 6. Figures S1 and S2 show corresponding results of frequentist

statistics that are qualitatively similar to the results of Bayesian
statistics.
We found that stimulus intensity modulated local brain activity

at all frequency bands and in all ROIs. Strongest stimulus intensity
effects were observed at alpha frequencies where we foundmoderate
to decisive evidence for effects on oscillatory brain activity for all
ROIs. In all ROIs, stronger stimuli yielded stronger suppressions
of alpha activity (see fig. S3 for direction and strength of all
effects). Weaker effects were observed at beta frequencies where
we found moderate evidence for an intensity effect on brain activity
in S1, iPO, and cPFC. In these ROIs, stronger stimuli yielded stron-
ger suppressions of beta activity. In the gamma frequency band, we
observed moderate evidence for an intensity effect on S1 brain ac-
tivity with stronger stimuli inducing higher amplitudes of gamma
activity. In contrast, we found weak to moderate evidence against
effects of expectations or PEs on local brain activity at all frequency
bands. Control analyses using shorter time windows showed qual-
itatively similar results (fig. S4). In summary, we found that stimulus
intensity but not expectations or PEs influenced local oscillatory
brain activity in response to brief painful stimuli.

The effects of stimulus intensity and expectations on
interregional functional connectivity
We next investigated how stimulus intensity and expectations influ-
enced communication in our core network associated with pain
processing. We therefore determined pairwise interregional con-
nectivity in a network of six ROIs resulting in 15 connectivity
values. These analyses were performed separately for the alpha,
beta, and gamma frequency bands in the 1-s poststimulus interval.
Figure 7 shows the results of Bayesian rmANOVAs. Figures S1 and
S2 show the corresponding results of frequentist statistics that are
qualitatively similar to the results of Bayesian statistics.
We found moderate evidence for a stimulus intensity effect on

the cPO-ACC connection in the alpha band. Here, connectivity
was higher in the hi than the li condition. For most other connec-
tions and frequency bands, we found weak to moderate evidence
against stimulus intensity effects.

Fig. 4. Effects of stimulus intensity, expectations, and PEs on pain ratings.
Rain cloud plot (67) of pain ratings for two levels of stimulus intensity (li and hi)
and expectation (LE and HE). A Bayesian rmANOVA yielded decisive evidence for
main effects of stimulus intensity and expectation [Bayes factor (BF) = 1.1 × 1021

and BF = 5.5 × 102, respectively]. Moreover, there was moderate evidence against
an interaction (BF = 0.27).

Fig. 3. Possible response patterns indicating the effects of stimulus intensity,
expectations, and (absolute) PEs. Effects of stimulus intensity (li and hi), expec-
tations (LE and HE), and PEs were tested by means of repeated measures analyses
of variance (rmANOVAs). An experimental modulation can lead to either a relative
increase (first row) or relative decrease (second row) of oscillatory activity or
connectivity.

Fig. 2. ROI and correspondingMNI coordinates. Axial, coronal, and sagittal view
of the brain and the six regions of interest (ROIs). S1, contralateral primary soma-
tosensory cortex; cPO and iPO, contra- and ipsilateral parietal operculum; ACC, an-
terior cingulate cortex; cPFC and iPFC, contra- and ipsilateral prefrontal cortex.
Please note that the asymmetry of the PFC ROIs reflects the asymmetry of PFC
sources found in (31).
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Effects of expectation were found in the alpha band exclusively.
We specifically observed moderate evidence for an expectation
effect on the cPFC-S1 and iPO-cPO connections. In these connec-
tions, connectivity was lower in the HE than the LE conditions. For
most other connections and frequency bands, we found weak to
moderate evidence against expectation effects.
PE effects were observed in the gamma band exclusively. We

found moderate to strong evidence for a PE effect on the cPFC-

ACC and iPFC-PO connections. Specifically, the mean connectivity
values of mismatch conditions (hiLE and liHE) were lower than
those of nonmismatch conditions (liLE and hiHE). In other
words, conditions involving a PE exhibited lower connectivity
than those without a PE. For most other connections and frequen-
cies, we observed weak to moderate evidence against a PE effect. To-
gether, we found that stimulus intensity and expectation influenced

Fig. 5. TFRs based on hi trials of local oscillatory brain activity in the six ROIs. The first and third columns show concatenated band specific time-frequency rep-
resentations (TFRs) for all six ROIs. The sharp transitions in the TFRs are due to the employment of frequency band-specific spatial filters. The second and fourth columns
show time courses of brain activity in the alpha, beta, and gamma band. Vertical, dark gray bars in the TFR plots indicate the frequency intervals based on which the time
courses of brain activity were computed.
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Fig. 6. Effects of stimulus intensity, expectations, and PEs on local brain activity. Effects were assessed by Bayesian rmANOVAs with the factors intensity and ex-
pectation. The color of the tiles representing ROIs scales with the log of the BF. It ranges from blue (BF < 0.33, at least moderate evidence against an effect) to yellow
(BF > 3, at least moderate evidence for an effect). Brain images display ROIs in yellow, which exhibit at least moderate evidence for an effect (BF > 3).
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Fig. 7. Effects of stimulus intensity, expectations, and PEs on interregional functional connectivity. Effects were assessed by Bayesian rmANOVA with the factors
intensity and expectation. The color of the heat map tiles scales with the log of the BF. It ranges from blue (BF < 0.33, at least moderate evidence against an effect) to
yellow (BF > 3, at least moderate evidence for an effect). Brain images display connections in yellow which exhibit at least moderate evidence for an effect (BF > 3).
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connectivity at alpha frequencies, whereas PE effects were found at
gamma frequencies.

Direction of functional connectivity
The previous analyses showed that stimulus intensity, expectations,
and PEsmodulated functional connectivity at alpha and gamma fre-
quencies in a core network associated with pain processing. We
were next interested to assess the direction of information flow
for connections in which we found at least moderate evidence for
intensity, expectation, and/or PE effects. To this end, we calculated
an asymmetry score of directed connectivity between pairs of brain
regions. The scorewas based on the bivariate PDC (38) measure and
ranged from −1 to 1. The absolute value and the sign of the score
indicate the strength and the direction of asymmetry, respectively.
For the cPO-ACC connection, for which intensity effects were ob-
served in the alpha band, we found strong evidence (BF = 13.4) that
information flowed from cPO to ACC. For the cPFC-S1 connection,
for which expectation effects were observed in the alpha band, we
found strong evidence (BF = 13.1) that information flowed from
cPFC to S1. For the other connections and frequency bands, we
did not find evidence for an asymmetry of information flow.
Thus, as summarized in Fig. 8, for connections showing intensity
effects, we found information flow predominantly from sensory
to higher-order brain areas. Conversely, for connections displaying
expectation effects, we found information flow predominantly from
higher-order to sensory brain areas. Figure S5 shows corresponding
results of frequentist statistics that are qualitatively similar to the
results of Bayesian statistics.

Comparisons of stimulus intensity and expectations effects
on local oscillatory brain activity and interregional
functional connectivity
The previous analyses indicated that local brain activity and inter-
regional connectivity differentially serve sensory and expectation
effects on pain. We specifically observed that stimulus intensity
shaped local brain activity more than interregional connectivity,
while expectations and PEs shaped interregional connectivity
more than local activity. To address this statistically, we conducted
a Bayesian comparison of two types of models predicting the levels
of stimulus intensity, expectation, and PE. The two types of models
differed with respect to the variables they incorporate for their

predictions. One type of model incorporated activity variables,
and the other incorporated connectivity variables. We found deci-
sive evidence that activity-type models predicted stimulus intensity
better than connectivity-type models (BFpow/conn > 105). Converse-
ly, there was decisive evidence that connectivity models predicted
expectations (BFconn/pow > 102) and PEs (BFconn/pow > 2 × 102)
better than activity models. Methodological details of the model
comparison are provided in the Supplementary Materials.

Summary
Figure 9 summarizes the main findings. On the behavioral level,
both stimulus intensity and expectation modulated the perception
of pain. As expected, both higher stimulus intensities and expecta-
tions of stronger stimuli evoked higher pain ratings. In the brain,
stimulus intensity effects were predominantly associated with
changes of local brain activity. Stronger stimuli yielded stronger re-
sponses to brief painful stimuli in alpha, beta, and gamma frequency
bands. In contrast, expectation effects on pain were associated with
changes of interregional functional connectivity but not with
changes of local brain activity. We particularly found that expecta-
tion effects were associated with top-down connectivity at alpha fre-
quencies from cPFC to S1 and with connectivity between cPO and
iPO. PEs were associated with changes of gamma-band connectivity
exclusively. Bayesian model comparisons confirmed the differential
involvement of local activity and interregional connectivity in
sensory and expectation effects on pain. Specifically, stimulus inten-
sity has a stronger influence on local brain activity than on interre-
gional connectivity. Vice versa, expectations and PEs shape
interregional connectivity more than local brain activity.

DISCUSSION
In the present study, we investigated how the brain serves sensory
and contextual effects on pain. To this end, we applied noxious
stimuli to healthy human participants and independently modulat-
ed stimulus intensity and expectations. Pain ratings confirmed that
stimulus intensity and expectation both influenced pain perception.
Analyses of EEG recordings revealed that sensory and expectation
effects on pain were served by fundamentally different brain mech-
anisms. In a core network associated with the processing of pain,
sensory information shaped local oscillatory brain activity rather
than interregional functional connectivity. In contrast, expectation
and PEs influenced interregional functional connectivity but not
local oscillatory brain activity.

Sensory and expectation effects on local oscillatory brain
activity and interregional functional connectivity
We observed that sensory information shapes local oscillatory brain
activity more than interregional connectivity. The effects of stimu-
lus intensity on local oscillatory activity in various frequency bands
are in accordance with previous EEG and MEG studies (24, 33, 42,
43). However, the effects of stimulus intensity on local brain activity
and interregional connectivity have not been directly compared
so far.
We further observed that expectations influenced interregional

functional connectivity but not local oscillatory brain activity. To
the best of our knowledge, expectation effects on functional connec-
tivity have not yet been investigated by neurophysiological record-
ings. A few studies have investigated expectation effects on local

Fig. 8. Direction of functional connectivity. Using an asymmetry score based on
the PDC connectivity metric, we assessed the direction of information flow in con-
nections that exhibited evidence for an effect in the previous connectivity analysis.
Brain images depict connections with strong evidence for asymmetric information
flow. The arrows indicate the dominant direction of information flow.
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oscillatory brain activity (24, 25, 44, 45). Their findings were incon-
sistent. Some studies found that expectations of high pain were as-
sociated with increased alpha activity (24, 44), and others report
unchanged (25) or decreased alpha activity (45). The present find-
ings do not rule out any expectation effects on local brain activity.
However, the crucial finding here is not the lack of expectation
effects on local oscillatory activity, but that expectation effects on
connectivity are stronger than on local oscillatory activity. Expecta-
tion effects were not observed at all but only few connections at
certain frequencies and locations indicating the functional, spectral,
and spatial specificity of expectation effects on connectivity. Fur-
thermore, the aggregate model comparisons that integrate all con-
nections at all frequencies provide direct evidence that interregional
connectivity is more involved in signaling expectations than local
activity.

Expectation and PE signaling in the processing of pain
We found that expectation and PEs influenced connectivity at
alpha/beta and gamma frequencies, respectively. This observation
can be interpreted with reference to PC frameworks of brain func-
tion. PC is a general theory used to explain how perception arises
from the integration of sensory information and expectations (26).
The framework proposes that the brain maintains an internal model

of the environment that continuously generates predictions about
sensory input. Discrepancies between these predictions and the
actual sensory evidence, i.e., PEs, serve to adjust the internal
model. In this way, the brain allocates its limited resources to
events that are behaviorally relevant and useful for updating predic-
tions, i.e., learning. It has been suggested that alpha and beta oscil-
lations serve the signaling of predictions, whereas gamma
oscillations have been proposed to signal PEs (28–30, 39). The
present findings are in good accordance with this framework.
They specify that expectation effects on pain might be particularly
related to connectivity at alpha frequencies from the prefrontal to
the somatosensory cortex. Specifically, expecting less pain was asso-
ciated with relatively stronger connectivity. This implies that alpha
band connectivity might be mechanistically involved in an active
down-regulation of nociceptive input. PEs, on the other hand,
were reflected in reduced gamma connectivity, indicating that
they are signaled in the brain in terms of a disruption of interregion-
al communication that is in line with a recent study on PE signaling
in the processing of pain (24). These effects might reflect absolute
(unsigned) or aversive (negative) PEs as both would manifest as in-
teractions in the rmANOVAs. However, they do not reflect signed
PEs as those would manifest as combinations of stimulus intensity

Fig. 9. Synopsis of the effects of stimulus intensity, expectations, and PEs on pain perception, local brain activity, and interregional functional connectivity.
Increases of stimulus intensity led to increases of pain ratings and local brain activity at gamma frequencies as well as to decreases of brain activity at alpha and beta
frequencies. Expectations of stronger pain yielded increases of pain ratings and reduced connectivity between cPO and iPO and from cPFC to S1 at alpha frequencies. In
contrast, expectations did not modulate local brain activity at any ROI and any frequency band. PEs did not change pain ratings or local brain activity but iPFC-cPO and
cPFC-ACC connectivity at gamma frequencies. The last column shows the results of a Bayesian comparison of local brain activity and connectivity models predicting
intensity, expectation, and PEs.
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and expectation effects that we have not observed for any activity or
connectivity feature.

Distinct brain mechanisms serve sensory and expectation
effects on pain
The key finding of our study is that sensory and expectation effects
on pain are served by distinct brain mechanisms. Previous fMRI
studies have already revealed that sensory and contextual effects
on pain are associated with different spatial patterns of brain activ-
ity. For instance, one spatial pattern of brain activity termed the NPS
is much more sensitive to sensory than to contextual effects on pain
(46, 47). Vice versa, another pattern of brain activity termed the
SIIPS is sensitive to contextual but not to sensory effects on pain
(22). Moreover, a spatial dissociation between the encoding of
sensory information and expectations has also been found within
the insular cortex (39).
Our results extend these findings by showing that not only the

spatial brain activity patterns serving sensory and contextual effects
on pain differ but also these effects are served by fundamentally dif-
ferent neurophysiological mechanisms. Sensory effects predomi-
nantly occurred in local brain oscillations, whereas expectation
effects were exclusively observed in interregional connectivity.
The dissociation of sensory and expectation effects suggests that
both physiological phenomena are partially independent of
each other.
These findings might have implications for the understanding,

assessment, and treatment of clinical pain conditions. In acute
pain, which is predominantly shaped by sensory information, as-
sessing and modulating local oscillatory brain activity might be ap-
propriate. In contrast, in chronic pain, which is often largely
detached from sensory information, interregional connectivity
might be more informative than local activity. Such a close associ-
ation between interregional connectivity and chronic pain is in ac-
cordance with studies using fMRI (15, 48, 49) and recent EEG
studies on connectivity in chronic pain (50, 51) and psychiatric dis-
orders (52). In this way, the present findings can help to guide the
development of biomarkers of acute and chronic pain. Beyond, our
results might inform the search for neuronal targets for invasive and
noninvasive interventions aiming at alleviating pain.

Limitations
When interpreting our findings, certain limitations should be con-
sidered. First, in our paradigm, the effects of expectations on pain
perception were weaker than the effects of stimulus intensity. The
lack of expectation effects on local brain activity might therefore
reflect the weak expectation effects on pain perception, and other
paradigms with stronger expectation effects on perception might
well modulate local brain activity. However, the central finding of
the present study is not the absolute strength of sensory and expec-
tation effects but that the patterns of sensory and expectation effects
on local brain oscillations and brain connectivity fundamentally
differ. The strength of perceptual effects might well determine the
strength of neurophysiological effects but is unlikely to fundamen-
tally change the difference in the patterns of sensory and expecta-
tion effects on brain activity and connectivity. We are therefore
confident that the present findings reflect a fundamental difference
in the brain mechanisms serving sensory and expectation effects
on pain.

Second, to modulate pain, we manipulated participants’ expec-
tations. Expectations are a particularly powerful and clinically
highly relevant modulator of pain (4–7). However, it is unclear
whether the present observations are specific to expectation-
induced modulations of pain or whether they generalize to other
cognitive and contextual modulations of pain.
Third, we applied brief experimental pain stimuli to healthy

human participants. It is unclear whether these findings can be
translated to other experimental and clinical types of pain. It
remains to be investigated whether the findings generalize to
chronic pain conditions in which other brain mechanisms apply
and in which the brain undergoes substantial structural and func-
tional plasticity (11, 53).
Fourth, we did not use individual head models for EEG source

reconstruction. Thus, more subtle activity and/or connectivity
effects might not have been detected.

Summary
Together, the present study shows that sensory and expectation
effects on pain are served by distinct brain mechanisms. Sensory
effects on pain are served by changes of local oscillatory brain activ-
ity, whereas expectation effects and discrepancies between sensory
information and expectations are served by changes of interregional
functional connectivity. These results provide basic science insights
into the brain mechanisms of pain and analgesia. They specifically
advance the understanding of how the brain serves key modulations
of the subjective experience of pain. Beyond, they can inform the
development of novel tools for the assessment and treatment of
clinical pain conditions.

MATERIALS AND METHODS
Participants
The study was performed in healthy human participants at the Uni-
versity Hospital of the Technical University of Munich (TUM).
Written informed consent was obtained from all participants
before the experiment. The Ethics Committee of the Medical
Faculty of the TUM approved the study protocol. The study was pre-
registered at ClinicalTrials.gov (NCT04296968) and conducted in
accordance with the latest version of the Declaration of Helsinki.
It followed recent guidelines for the analysis and sharing of EEG
data (54). Inclusion criteria were right-handedness and age > 18
years. Exclusion criteria were pregnancy, neurological or psychiatric
diseases, and regular intake of medication (aside from contracep-
tion and thyroidal medication). Severe internal diseases (e.g., diabe-
tes) and skin diseases (e.g., psoriasis and vitiligo), previous surgeries
at the head or spine, current or recurrent pain, metal or electronic
implants, and any previous side effects associated with thermal
stimulation constituted additional exclusion criteria.
For the current rmANOVA design (one group, four measure-

ments), an assessment of statistical power using G*Power (55)
yielded a sample size estimate of 36 participants with a power of
0.95, an alpha level of 0.05, and medium effect sizes of f = 0.25 [cor-
responding to an η2 of 0.06; (56)].
The original study recruited 58 healthy human participants [29

females; age, 24.0 ± 4.3 years (means ± SD)]. Ten participants were
excluded due to either the absence of pain or low pain ratings [<10
on a numerical rating scale from 0 (no pain) to 100 (maximum tol-
erable pain)] during the familiarization run (n = 8), excessive startle
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responses in response to painful stimulation during the training run
(n = 1), or technical issues with the response box used during catch
trials (n = 1). To ensure robust estimates of connectivity values, we
here additionally excluded participants with less than 10 trials re-
maining after the raw data cleaning procedure described below
(n = 8). The final dataset used here thus comprised 40 participants
(all right-handed; 21 females; age, 23.4 ± 2.9 years). Average anxiety
and depression scores were below clinically relevant cutoff scores of
8 of 21 (57) on the Hospital Anxiety and Depression Scale (anxiety,
3.2 ± 2.2; depression, 0.9 ± 1.2) (58).

Procedure
The objective of this analysis was to assess how sensory and contex-
tual modulations are served by local brain activity and interregional
brain connectivity. The experiment involved two levels of noxious
stimulus intensities (hi and li) and two types of visual cues (HE and
LE), resulting in four experimental conditions. The visual cues
probabilistically predicted the intensity of the subsequent noxious
stimulus. The HE cue was followed by a hi stimulus in 75% of the
trials and by a li stimulus in 25% of the trials. Vice versa, the LE cue
was followed by a hi stimulus in 25% of the trials and by a li stimulus
in 75% of the trials (Fig. 1A).
Figure 1B depicts the sequence of events for each trial. After a

variable fixation period ranging from 1.5 to 3 s, a visual cue
(either blue dot or yellow square) was displayed for 1 s. A brief
painful heat stimulus was applied 1.5 s after cue offset. Three
seconds after the painful stimulus, participants were visually
prompted to provide a verbal rating of the perceived pain intensity
on a numerical rating scale ranging from 0 (no pain) to 100
(maximum tolerable pain in the context of the experiment). To
ensure that participants continuously paid attention to the visual
cues, participants were visually prompted to indicate by a button
press whether a HE or a LE cue had been presented in 10% of the
trials (catch trials). An average accuracy of 95.6 ± 0.1% indicated
that participants successfully focused on the task during the
entire experiment. Trials were separated by a 3-s period during
which a white fixation cross was presented.
The experiment consisted of four runs with 40 trials each [hiHE

(n = 15), hiLE (n = 5), liLE (n = 15), and liHE (n = 5)], resulting in
total trial numbers of hiHE (n = 60), hiLE (n = 20), liLE (n = 60),
and liHE (n = 20). Runs were separated by short breaks of ∼3 min.
Pairings of visual cues with stimulus intensities were balanced
across participants.
Before the experiment, the participants were familiarized with

the stimulation and the intensity rating procedure by applying a se-
quence of 10 heat stimuli. Next, participants were informed about
the pairing between cues and stimulus intensities, and a training run
comprising 16 trials was conducted. This was to ascertain that all
participants were aware of the pairing and to minimize learning
during the main experiment. During the experiment, participants
sat in a comfortable chair. They wore protective goggles and listened
to white noise on headphones to eliminate effects of ambient
sounds. Please see (23) for additional details.

Stimulation
A laser pulse with a wavelength of 1340 nm, a duration of 4 ms, and
spot diameter of approximately 7 mm was used to apply painful
stimuli to the left hand (59). For li and hi stimuli, the stimulus in-
tensity was set to 3 and 3.5 J, respectively. These stimulus intensities

are known to consistently elicit painful sensations of discriminable
intensity (59). The stimulation site was slightly changed after each
stimulus to avoid tissue damage and habituation or sensitization.

Recordings and preprocessing
Brain activity was recorded using actiCAP snap/slim with 64 active
sensors (Easycap) placed according to the extended 10-20 system
and BrainAmp MR plus amplifiers (Brain Products, Munich,
Germany). During the recording, sensors were referenced to FCz
and grounded at Fpz. The signals were sampled at 1000 Hz (0.1-
μV resolution) and band-pass–filtered between 0.016 and 250 Hz,
while impedances were kept below 20 kilohms.
Figure S6 summarizes the preprocessing and analysis steps. The

BrainVision Analyzer software (version 2.1.1.327, Brain Products,
Munich, Germany) was used for preprocessing. First, raw signals
were low-pass–filtered with a cutoff frequency of 225 Hz. After
down-sampling to a rate of 500 Hz, a 1-Hz high-pass filter
(fourth-order Butterworth) and a band-stop filter between 49 and
51Hz filter removing line noise were applied. An independent com-
ponent (IC) analysis based on the extended infomax algorithm was
then conducted on the basis of the −4.2- to 3.2-s peri-stimulus time
windows of the EEG data. Subsequently, ICs representing artifacts
originating from eye movements or muscles were removed from the
unfiltered EEG data (60) using visual inspection. Moreover, data
segments of 400 ms centered around data samples with amplitudes
exceeding ±100 μV and data jumps exceeding 30 μV were automat-
ically marked for rejection. Last, the data were inspected visually,
and the remaining artifacts were manually marked for rejection.
All signals were re-referenced to the average reference. The
cleaned data were exported to MATLAB (version R2019b, Math-
Works, Natick, MA), and further analyses were performed using
FieldTrip [version 20210411; (61)]. Data were segmented into
epochs ranging from −4 to 3 s in peri-stimulus time, and all trials
with marked artifacts or pain ratings of zero were excluded. This
resulted in 49.5 ± 8.5, 16.8 ± 2.8, 18.0 ± 1.6, and 52.9 ± 4.2 trials
per participant in the liLE, liHE, hiLE, and hiHE conditions, respec-
tively. To assure that all analyses for the different trial types were
eventually performed on the same number of trials, we matched
the numbers of trials. Figure S7 shows details of the trial matching
procedure.

Source model
To project sensor-level time series to source level, we used linearly
constrained minimum variance (LCMV) beamformers (62) imple-
mented in FieldTrip (61). Frequency-specific array-gain LCMV
spatial filters for alpha, beta, and gamma frequencies were con-
structed on the basis of a lead field and a frequency-specific covari-
ance matrix. A boundary element approximation of a realistically
shaped, three-shell head model was used as the lead field. For
each individual and frequency band, the covariance matrix was
computed from the band-pass–filtered, −1- to 1-s (peri-stimulus
time) concatenated data segments of all (nonrejected) trials. To
ensure a robust computation of the inverse of the covariance
matrix, we used Tikhonov regularization as implemented in Field-
Trip with a regularization parameter value of 5% of the average
sensor power. The fixed orientation of the lead field for every
source location was chosen to maximize the spatial filter output.
Source-level signals were then obtained by applying the
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frequency-specific LCMV operator to the corresponding band-
pass–filtered sensor-level time series.

Assessment of source-level TFRs
Source-level TFRs were obtained using the following procedure:
First, we projected the band-pass–filtered sensor-level signals to
source space using five frequency-specific LCMV spatial filters
(i.e., for frequencies < 8 Hz, 8 to 12 Hz, 13 to 30 Hz, 30 to 60 Hz,
and 60 to 100 Hz). For each ROI, we generated TFRs as well as time
courses of alpha, beta, and gamma brain activity. The TFRs are
based on Hanning-tapered data. Time courses of brain activity
were computed on the basis of moving time windows and using a
Slepian multitaper approach (see below). TFRs and time courses of
brain activity were computed from data segments with widths of
500 and 250ms for frequencies below and above 30 Hz, respectively.
Both TFRs and time courses of brain activity are displayed as per-
centage change relative to a baseline period ranging from 0.75 to
0.25 s before the stimulus. To maximize the signal-to-noise ratio
for visualization, the results represent the grand average across par-
ticipants and hi trials.

Analysis of local brain activity
Local oscillatory brain activity was assessed as frequency-specific
source power of the six ROIs. First, source-level time series band-
pass–filtered to the frequency band of interest were obtained using
the beamformer described above. For these signals, we computed
the power of the frequency in the middle of the frequency band
of interest using a Slepian multitaper approach (63). The spectral
smoothing width was set to one half of the width of the frequency
band of interest. In this way, the power value incorporates informa-
tion of the entire frequency band of interest. We computed source
power in the alpha (8 to 12 Hz), beta (14 to 30 Hz), and gamma (60
to 100 Hz) frequency bands for each trial. We then averaged power
values across trials for each condition and subject. To allow for the
comparison of the effects on local brain activity to those on brain
connectivity, the analysis was primarily performed on a 1-s post-
stimulus interval. However, sensor-level findings indicate that the
effects of painful stimuli on oscillatory brain activity are usually
confined to shorter time windows. Specifically, pain-induced sup-
pressions of brain activity at alpha and beta frequencies occur at la-
tencies between 500 and 900 ms and between 300 and 600 ms,
respectively (33, 42). In addition, pain-induced increases of brain
activity at gamma frequencies occur between 150 and 350 ms
(43). We therefore performed control analyses using these shorter
time intervals (see fig. S2 for results).

Analysis of interregional connectivity
Connectivity analyses were performed on the 1-s poststimulus in-
tervals of the source-level time series of the six ROIs. First, we com-
puted the source-level cross-spectral density of each participant
using a multitaper approach analogous to the one used for the com-
putation of source power.
To assess functional connectivity, we calculated the dwPLI (32)

on the basis of all trials of each condition and for every subject. We
selected the dwPLI measure due to its insensitivity to volume con-
duction effects.
For the assessment of the direction of connectivity, we used an

asymmetry score on the basis of bivariate PDC (38). Specifically, for
two ROIs A and B, the bivariate PDC analysis yields two values,

PDCA➔B and PDCB➔A, representing the directed connectivity
strength from A to B and from B to A, respectively. We cast these
two values into a single asymmetry score (PDCA➔B − PDCB➔A)/
(PDCA➔B + PDCB➔A), ranging from −1 to 1. A large absolute
value of the asymmetry score indicates a strong asymmetry of di-
rected connectivity. The sign of the asymmetry score reveals the pre-
dominant direction of information flow. Direction of connectivity
was calculated for connections that had shown intensity, expecta-
tion, and/or PE effects in previous analyses. For connections with
evidence for an intensity or expectation effect in the Bayesian
ANOVA, we included all trial types in the computation of the asym-
metry score. For connections with evidence for an interaction effect,
we included trials with a mismatch between cue and intensity only.

Statistical analyses
For each of the four trial types (liLE, hiLE, liHE, and hiHE), behav-
ioral and EEG measures were computed on the basis of an identical
number of trials. This number was determined as the minimum
number of available trials across the four trial types. Details of the
trial matching procedure can be found in the Supplementary Mate-
rials (fig. S7).
Building upon previous investigations (39, 40), we made specific

predictions about how EEG responses signaling stimulus intensity,
expectations, PEs, or combinations thereof are modulated across the
four trial types. To formally test these predictions, we performed
rmANOVAs with the independent variables stimulus intensity
and expectation. In these rmANOVAs, responses signaling stimulus
intensity and expectations would manifest as main effects, whereas
responses signaling PEs wouldmanifest as interactions. This applies
to definitions of PEs as absolute (unsigned) PE and to aversive PE,
i.e., a PE occurs only if the stimulus is more painful than expected.
To quantify effects and to facilitate interpretation of negative find-
ings, we performed Bayesian rmANOVAs (41). In Bayesian rmA-
NOVAs, the BF is the ratio between the likelihood of the data
given the effect of interest and the likelihood of the data without
the effect of interest. BF > 3 and BF > 10 indicate moderate and
strong evidence in favor of the effect of interest, whereas
BF < 0.33 and BF < 0.1 indicate moderate and strong evidence
against the effect of interest, respectively (41). We considered a
neural measure or pain rating as corresponding to the intensity or
expectation pattern if there was at least moderate evidence for the
corresponding main effect. Accordingly, we considered a neural
measure or pain rating as corresponding to the PE pattern if the ev-
idence for an interaction effect of intensity and expectation was at
least moderate.
Last, for the assessment of asymmetry of information flow, we

tested asymmetry scores against 0 using a nonparametric Bayesian
t test. All parametric Bayesian analyses were conducted using the
BayesFactor package in R (64); for nonparametric Bayesian t tests,
we used freely available R code (65).

Bayesian model comparison
We intended to statistically assess whether an experimental contrast
(intensity, expectation, or PE) is associated more strongly with local
activity or interregional connectivity. To this end, we conducted a
Bayesian comparison of power-based and connectivity-based
models predicting the levels of intensity, expectation, and PE. Spe-
cifically, we computed the Bayesian evidence of logistic models
mapping individual power and connectivity values to the
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probability of observing a certain level of intensity, expectation, or
PE. In the analysis, we considerNpow= 6 power values andNconn = 15
connectivity values in each of the Nfreq = 3 frequency bands. For
each of the three types of experimental contrasts, this resulted in
Nfreq × Npow = 18 model evidence values for the power-based
models and Nfreq × Nconn = 45 model evidence values for the con-
nectivity-based models. The BF for, e.g., the intensity manipulation
reported in the manuscript, is the average of the 18 power-based
model evidence values divided by the average of the 45 connectiv-
ity-based model evidence values. For the factor expectation and the
interaction between expectation and intensity, i.e., PE, we proceed-
ed analogously. The derivation of Bayesian model comparisons for
logistic regression models follows the description in (66) and is pro-
vided in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Supplementary Methods

View/request a protocol for this paper from Bio-protocol.
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