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Abstract DNA repair deficiencies in cancers may result in characteristic mutational patterns, as 
exemplified by deficiency of BRCA1/2 and efficacy prediction for PARP inhibitors. We trained and 
evaluated predictive models for loss-of-function (LOF) of 145 individual DNA damage response 
genes based on genome-wide mutational patterns, including structural variants, indels, and base-
substitution signatures. We identified 24 genes whose deficiency could be predicted with good 
accuracy, including expected mutational patterns for BRCA1/2, MSH3/6, TP53, and CDK12 LOF 
variants. CDK12 is associated with tandem duplications, and we here demonstrate that this associ-
ation can accurately predict gene deficiency in prostate cancers (area under the receiver operator 
characteristic curve = 0.97). Our novel associations include mono- or biallelic LOF variants of ATRX, 
IDH1, HERC2, CDKN2A, PTEN, and SMARCA4, and our systematic approach yielded a catalogue of 
predictive models, which may provide targets for further research and development of treatment, 
and potentially help guide therapy.

Editor's evaluation
This is a well-motivated study looking at the association of DNA repair deficiencies with mutational 
patterns. This study is of interest to the cancer genomics community and highlights how the under-
standing of DNA repair processes can be used in the development of novel cancer therapy, and 
will also be of interest to researchers in the field of genomic medicine and cancer mutagenesis. It 
presents predictive models with potential clinical applications that can identify patients with specific 
gene dysfunction based on characteristic patterns of mutation. The key findings are well supported.

Introduction
The DNA damage response (DDR) and repair pathways are central to the genetic integrity of cells, 
and deficiencies may cause mutational patterns genome-wide (Lindahl, 1993; Nik-Zainal et al., 2012; 
Volkova et al., 2020). Some DNA repair deficiencies are known to modulate the response to ther-
apies: BRCA1/2 deficiency renders cancers susceptible to treatment with PARP inhibitors (Bryant 
et  al., 2007), mismatch repair (MMR)-deficient cancers are sensitive to checkpoint inhibitors (Le 
et al., 2015) but resistant to alkylating agents such as temozolamide (von Bueren et al., 2012), and 
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CDK12-mutated cancers have a suggested sensitivity to CHK1 inhibitors (Paculová et  al., 2017). 
Because of this, efforts have been made to annotate inactivating mutations in DDR genes (Landrum 
et al., 2014). However, the approach is limited by the lack of functional impact annotation of most 
variants, which are generally denoted as ‘variants of unknown significance’ (VUS). Moreover, loss of 
gene activity could also occur by other means, such as transcriptional silencing.

A complementary approach is to investigate whether DNA repair deficiencies can be identified by 
DNA mutational patterns, also referred to as ‘mutational scars’. This approach has been pioneered 
for homologous recombination deficiency (HRD) caused by BRCA1/2 deficiencies (-d), which can be 
successfully predicted by measuring the accumulation of small deletions with neighbouring microho-
mologous sequences (Nik-Zainal et al., 2012; Davies et al., 2017; Nguyen et al., 2020), such as done 
by the HRDetect algorithm by Davies et al., 2017. The association with microhomologous deletions 
is due to the use of microhomology-mediated endjoining to repair double-strand breaks in homol-
ogous recombination deficient tumours (McVey and Lee, 2008; Nussenzweig and Nussenzweig, 
2007). Likewise, MMR deficiency causes an elevated rate of mono- and dinucleotide repeat indels 
genome-wide, a genetic phenotype denoted microsatellite instability (MSI; Umar et al., 1994; Edel-
mann et al., 2000). Mutations in other DNA repair genes have also been associated with mutational 
patterns, including the tumour suppressor gene TP53, which is associated with increased structural 
rearrangements and whole-genome duplications (Lanni and Jacks, 1998; Gorgoulis et al., 2005) and 
CDK12 which is associated with a genome-wide phenotype of large tandem duplications (Popova 
et al., 2016; Menghi et al., 2018). The scope of this approach can now be evaluated systematically 
across DDR genes by exploiting available whole cancer genomes from thousands of patients (ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020; Priestley et al., 2019).

To achieve this, mutations observed genome-wide may be condensed into mutational summary 
statistics for predictive modelling, including statistics based on single base subsitutions (SBSs), indels, 
and different types of structural variants (SVs). The SBSs are statistically assigned to so-called SBS 
signatures that are catalogued and enumerated within the COSMIC database (Tate et  al., 2019). 
Some of these are associated with specific DNA repair deficiencies as well as genotoxic exposures, 

eLife digest Many different aspects of the environment – such as ultraviolet radiation, carcino-
gens in food and drink, and the ageing process itself – damage the DNA in human cells. Normally, 
cells can repair these sites by activating a mechanism known as the DNA damage response. However, 
the hundreds of genes that orchestrate this response are also themselves often lost or damaged, 
allowing the unrepaired sites to turn into permanent mutations that accumulate across the genome 
of the cancer cell.

By studying the DNA of cancer cells, it has been possible to identify characteristic patterns of 
mutations, called mutational signatures, that appear in different types of cancer. One specific pattern 
has been linked to the loss of either the BRCA1 or BRCA2 gene, both of which are part of the DNA 
damage response. However, it remained unclear how many other genes involved in the DNA damage 
response also lead to detectable mutational signatures when lost.

To investigate, Sørensen et al. computationally analysed data from over six thousand cancer 
patients. They looked for associations between over 700 DNA damage response genes and 80 
different mutational signatures. As expected, the analysis revealed a strong connection between the 
loss of BRCA1/BRCA2 and their known mutational signature. However, it also found 23 other associ-
ations between DNA damage response genes that had been lost or damaged and particular patterns 
of mutations in a variety of cancers. These findings suggest that mutational signatures could be used 
more widely to predict which DNA damage response genes are no longer functioning in the genome 
of cancer cells.

The mutational signature caused by the loss of BRAC1/BRAC2 has been shown to make patients 
more responsive to a certain type of chemotherapy. Further experiments are needed to determine 
whether the connections identified by Sørensen et al. could also provide information on which treat-
ment would benefit a cancer patient the most. In the future, this might help medical practitioners 
provide more personalized treatment.

https://doi.org/10.7554/eLife.81224
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such as ultraviolet (UV) light and smoking. Each SBS signature captures the relative frequency of the 
different mutation types and their flanking nucleotides (Alexandrov and Stratton, 2014).

Here, we performed a systematic screen for DDR gene deficiencies that can be predicted through 
their association with genome-wide mutational patterns. We developed a generic approach to train 
predictive statistical models that identify associations with individual mutational summary statistics 
that capture the mutational patterns, including SBS signatures, indels, and large SVs. We applied it 
to 736 DDR gene deficiencies, considering both mono- and biallelic loss-of-function (LOF), identified 
across 32 cancer types, in a combined set of whole cancer genomes from 6065 patients (ICGC/TCGA 
Pan-Cancer Analysis of Whole Genomes Consortium, 2020Priestley et al., 2019). The underlying 
aim was to identify novel associations with potential biological relevance and to evaluate whether DDR 
deficiencies can be predicted with sufficiently high certainty to have a potential for clinical application.

Our analysis revealed 24 DDR genes where deficiencies are associated with specific mutational 
summary statistics in individual cancer types across 48 predictive models. These results recapitulated 
the expected associations between mutational patterns and deficiencies of BRCA1/2, TP53, MSH3/6, 
and CDK12. We supplemented this knowledge by providing a predictive model of CDK12 deficiency 
that achieved high accuracy (area under the receiver operator characteristic [AUROC] = 0.97) in pros-
tate cancer. Furthermore, we present unexpected predictive models of several DDR deficiencies; 
ATRX and IDH1 deficiency in cancers of the central nervous systems (CNSs), HERC2 and CDKN2A 
deficiency in skin, PTEN deficiency in cancers of the CNS and uterus, and SMARCA4 deficiency in 
cancers of unknown primary.

Results
DDR gene deficiencies across 6065 whole cancer genomes
We compiled and analysed 2568 whole-genome sequences (WGS) from The Pan-Cancer Analysis 
of Whole Genomes (PCAWG) (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 
2020) and 3497 WGS from the Hartwig Medical Foundation (HMF) (Priestley et al., 2019). In total, 
we investigated 6065 whole cancer genomes of 32 cancer types (Figure 1a; Supplementary file 1a).

For each genome, we evaluated 736 known DDR genes for both germline and somatic LOF events 
(Pearl et al., 2015; Knijnenburg et al., 2018; Olivieri et al., 2020). We annotated both mono- and 
biallelic LOF events, where each event could be either a single-nucleotide variant, an indel, or a loss-
of-heterozygosity (LOH) (Figure  1b, c; Supplementary file 1b). Pathogenicity of SBSs and indels 
was evaluated using a combination of CADD scores (>25; 0.3% most pathogenic variants) (Rentzsch 
et al., 2019) and ClinVar annotation, when available (Methods).

We inferred a total of 8408 biallelic DDR gene deficiencies, primarily through a combination of 
somatic or germline variants (SBSs and indels) with pathogenic potential (n = 1702), or LOH events 
combined with a single pathogenic germline (n = 3562) or somatic (n = 3078) variant (SBS or indel; 
Figure 1b). On average we observed a single, biallelic DDR gene loss per patient, with some tumours 
showing extreme rates of somatic pathogenic mutations (Figure 1c; Figure 1—figure supplement 1).

As expected, TP53 deficiency (TP53-d) was the most frequent LOF event (81 biallelic and 1746 
monoallelic events; 29% of tumours affected; Supplementary file 1b; Figure 1d), while 70% of DDR 
genes had biallelic deficiency in less than 10 tumours across all cancer types (511/736; Figure 1d). 
Among monoallelic events, we identified 15,063 pathogenic germline (59%) and 10,336 somatic 
(41%) events.

Whole-genome mutational patterns
We collected mutational summary statistics for each cancer genome, which were used as features for 
the downstream predictive models (Figure 1e, f; Supplementary file 1c, d). For SBSs, we evaluated 
exposure towards predefined sets of cohort-specific SBS signatures (Alexandrov and Stratton, 2014; 
Degasperi et al., 2020). Short indels and SVs were simply categorised and counted: Deletions were 
sub-categorised based on surrounding sequence repetitiveness and presence of microhomology. SVs 
were sub-categorised by type (tandem duplications, inversions, deletions, and translocations), five 
size ranges (not relevant for translocations), and cluster presence (Methods). Several SBS signatures as 
well as some types of indels have suggested aetiologies (collected in Supplementary file 1e).

https://doi.org/10.7554/eLife.81224
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Figure 1. Cancer types, DNA damage response (DDR) gene deficiencies, and mutational patterns. (a) Cohort 
sizes for the 32 cancer types comprising the 6065 whole cancer genomes collected from the Hartwig Medical 
Foundation (HMF; n = 3497) and the PanCancer Analysis of Whole Genomes (PCAWG; n = 2568). (b) Mono- 
and biallelic loss-of-function (LOF) events were annotated across 736 DDR genes based on both pathogenic 

Figure 1 continued on next page
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Statistical modelling of DDR gene deficiencies
For the downstream statistical analysis, we restricted our focus to DDR genes in cancer types with more 
than five biallelic LOF events in either PCAWG or HMF (n = 194) or more than 10 monoallelic LOF 
events (n = 341) (Supplementary file 1f). Using BRCA2-d in the set of HMF breast cancer tumours (n 
= 645) as an example, we observed biallelic LOF events in 17 (2.6%; 14 germline, 3 somatic) tumours 
and monoallelic LOF events in 7 (1.1%; 4 germline, 3 somatic) tumours (Supplementary file 1g). We 
further observed VUS events in 53 tumours (8.2%; 42 germline, 11 somatic), which were excluded 
from the analysis. The remaining BRCA2 wild-type (WT) tumours (n = 568; 88.1%) were used as a back-
ground set for training the predictive models (Figure 2a). The high fraction of germline pathogenic 
variants diminishes the probability of a reverse-causal relationship between the loss of BRCA2 and the 
associated mutation patterns.

For each of the 535 groups of tumours we trained a least absolute shrinkage and selection oper-
ator (LASSO) regression model and evaluated the ability to discriminate between deficient and WT 
tumours (Methods). For BRCA2-d, we observed a strong association with the number of deletions at 
sites of microhomology (Figure 2b), with a median of 608 deletions per patient in BRCA2-d breast 
cancers versus 81 in BRCA2 WT breast cancers, in agreement with prior findings (Nik-Zainal et al., 
2012; Davies et al., 2017; Nguyen et al., 2020). The LASSO regression also included non-clustered 
inversions 10–100 kb and clustered tandem duplications 1–10 kb, although both show high variance 
among tumours for both deficient and WT (Figure 2b) and have considerably smaller coefficients, 
ultimately contributing little influence on overall predictive performance (Figure 2c).

Notably, some models include features with negative coefficients. The biological interpretation 
would be that tumours with a certain gene deficiency have fewer mutations attributed to a particular 
mutation pattern. Negative features were excluded in the development of the HRDetect algorithm 
(Davies et al., 2017), but we include them as we cannot rule out the possibility that a DDR deficiency 
protects from specific types of mutagenesis. Though not distinguishable in this study, we suggest that 
negative coefficient features may derive in three ways: First, they may stem from enhanced repair; 
second, they may stem from the decomposition of mutation counts into signatures; and third, the 
mutated tumours may represent a subclass of patients in terms of age, gender, or tumour subtype 
with specific mutational patterns.

Evaluating model performance
For each model, we evaluated the predictive performance using the area-under-the-receiver-
operating-curve (AUROC) score as well as the precision-recall area-under-the-curve (PR-AUC) score. 
The PR-AUC score is a more robust measure for unbalanced data sets (Davis and Goadrich, 2006); 
however, the expected value for non-informative (unskilled) models equals the fraction of true posi-
tives and thus varies between models. Therefore, we used the PR-AUC enrichment over the true-
positive rate (PR-AUC-E) as our selection criteria for predictive models.

Shortlisting models
For the downstream analysis, we included (shortlisted) models with PR-AUC-E that was substantial 
(>0.2; more than two standard deviations above the mean across all 535 models) and significant 
(Benjamin–Hochberg false discovery rate, FDR <0.05; Monte Carlo simulations) (Figure 3; Supple-
mentary file 1h).

variants and copy number losses (loss of heterozygosity; LOH), overall and (c) per patient (d) with varying no. 
of LOF events per DDR gene (x-axis; logarithmic). (e) Whole-genome mutational patterns were represented as 
summary statistics and used as input features for the predictive models of DDR gene deficiency. Concretely, 
each patient was annotated with the number of single-base substitutions (SBSs) that are accounted to each SBS 
signature (Alexandrov and Stratton, 2014; Degasperi et al., 2020), number of indels divided by context (mh = 
microhomology; rep = repetitive), and (f) number of structural variants divided by clusterness, size, and type (del = 
deletion; inv = inversion; tds = tandem duplication; trans = translocation).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Loss-of-function events across tumours.

Figure 1 continued

https://doi.org/10.7554/eLife.81224
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Figure 2. Predictive modelling of BRCA2 deficiencies in the Hartwig Medical Foundation (HMF) breast cancers. (a) Mutational status of BRCA2 across 
645 HMF breast cancer patients. (b) Mutational summary statistics for the HMF breast cancer patients divided by biallelic BRCA2 loss-of-function (LOF; 
red) and BRCA2 wild-type (WT; grey) (selected predictive features in bold). (c) Predictive features and their coefficients for model of biallelic BRCA2 
loss with predictive performance measured in (d) area under the receiver operator characteristic (AUROC) and (e) precision-recall area-under-the-

Figure 2 continued on next page

https://doi.org/10.7554/eLife.81224


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Sørensen et al. eLife 2023;12:e81224. DOI: https://doi.org/10.7554/eLife.81224 � 7 of 27

Testing models in the opposite data set
Additionally, we calculated the PR-AUC-E of each model when applied to the same cohort in the 
opposite data set (Figure 3—figure supplement 1). Due to the difference in biology between the two 
sets, and low numbers of LOF mutated samples, we did not use this as model performance criteria but 
have included the PR-AUC-E values and p values from the tests (Supplementary file 1h). We identi-
fied significant predictive power, across both metastatic and primary cancers, for deficiency models 
of BRCA1/2, TP53, CDK12, PTEN, ARID1A, and IDH1A. Each case is described in the respective part 
of the results.

BRCA example
In the example of BRCA2-d in breast cancers of the HMF data set, our model achieved an AUROC 
of 0.93 and a PR-AUC-E of 0.29 (Figure 2d, e; Supplementary file 1h). Out of 30,000 permuted 
LOF-sets, none had a similar or higher PR-AUC score and we considered the model significant with a 
p-value <3 × 10−5 (FDR adjusted q-value <6 × 10−4) (Figure 2f, g). The model achieved a PR-AUC-E 
of 0.37 when tested on the PCAWG data set, suggesting that the model may generalise across both 
metastatic and non-metastatic tumours. This was further supported by the independent discovery 
of a similar model in the PCAWG data set, which had an almost similar predictive power in the HMF 
data (PR-AUC-E = 0.19; Supplementary file 1h). Notably, the BRCA2-d model did not include non-
clustered deletions <100 kb, SBS signature 3, and SBS signature 8, all features which have been asso-
ciated with BRCAness (Davies et al., 2017). However, SBS signature 3 and non-clustered deletions 
1–10 kb are included in the model when the deletions at sites of microhomology are omitted from the 
input data set, suggesting that they are excluded during feature selection due to high positive correla-
tion with the number of deletions at sites of microhomology among HMF breast cancers (Pearson corr. 
>0.7; Figure 2h; Supplementary file 1i).

Our selection criteria resulted in 48 shortlisted predictive models across 24 DDR genes (Figure 3a; 
Supplementary file 1h). As exemplified for BRCA2, each model is specified by a set of predictive 
features representing mutational patterns associated with DDR gene LOF. We divided the models 
into four groups based on aetiology and origin: models of BRCA1/2-d (eight models of BRCA2-d 
and a single model of BRCA1-d; Figure 3b); models of monoallelic TP53-d (11 models; Figure 3c); 
models of various monoallelic gene deficiencies derived from colorectal cancer patients (eight models; 
Figure  3d); and models including other DDR genes and cancer types, including previously unde-
scribed associations (20 models; Figure 3e).

Survival analysis
For each of the shortlisted models, we evaluated the difference in overall survival between samples 
carrying LOF mutations and those that did not. We observed nominally significant differences (p < 
0.05; univariate Cox regression analysis) in survival for BRCA2 and TP53 in multiple cancer types as 
well as for UVRAG in colorectal cancer (Figure  3—figure supplements 2 and 3; Supplementary 
file 1j). The association of TP53 monoallelic LOF with decreased survival is in line with expectations 
(Malcikova et al., 2009). Interestingly, several models of BRCA1/2 LOF mutations associated with 
improved survival, including BRCA1 LOF mutations in metastatic ovary cancers (hazard-ratio <0.42; p 
< 0.093) and BRCA2 LOF mutations in non-metastatic ovary cancers (hazard-ratio <0.24; p < 0.017). 
In contrast, BRCA2 LOF mutations in primary breast cancers were associated with decreased survival 
(hazard-ratio >9.30; p < 0.004) (Figure 3—figure supplements 2 and 3). This may potentially reflect 
differences in both molecular diagnostic practices and treatment regiments across these cancer types. 
For instance, platin-based treatment irrespective of BRCA1/2 status has been standard for groups 
of the ovarian and pancreatic cancer patients, while traditionally not for the breast cancer patients 
(Gennari et al., 2021; Colombo et al., 2019). The sensitising effect of BRCA1/2 deficiency might 
thus explain the associated survival differences among cancer types (Kennedy et al., 2004). For most 

curve (PR-AUC) (PR-AUC-E = PR-AUC − baseline = 0.29; Methods). (f) Distributions of AUROC and (g) PR-AUC-E values obtained from 30,000 random 
data permutations compared to observed values (punctuated lines). (h) Correlation between selected predictive features (horizontal) and other highly 
correlated (Pearson corr. >0.65) mutational features (vertical).

Figure 2 continued
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Figure 3. Predictive models of DNA damage response (DDR) gene deficiencies. (a) The precision-recall AUC 
enrichment PR-AUC-E; x-axis and significance (false discovery rate [FDR]; logarithmic y-axis) of the 535 predictive 
models (one model per gene with more than 5 biallelic or more than 10 tumours either mono- or biallelic mutated 
in either Hartwig Medical Foundation (HMF) or The Pan-Cancer Analysis of Whole Genomes (PCAWG) in any one 
cancer type; Methods). Significance (q-value representing FDR) evaluated by counting equally or more-extreme 
PR-AUC-E values across >10,000 permuted data sets and applying Benjamini–Hochberg FDR control. Models with 
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Figure 3 continued on next page
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models the differences in survival were insignificant, though this may be related to the generally small 
set of LOF mutated samples.

Recapitulation and predictive modelling of expected associations with 
BRCA1/2 deficiency
Five models predicted biallelic loss of BRCA2 in cancers of the ovary, prostate, pancreas, and breast. 
In addition, three models predicted BRCA2 monoallelic loss in cancers of the pancreas, breast, and 
prostate. Finally, we derived a single model of biallelic BRCA1 loss in ovarian cancer (Figures 3c and 
4a). All models significantly outperformed their Monte Carlo simulations (q < 0.05; Benjamini–Hoch-
berg FDR control) and had PR-AUC-E above 0.2 (Figure 4b, c).

All BRCA2-d models were predominantly predicted by deletions at sites of microhomology, 
consistent with the role of BRCA2 in homologous recombination and suppression of microhomology-
mediated endjoining (Ceccaldi et al., 2015). Both clustered and non-clustered tandem duplications 
in the range of 1–100 kb were included as features for various models, though with much smaller 
predictive power. This agrees with what was identified for BRCA2-deficient tumours in prior studies 
(Davies et  al., 2017; Nguyen et  al., 2020). The biallelic breast cancer model based on PCAWG 
further included SBS signature 3 as a predictive feature (Figure 4d). Contrasting to the models of 
BRCA2-d, BRCA1-d in ovarian cancer was exclusively associated with clustered and non-clustered 
tandem duplications (1–10 kb; Figure 4d). This aligns with prior studies (Davies et al., 2017; Nguyen 
et al., 2020), which also found BRCA1-d to be closely associated with a tandem-duplicator pheno-
type. In general, BRCA1 and BRCA2 were subject to predominantly germline pathogenic events, 
and not a single deletion at a site of microhomology, suggesting the expected forward causality 
(Supplementary file 1g). As for the loss of BRCA2, the model for loss of BRCA1 loss in ovary had 
sufficient predictive power (PR-AUC-E = 0.3) in the other data set, suggesting that the model works 
independently of the metastatic capacity of the tumour (Supplementary file 1h).

TP53 deficiencies associate with increased numbers of SVs
We detected 11 predictive models (four based on PCAWG and seven on HMF) of monoallelic TP53-d 
across cancers of the breast, skin, ovary, uterus, neuro-endocrine tissues, biliary gland, head and 
neck, pancreas, and the CNS (Figure 4e). These predictive models performed with PR-AUC-E values 
ranging from 0.21 to 0.48 in breast and biliary gland cancers, respectively. Similarly, AUROC values 
ranged from 0.48 to 0.88, again in breast and biliary gland cancers (Figure 4f, g). In line with existing 
literature (Hanel and Moll, 2012), TP53-d is associated with a significantly increased number of SVs 
across the genome (Wilcoxon rank-sum test; Figure 4h, i), except in skin cancers. The models of TP53 
loss in head and neck, skin, breast, and the biliary gland performed well (PR-AUC-E above 0.2) in the 
other data set, suggesting that the predictive performance generalises independent of metastatic 
tumour state (Figure 3—figure supplement 1; Supplementary file 1h).

Colorectal cancer models derived from hypermutated MMR-deficient 
tumours
In the HMF colorectal cancers, we discovered eight predictive gene deficiency models (MSH3, SMC2, 
SMC6, BMPR2, CLASP2, SRCAP, UBR5, and UVRAG) of monoallelic LOF with PR-AUC-E ranging from 
0.21 (CLASP2) to 0.62 (MSH3) (AUROC ranging from 0.68 for SRCAP deficiency to 0.94 for MSH3 
deficiency; Figure 4j–l).

Numbers indicate the number of mutated out of the total number of tumours included in the development of each 
model.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Evaluating model performance in the opposite data set.

Figure supplement 2. Survival analysis of patients with or without loss-of-function (LOF) events in shortlisted DNA 
damage response (DDR) genes.

Figure supplement 3. Kaplan–Meier survival plots for patients from cancer-type cohorts used to train the 48 
shortlisted models.

Figure 3 continued
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Figure 4. Predictive models with anticipated aetiology or origin. (a) Overview of predictive models for BRCA1-d 
and BRCA2-d, showing data source, type of model, and loss-of-function (LOF)-set statistics. (b) PR-AUC-E, (c) 
area under the receiver operator characteristic (AUROC), and (d) the predictive features and their coefficient for 
individual models. (e–g) Overview of predictive models of TP53-d (as in a–c). (h) For each cohort, the number of 
structural variants (x-axis; logarithmic) for TP53 LOF tumours (red) versus TP53 wild-type tumours (grey) and (i) the 
significance of their difference (two-sided Wilcoxon rank-sum test). (j–l) Predictive models of gene deficiencies in 
colorectal cancers (as in a–c). (m) Number of deletions in repetitive DNA (as in h) and (n) its significance (as in i). (o) 
The predictive features of each model (as in d) and (p) the percentage of tumours that are co-mutated with MSH3.
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We suggest that the high number of models of monoallelic deficiencies may arise from spurious 
LOF events in DDR genes in a subset of colorectal cancers that are hypermutated. In line with this, the 
hypermutated samples (n = 18; >100,000 mutations) harbour 22% (5.9-fold enrichment) of all the DDR 
LOF events across the HMF colorectal cancer samples (n = 475).

Some colorectal cancers are signified by MMR deficiencies, such as LOF of MSH3 or MSH6, creating 
a high number of deletions in repetitive DNA (Umar et al., 1994; Edelmann et al., 2000). Indeed, 
we found that this pattern was most profound among the MSH3-mutated cancers (Figure 4m, n). 
Furthermore, we found co-mutation with MSH3 across the tumours underlying each model, ranging 
from 20% (SRCAP) to 33% (BMPR2) of the mutated tumours (Figure  4p). This suggests that the 
models (except for the model of MSH3-d) might be the consequence of the hypermutator pheno-
type. In other words, the causality may be reversed in these cases, and the mutational process driven 
by MSH3-d may have caused the majority of their LOF events. This notion is supported by investi-
gating the features of the models. All eight models are characterised by a single, primary predictive 
feature: Insertions (SMC2, SMC6, BMPR2, UBR5, and UVRAG), deletions in repetitive DNA (MSH3 
and SRCAP), or deletions not flanked by repetitive or microhomologous DNA (CLASP2) (Figure 4o). 
Each of these features has a high positive correlation (Pearson corr. >0.93) with the number of dele-
tions in repetitive DNA. This correlation suggests that all eight models relate to a genome-instability 
phenotype, which may be driven by the MSH3 co-mutated tumours or, potentially, a concurrent 
deficiency of other genes within the MMR system (Supplementary file 1i). Notably, the deficiency 
models of UBR5, BMPR2, CLASP2, and SMC6 all had PR-AUC-E above 0.2 in the other data set, 
suggesting that these genes are associated with the MMR phenotype regardless of metastatic state 
(Supplementary file 1h).
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Biallelic LOF of MSH6 associated with increased number of deletions in 
repetitive DNA in prostate cancer
MSH6, a gene implicated in MMR and microsatellite stability (Edelmann et al., 2000), was mutated in 
both alleles in 7 out of 342 HMF prostate cancer patients. We observed pathogenic indels in MSH6 in 
all seven tumours, but only one of these in mono- or dinucleotide repeat DNA. MSH6 deficiency could 
be predicted with high accuracy (PR-AUC-E = 0.25; AUROC = 0.98) by an enrichment of deletions in 
repetitive DNA (Figure 5a, b; Supplementary file 1h). This is consistent with existing findings of MMR 
deficiency and its presence in metastatic prostate cancers (Graham et al., 2020).

High predictive power for CDK12 deficiency
CDK12 encodes a kinase that regulates transcriptional and post-transcriptional processes of the DDR 
(Blazek et al., 2011; Marqués et al., 2000; Li et al., 2016). We found that CDK12-d prostate cancers 
had an increased number of mid- and large-sized tandem duplications 100 kb to 10 Mb, compared 
to CDK12-WT (Figure 5c, d). Several studies have observed similar tandem duplication phenotypes 
in ovarian cancers (Popova et al., 2016; Menghi et al., 2018; Li et al., 2020) and castration resistant 
prostate cancers (Wu et al., 2018; Rescigno et al., 2021). In agreement, nine of the 10 patients in our 
data set were treated with drugs associated with castration resistance (4 Enzalutamide, 3 Abiraterone, 
1 Cabazitaxel, 1 Pembrolizumab) (Sumanasuriya and De Bono, 2018).

Whereas the tandem duplication phenotype has been previously associated with loss of CDK12, in 
this study we present the first predictive algorithm utilising and quantifying the high predictive value 
of these patterns (PR-AUC-E = 0.73 and AUROC = 0.97). Indeed, the loss of CDK12 has been demon-
strated to sensitise cancer cells to CHK1— (Paculová et al., 2017) and PARP inhibitors (Bajrami et al., 
2014; Joshi et al., 2014).

We went on to test the CDK12-d model across other cancer types (Figure 5c). As expected, we 
observed predictive power in cancers of the ovary and breast, though at a lower level (PR-AUC-E = 
0.19 and AUROC = 0.72). No predictive power was observed for the remaining cancer types. We only 
observed a single tumour with biallelic LOF of CDK12 in PCAWG, but the predictive model was able 
to correctly identify this tumour, and reached a PR-AUC-E of 0.99 in the PCAWG data set.

Novel predictive gene deficiency models
The shortlisted predictive LOF models further include biallelic LOF of ATRX, PTEN, HERC2, MEN1, 
SMARCA4, BAP1, and RB1, as well as monoallelic LOF of ATRX, IDH1, PTEN, CDKN2A, ARID1A, 
TP53BP1, HERC2, and RB1 (Figure 3e and Figure 6; Figure 6—figure supplement 1). The number 
of mutated tumours underlying each model varied from 8 (biallelic SMARCA-d in cancers of unknown 
primary) to 22 (monoallelic HERC2-d in skin).

Predictive models of ATRX-d and IDH1-d in CNS cancers
We found that ATRX-d (monoallelic: PR-AUC-E = 0.21, AUROC = 0.71; biallelic: PR-AUC-E = 0.23, 
AUROC = 0.76; Figure 6a) and IDH1-d (monoallelic: PR-AUC-E = 0.24, AUROC = 0.82; Figure 6b) in 
CNS cancers were both predicted by a decreased number of SBS signature 8 mutations. In addition, 
ATRX-d was further predicted by non-clustered inv. 10–100 kb, although with a small coefficient and 
hence contributing limited discriminatory power. We discovered that 7 of 11 IDH1-mutated tumours 

or wild-type (grey). (i) Pearson correlation between the per-tumour number (tumours of unknown primary; Hartwig Medical Foundation [HMF]) of SBS 
signature 27 (y-axis) and SBS signature 4 (x-axis; logarithmic) mutations, with an overlaid linear model (blue) and its 95% confidence interval (grey). 
(j) Using a model trained to predict SMARCA4 biallelic LOF in HMF cancers of unknown primary, we evaluate the predictive power across individual 
cohorts (one-tailed Wilcoxon rank-sum test), displaying significant cohorts separately (colours as in h). (k) Expression of SMARCA4, meassured as the 
sum of all annotated transcripts per milion (TPM; y-axis), for tumours with biallelic LOF and no LOF (x-axis). Colors indicate the rate of SBS sig. 27 in 
each tumour, (red >0; black = 0). The difference in expression was evaluated using a non-paired Wilcoxon rank-sum test.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional shortlisted predictive models of DNA damage response (DDR) gene deficiencies.

Figure supplement 2. Monoallelic CDKN2A deficiency (-d) in The Pan-Cancer Analysis of Whole Genomes (PCAWG) and Hartwig Medical Foundation 
(HMF) skin cancers, mono- and biallelic HERC2 deficiency in HMF skin cancers.

Figure 6 continued
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were also ATRX-mutated (28-fold enrichment compared to IDH1 WT skin cancers; p = 1.2 × 10−8, 
Fisher’s exact test) and that both ATRX and IDH1 were predominantly hit by somatic mutations (14 of 
15 for ATRX, 7 of 11 for IDH1).

Co-mutation between IDH1 and ATRX is well described in gliomas (Mukherjee et al., 2018). Inter-
estingly, LOF of either gene is associated with lack of SBS signature 8, a signature associated with 
BRCAness (Davies et al., 2017; Alexandrov et al., 2020) and late-replication errors (Singh et al., 
2020). This suggests that CNS cancers with IDH1/ATRX deficiency are not subject to the same DNA 
lesions or repair processes as other CNS cancers and they may potentially belong to a separate 
patient subclass, though we could not identify evidence of this.

Predictive model for SMARCA4-d in cancer of unknown primary
We discovered eight tumours (HMF) out of 77 with cancers of unknown primary with SMARCA4-d 
(biallelic) that could be predicted with relatively high accuracy (PR-AUC-E = 0.44; AUROC = 0.85; 
Figure  6c). These tumours showed an enrichment of SBS signature 27 [a signature first detected 
in myeloid cancers (Alexandrov et al., 2015)], which has been suggested to be a sequencing arte-
fact though it also displays strong strand bias (Tate et al., 2019; Supplementary file 1e). Among 
cancers of unknown primary, SBS signature 27 correlates strongly with SBS signature 4 (Pearson corr. = 
0.96), despite the signatures different composition (cosine similarity of signatures = 0.17) (Figure 6h, 
i; Supplementary file 1i). This suggests that SBS signature 4 may also be associated with SMAR-
CA4-d and we indeed found that its predictive performance (PR-AUC-E of 0.43; AUROC = 0.83) was 
almost equivalent to SBS signature 27. Signature 4 is associated with smoking across several cancer 
types (Alexandrov et al., 2013; Nik-Zainal et al., 2015); interestingly, SMARCA4-d is seen in aggres-
sive thoracic sarcomas (Sauter et al., 2017) and strongly enriched among patients with a history of 
smoking (Rekhtman et  al., 2020). Its gene product, BRG1, has been suggested as a lung cancer 
transcriptional regulator of genes that induce tumour proliferation (Dagogo-Jack et al., 2020) and 
metastasis (Concepcion et al., 2022). We evaluated the ability of SBS signature 4 to predict SMAR-
CA4-d in other cancer types and found a significant predictive association in lung cancer, though much 
lower than for cancers of unknown primary (Figure 6j). We also found a significant ability to predict 
SMARCA4-d by the number of SBS signature 27 mutations in cancers of the neuro-endocrine tissues 
(Wilcoxon test, one-tailed p = 0.002) and head and neck (p = 4.8 × 10−7), but we could not evaluate 
this in lung cancers, as the signature is not among its set of cohort-specific signatures.

Twelve cancers had a high posterior probability of SMARCA4-d (Figure 6j) despite being SMARCA4 
WT and lacking pathogenic events. No other single DDR gene was mutated among all 12 tumours, 
with TP53 having the most LOF events (6 of 12 cancers).

We evaluated the expression of SMARCA4 among the cancers of unknown primary and identified 
a significantly lower expression of SMARCA4 in tumours with biallelic LOF mutations compared to 
WT (p = 0.54 × 10−2; Figure 6k). For the 12 tumours with high signature 27 exposure but no biallelic 
LOF mutations, we did not observe a similar decrease in expression (Figure  6k), suggesting that 
SMARCA4 was not epigenetically silenced or otherwise transcriptionally inactivated in these cases.

Given that cancers of unknown primary have disparate origins, this raises the possibility that the 
patients with high posterior probability of SMARCA4-d may have metastasised from a cancer type or 
subtype with both high levels of SBS signatures 4 and 27, as well as high incidence of SMARCA4-d. 
However, for the lung cancer samples, we did not observe any significant association of SMARCA4-d 
with subtype (p = 0.72 for HMF; p = 0.65 for PCAWG; Fisher’s exact test). Further studies are thus 
needed to clarify if the observed associations can be explained through such an ascertainment bias 
rather than causatively by SMARCA4-d.

Predictive model for monoallelic CDKN2A-d in skin cancer
Both germline and somatic variants in CDKN2A are known to predispose for melanoma (Liu et al., 
1999). In the PCAWG skin cancer cohort, we found that a monoallelic predictive model of CDKN2A-d 
achieved relatively high accuracy (PR-AUC-E = 0.28; AUROC = 0.82). Its predictive features are enrich-
ment of deletions at sites of microhomology, non-clustered inv. (100 kb to 1 Mb), and SBS signature 7, 
in order of predictive importance (Figure 6d). Apart from the inversions, these features are also signifi-
cantly associated with biallelic CDKN2A-d in the HMF skin cancer cohort (Figure 6—figure supple-
ment 2a, b) and are included in the corresponding predictive model, though it had lower predictive 
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performance (PR-AUC-E = 0.008; AUROC = 0.542) and was not shortlisted (Supplementary file 1f). 
In both HMF and PCAWG, most of the observed LOF events are somatic, with the majority being 
biallelic (16 of 18 in PCAWG; 32 of 33 in HMF; Supplementary file 1g). The presence of deletions at 
sites of microhomology suggests a possible reduction in error-free double-stranded break repair in 
combination with an increased accumulation of SBS signature 7.

Predictive model for HERC2-d in metastatic skin cancer
HERC2-d has been associated with susceptibility to developing melanoma (Amos et al., 2011). We 
found HERC2-d predictable in HMF skin cancer patients (biallelic: PR-AUC-E = 0.24, AUROC = 0.73; 
monoallelic: PR-AUC-E = 0.23, AUROC = 0.66; Figure 6e), primarily based on enrichment of deletions 
in non-microhomologous and non-repetitive regions.

HERC2 encodes a protein ligase that modulates the activity of P53 (Cubillos-Rojas et al., 2014). 
We observed that seven of the nine tumours with biallelic HERC2-d also had a monoallelic pathogenic 
event in TP53 (eightfold enrichment; p = 4.6 × 10−6, Fisher’s exact test). Tumours that are co-mutated 
in TP53 (monoallelic) and HERC2 (mono- or biallelic) showed a significantly higher number of dele-
tions compared to tumours with LOF in either gene alone (Wilcoxon test, one-tailed p < 0.031) and 
cancers that are WT for both genes (p < 7.2 × 10−7) (Figure 6—figure supplement 2c).

PTEN deficiency associates with fewer SVs in CNS and uterine cancers
PTEN is a tumour suppressor gene found in various cancer types (Li et al., 1997; Liaw et al., 1997) 
and its deficiency was found to be associated with mutational patterns in uterine and CNS cancers 
(Supplementary file 1h). In CNS, we acquired two identical models from the HMF data set, as we 
observed no monoallelic events without a second hit (mono- and biallelic PR-AUC-E = 0.37, AUROC 
= 0.74; Figure 6f). In uterine cancer, we acquired significant predictive models from both HMF and 
PCAWG (HMF, biallelic: PR-AUC-E = 0.37, AUROC = 0.74; HMF, monoallelic: PR-AUC-E = 0.36, 
AUROC = 0.79; PCAWG, monoallelic: PR-AUC-E = 0.22, AUROC = 0.74; Figure 6g). In addition, the 
models of PTEN loss in uterus had predictive power in the other data sets, suggesting signal robust-
ness and independence of metastatic state (the PCAWG-derived model had PR-AUC-E of 0.55 in the 
HMF data; the HMF-derived model had a PR-AUC-E of 0.27 in PCAWG; Supplementary file 1h). 
The model of biallelic PTEN-d in uterine cancers is primarily based on depletion of non-clustered inv. 
10–100 kb, whereas both the HMF and PCAWG models of monoallelic deficiency are primarily based 
on depletion of non-clustered tandem duplications (10–100 kb) (Figure 6g). In contrast, our models of 
PTEN-d in CNS cancers from HMF were based on depletion of both non-clustered deletions 1–10 kb 
and non-clustered translocations (Figure 6f).

Additional shortlisted gene deficiency models
We predicted monoallelic ARID1A LOF (PR-AUC-E = 0.208; AUROC = 0.72) by depletion of SBS 
signature 8 mutations in metastatic prostate cancer (Figure  6—figure supplement 1a). Loss of 
ARID1A impairs the pausing of RNA polymerase II during transcription, leading to dysregulated gene 
expression (Trizzino et al., 2018), whereas SBS signature 8 mutations have been associated with inac-
tivity of BRCA1/2 (Davies et al., 2017). When contrasting ARID1A LOF mutated patients specifically 
with BRCA1/2 WT patients within the prostate cancer cohort, a significant depletion of SBS signa-
ture 8 mutations remained (Wilcoxon rank-sum test p < 0.0013), which expectedly increased when 
comparing with BRCA1/2-deficient patients (p < 7.7 × 10−5; Figure 6—figure supplement 2d).

We could predict the biallelic deficiency of BAP1 in metastatic skin cancers (PR-AUC-E = 0.26; 
AUROC = 0.80) primarily by a decreased number of SBS signature 7 mutations, UV induced (Pfeifer 
et al., 2005; Howard and Tessman, 1964), and an elevated number of SBS signature 30 mutations, 
related to inefficient base excision repair (Drost et al., 2017; Supplementary file 1d and h; Figure 6—
figure supplement 1b). As the two signatures have high compositional similarity (cosine similarity = 
0.72), their co-occurrence and opposite predictive effects may be caused by technical difficulties with 
their combined inference. BAP1 germline variants are commonly associated with predisposition for 
the development of multiple cancer types including melanoma (Pilarski et al., 2020).

In metastatic neuro-endocrine cancers, biallelic loss of the MEN1 gene was predicted by fewer 
mutations attributable to SBS signature 16, of unknown aetiology, and 9, which is related to hyperac-
tivity of POLH (PR-AUC-E = 0.22; AUROC = 0.82) (Figure 6—figure supplement 1c; Supplementary 
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file 1h). MEN1 is a regulator of gene transcription and germline deficiencies are causatively associ-
ated with developing Multiple Endocrine Neoplasia Type 1 (MEN1), which is a rare, hereditary tumour 
condition (Chandrasekharappa et  al., 1997). However, in this setting, we observed only somatic 
events, with all 10 patients having an LOH combined with a pathogenic variant affecting the open 
reading frame. (Supplementary file 1g). Studies of somatic MEN1 mutations likewise found somatic 
hits in MEN1 exclusively together with LOH events, and associated the somatic LOF of MEN1 with a 
different disease phenotype than that of inherited MEN1 (Heppner et al., 1997).

We could predict RB1 biallelic LOF among the metastatic urinary tract cancers by an increase of 
mutations attributable to UV-related SBS signature 7 (PR-AUC = 0.47; AUROC = 0.84) (Figure 6—
figure supplement 1d; Supplementary file 1h). SBS signature 7 is known to develop from the expo-
sure to UV light (Supplementary file 1e; Howard and Tessman, 1964). However, the signature has 
been reported by COSMIC for various cancer types with no sun exposure, including cancers of the 
breast, ovary, pancreas, oral cavity, lung, and uterus as well as sarcomas (Tate et al., 2019). Although 
the predictive performance is considerable and significant, the accumulation of mutations in SBS 
signature 7 does not necessarily reveal the true aetiology of the underlying mutagenesis.

Discussion
The cancer-specific, incomplete repair of endogenous and exogenous DNA lesions leave specific 
genome-wide mutational patterns. Their detection provides potentially powerful information on the 
fidelity of individual DNA repair pathways and response to chemo- and immunotherapies. Taking 
advantage of a large pan-cancer data set, our analysis shows that mutational patterns are associated 
with DNA repair defects across a wide range of cancers and repair mechanisms. In this study, we have 
contributed concrete initial predictive algorithms for mutational patterns of several DDR gene defi-
ciencies, with potential use for clinical intervention.

The clinical scope of our approach is exemplified by recent regulatory approval for PARPi administra-
tion, which was supported by statistical predictions of HRD based on mutational patterns (FDA approval, 
2019). We have similarly predicted CDK12 deficiency (CDK12-d), which has previously been associated 
with a tandem duplication phenotype– with power similar to that of HRD detection. This suggests a clinical 
benefit of clinical application of predictive algorithms to test for CDK12-d, specifically when considering the 
application of CHK1 inhibitors in prostate, ovary, and breast cancer treatment (Paculová et al., 2017).

We also find high predictive power for MSH6-d in prostate cancers by counting deletions in repetitive 
DNA, also known as the MSI phenotype (Boland and Goel, 2010). It is common practice to search for signs 
of MSI in colorectal cancers, endometrial cancers, and aggressive prostate cancers. This prediction is most 
commonly made using a panel of repetitive DNA regions, such as the Bethesda panel (Umar et al., 2004). 
Here we demonstrated high predictive power in prostate cancers based on mutation summary statistics, 
which may be routinely extracted from whole-genome sequencing. The correct identification of tumours 
with high MSI supports the administration of immune checkpoint blockade treatment, as the mutational 
phenotype leads to an increased expression of neo-peptides and thus an increased sensitivity towards the 
immune response (Abida et al., 2019; Antonarakis et al., 2019).

Our systematic approach identified a similar model of PTEN LOF in uterine cancer in the PCAWG data 
and the HMF data; either model also having predictive power in the other data set. The re-discovery in either 
data set grants further trust to this model, and further experimental investigation is warranted to understand 
the underlying aetiology of the mutation patterns, and the potential for clinical benefits.

Recent studies have suggested the use of CDK4/6 inhibition in treating SMARCA4-deficient 
tumours (Xue et al., 2019). We discovered that a large subset of cancers of unknown primary (>10%) 
have SMARCA4 deficiency and that these cancers can be accurately predicted from their whole-
genome accumulation of SBS signature 4 or SBS signature 27 mutations. This is a clinically challenging 
cancer type due to the lack of a primary cancer to guide treatment and any such prediction may serve 
in selecting treatment for these complex cancers, given additional experimental evaluation.

Of note, the inclusion of monoallelic events allowed for larger sets of tumours with DRR gene 
LOF, thereby increasing the power of our study when causative associations with mutational patterns 
exist. This is for instance the case for TP53, which is known to be functionally impacted by monoallelic 
events (Malcikova et al., 2009). We shortlisted 11 models of TP53-d, which were all monoallelic. We 
further found that inclusion of monoallelic LOF events matched the predictive power for ATRX biallelic 
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LOF in CNS cancers and HERC2 biallelic LOF in skin cancers, suggesting that single genetic hits are 
sufficient to affect repair and ensuing mutational patterns for these genes.

Incorrectly annotated LOF events in DDR genes may affect both the ability to discover asso-
ciations with mutational patterns and the performance of any associated predictive models. On 
the other hand, highly stringent LOF criteria may result in true LOF events being overlooked, and 
create small deficiency sets with insufficient power to discover true associations. For the annotation 
of germline LOF events, we restricted our focus to rare variants (population frequency ≤0.5%), as 
more common variants are likely benign. Given the high number of variants evaluated overall, false-
positive germline LOF calls are expected. However, they are unlikely to associate with specific muta-
tional patterns and thus are unlikely to contribute significant, shortlisted false-positive predictive 
models of DDR deficiency. Likewise, in cancers with hypermutator phenotypes, somatic LOF events 
may be caused by and associated with specific mutational patterns. This leads to predictive models 
that in effect detect instances of reverse causality, as discussed for the monoallelic models found 
in colorectal cancer. We investigated whether reverse causality was a likely explanation for an asso-
ciation captured by a predictive model by evaluating whether the annotated LOF events matched 
the predictive mutational features (Supplementary file 1g). In general, biallelic LOF criteria are 
less sensitive to wrongly annotated LOF events than monoallelic criteria, as double hits are rare 
compared to single hits. For both mono- and biallelic predictive models, the data permutations 
ensure that the observed association between the DDR gene LOF events and given mutational 
patterns are surprising.

Our conservative LOF curation, and a lack of expression or protein-level data, is expected to cause 
some LOF events to be missed. This may explain a high posterior probability of a particular gene LOF 
in some tumours, but no evidence of genetic disruption (as seen in Figures 5e and 6h). This highlights 
the scope of mutation-pattern-based predictions, in particular in tumours without canonical DDR gene 
LOF events. At a very least, such tumours could be considered for further scrutiny for LOF of the indi-
vidual DDR gene that they are predicted to have lost.

Our systematic approach provides a proof-of-concept that will become increasingly powerful as 
the available data sets increase in number and size. For the current data sets, consistent validation 
of detected associations was challenging due to small cohorts and differences in cancer biology. To 
establish the basis for any future synthetic lethality uses of our predictive models, it would be desir-
able to establish causal relationships. This has been beyond the scope of this study but could be 
achieved by whole-genome sequencing of cell lines or organoids with individual DDR gene knockout. 
Alternatively, the loss of DDR genes can be explored in animal models as previously done for several 
DDR genes including BRCA1/2 (Evers and Jonkers, 2006), MMR genes (Reitmair et al., 1995; Prolla 
et al., 1998), and TP53 (Donehower, 1996).

The current study yields a catalogue of predictive models that captures both known and novel 
associations between DDR gene deficiencies and mutational patterns. The included DDR genes may 
provide targets for research and development of treatment. With further optimisation, predictive 
models such as these may guide the selection of therapy by adding certainty of disabled or compro-
mised repair deficiency phenotypes found in cancers of individual patients.

Materials and methods
Data
The analysis was conducted on 6098 whole cancer genomes and included a set of 6065 whole cancer 
genomes after filtering (see below). The data came from two independent data sets: the PCAWG 
(tumours = 2583; ICGC study ID. EGAS00001001692) (ICGC/TCGA Pan-Cancer Analysis of Whole 
Genomes Consortium, 2020) and the HMF (tumours = 3515; Acc. Nr. DR-044) (Priestley et  al., 
2019). The data sets contain tumours from 32 cancer types and represent diverse patient groups in 
terms of age, gender, and disease history. PCAWG consists of tumours both with and without metas-
tasis, whereas HMF exclusively consists of donors with tumours showing metastatic capability. To 
best relate the two data sets, all tumours are catalogued by the site of primary disease. For 77 of the 
metastatic HMF tumours, the primary site was unknown, and these are annotated as such (Figure 1a; 
Supplementary file 1a).

https://doi.org/10.7554/eLife.81224
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Curating samples
In the HMF data, we selected the earliest available sample whenever multiple samples existed for the 
same patient. For the PCAWG data, we used the official whitelist, obtained at the ICGC resources 
(https://dcc.icgc.org/pcawg), and for patients with more than one sample, we always selected the 
earliest, whitelisted sample available. We discarded six PCAWG samples of bone/soft tissue, as these 
were discarded in prior publications based on the PCAWG data set (Degasperi et al., 2020) leaving 
2568 PCAWG samples and 3497 HMF samples across 32 sites of the body. A list of all Donor IDs, 
Sample IDs, and primary sites of disease may be found in Supplementary file 1a.

Curating variants for LOF annotation
We annotated variants across a set of 736 genes related to the DDR (Supplementary file 1b). The set 
of genes is combined from three sources, Knijnenburg et al., 2018; Pearl et al., 2015; and Olivieri 
et al., 2020.

We filtered the downloaded variant call files (VCFs) of all samples for variants between the Ensembl 
(GRCH37/hg19) start and end position of each DDR gene (see coordinates in Supplementary file 1b). 
We included variants classified as PASS in the VCF files and variants of the PCAWG data set supported 
by at least two of our four variant callers. Furthermore, we discarded all variants which occurred in 
more than 200 samples across the two data sets in order to avoid noise arising from single-nucleotide 
polymorphisms (SNPs) called as single-nucleotide variants (SNVs), SNPs with high frequency in partic-
ular populations and possibly technical artefacts. We also discarded somatic variants with variant allele 
fractions below 0.2 and variants where gnomAD (V2.1.1) showed a germline population frequency 
above 0.5% (Karczewski et al., 2020).

Annotating pathogenic variants and mutations
We annotated all variants and mutations with CADD phred scores (V1.6) in order to separate likely 
pathogenic variants from likely benign variants (Rentzsch et al., 2019). All variants with CADD 
phred scores of 25 or higher were considered pathogenic, whereas non-synonymous mutations 
with CADD phred scores below 25 and above 10 were considered VUS. Variants with CADD phred 
scores below 10 were considered benign. A CADD phred score of 25 is a conservative threshold 
(Itan et  al., 2016), and only includes the 0.3% most-likely pathogenic variants. In addition, we 
annotated all variants with their status in the ClinVar database (when present). Combining ClinVar 
and CADD phred scores ensured that we would be able to discover associations across all DDR 
genes, not only genes with ClinVar annotations, which are expected to be incomplete for any given 
gene.

Annotating LOH and deep deletions
We also used the copy number profiles of each sample to discover genes with bi- or monoallelic losses 
of parts of genes. Any overlap between a gene and a copy number loss was indicated as an LOF event, 
under the assumption that losing any part of the protein-coding DNA is detrimental to the complete 
protein product. We considered events in which the minor allele copy number was below 0.2 to be 
an LOH, whereas we considered events with a total tumour copy number below 0.3 (major and minor 
allele summarised) as deep deletions. This cutoff is adapted from the work of Nguyen et al., 2020.

Annotating bi- and monoallelic gene hits
We considered genes with a single pathogenic variant, either somatic or germline, to be monoal-
lelic hit (n = 25,399). In cases where the monoallelic hit is accompanied by an LOH, we considered 
the event a biallelic loss (n = 6,640). Finally, genes that were completely depleted in a sample were 
considered biallelic lost (n = 66). We did not consider a single LOH event as a monoallelic loss due to 
the broad impact and high frequency of such events, with ~25 times higher rates of LOH than deep 
deletions (Figure 1b, c). We have summarised the causes of LOF annotation at a per-model basis 
(Supplementary file 1g), including an annotation of the number of tumours with events hotspot 
locations, microhomologous DNA, and repetitive DNA. We do not disclose this information at a per-
sample level in order to maintain patient privacy and data safety.

https://doi.org/10.7554/eLife.81224
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Mutational patterns of SBSs, indels, and SVs
We summarised the genome-wide set of somatic mutations by using Signature Tools Lib, developed 
by Degasperi et al., 2020. Firstly, we used Signature Tools Lib to count single-nucleotide variants by 
base change and context, and assigned these counts to a set of organ-specific signatures, as recom-
mended by Degasperi et al., 2020. We then have converted the organ-specific signature exposures to 
reference signature exposures using the conversion matrix found in the supplementary material of the 
paper by Degasperi et al., 2020. For 12 signatures (N1–N12) this was not possible, and these signa-
tures are considered to be novel. Likewise, two signatures associated with MMR deficiency, MMR1 
and MMR2, are associated with several of the COSMIC MMR signatures. For these, we preserved the 
signature label as given by Signature Tools Lib. For cohorts with no organ-specific signatures (cancers 
of unknown primary, neuroendocrine tissue, thymus, urinary tract, penis, testis, small intestine, vulva, 
double primary, and the adrenal gland), we have assigned mutations directly to the full set of 30 refer-
ence signatures (COSMIC signatures 1–30). Note that we excluded age-related signature 1 from the 
modelling, as this signature confounded by acting as a proxy for the age of the patient so that the 
model would be learning to differentiate old from young patients rather than patients with activity of 
different mutational processes or repair deficiencies. We did not exclude signature 5 although it has 
suggested association with age, because it also has suggested associations to the hormone receptor 
positive subtype of breast cancers (Perry et al., 2022).

Secondly, Signature Tools Lib was used to count indels: Insertions were simply counted, whereas 
deletions were separated by the DNA context of the deletion, being microhomologous, repetitive, 
or none of the two. Microhomology was defined by whether the deleted sequence was similar to 
the region immediately 3′ of the breakpoint, as this indicates repair by microhomology-mediated 
endjoining. Repetitive deletions were defined by whether there is a repeat of the indel at the 3′ end of 
the breakpoint (Degasperi et al., 2020). We decided to not further compose indels into signatures, 
for the ease of interpretation; the type of deletion has a clear relation to the mechanism of repair, 
which is what we are investigating in this paper.

Finally, we used Signature Tools Lib to count SVs. SVs were separated into two groups, clustered 
and non-clustered based on the average distance between rearrangements (the inter-rearrangement 
distance). Regions with at least 10 breakpoints having at least 10 times smaller inter-rearrangement 
distance than the average across the genome of that cancer were considered clusters (Nik-Zainal 
et al., 2016). SVs were further divided based on the type of mutation: Deletions, tandem duplications, 
inversions, and translocations. Deletions, tandem duplications, and inversions were further divided by 
size, with intervals being 1 to 10 kb, 10 to 100 kb, 100 kb to 1 Mb, 1 to 10 Mb, and finally mutations 
with lengths above 10 Mb. As with indels, we decided not to decompose SV counts into rearrange-
ment signatures, to ease interpretability and because SV signatures are less established in the field. 
The per-sample exposure to each summary statistic may be seen in Supplementary file 1c (log trans-
formed and scaled in Supplementary file 1d; see method below) and the suggested aetiology (when 
existing) may be seen in Supplementary file 1e; Alexandrov et al., 2020; Tate et al., 2019.

Preparing subsets of data for modelling
We separated the two data sets and divided the tumours into their respective cancer-type cohorts. 
We stratified the data for each DDR gene; designating whether the patient had a biallelic patho-
genic variant, monoallelic pathogenic variant, or no pathogenic variants. We excluded tumours with 
inconclusive variants (CADD phred >10, <25) within the gene. For modelling of cancers with biallelic 
variants in a gene, we selected all DDR gene-cohort combinations where more than five tumours had 
biallelic variants in the same gene (n = 194). Likewise, we selected all cases with more than 10 tumours 
with monoallelic variants (n = 341) (Supplementary file 1f). This setup means that each sample may 
be included in developing several models but occur only once in each model as either mutated or 
non-mutated. Biallelic mutated tumours were also included in the models of monoallelic loss, as we 
consider biallelic loss a special case of monoallelic loss.

Generating models using LASSO regression
For each model, we calculated per-sample weights to counter the imbalance in the data, so that 
the weight of each sample was one minus the proportion of tumours with this mutational status 
(either pathogenic or non-pathogenic/WT). We then used logistic regression model with LASSO 
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regularisation (henceforth LASSO regression), with the alpha parameter at 1, from the R-package 
‘glmnet’ (v4.0) (Friedman et al., 2010) to select features with predictive power. The LASSO regression 
was selected to achieve a sparse set of associated features that could be readily interpreted. This is in 
line with the methodology used in HRDetect by Davies et al., 2017.

For each of k cross-fold validation sets (with k being the number of bi- or monoallelic hit tumours, 
respectively), we ran an LASSO regression with a nested fivefold cross-validation and the assigned 
weights (as mentioned above to counter imbalance in the data), to produce a set of lambda values. 
From the LASSO regression, we selected the lambda value corresponding to the binomial deviance 
which is one standard deviation away from the observed minimal binomial deviance of the regres-
sion, in order to avoid overfitting (overfitting may occur if taking the lambda of the minimal binomial 
deviance) (Friedman et al., 2010). In a few cases, the LASSO regression converged to larger sets of 
features than what is justifiable by the low number of mutated tumours, and so we limited the number 
of features to one feature per 10 mutated tumours, rounded up and added one (e.g. 12 mutated 
tumours gives basis for maximum three features). For each of the k cross-folds we used the model 
to predict the left-out data and used these predictions for the evaluation of the model performance.

Finally, we generated a model by including the entire data set. This was done to train the best 
possible model in terms of selected features and coefficients, and this is the model reported in the 
main figures, whereas the performance measures shown in the main figures are derived from the k-
fold cross-validation.

Evaluating model predictive performance
We used k-fold cross-validation to get a measure of the predictive performance of each model. 
Due to the strong imbalance in the data, we use the PR-AUC enrichment from the true-positive rate 
(PR-AUC-E) as our statistic of performance, while also reporting traditional AUROC scores. The true-
positive rate is the baseline that would be expected for a non-informed model. By subtracting the 
true-positive rate from the PR-AUC of each model, we can compare the performance between models 
despite different sample sizes.

Model selection using Monte Carlo simulations
We selected models for further analysis (our shortlist) based on both their PR-AUC-E performance 
(effect size) and their significance. Across the 535 initial models, we observed a mean PR-AUC-E of 
0.04 with a standard deviation of 0.099 (90%-quantile = 0.18) (Supplementary file 1f). The PR-AUC-E 
threshold was set at 0.2 and thus roughly two standard deviations above the overall mean. To evaluate 
significance we used Monte Carlo simulations and generated a null-distribution for each of the 535 
initial models. This was done by permuting the mutation state of the underlying tumours and then 
running the LASSO regression on the permuted data. We ran a minimum of 10,000 permutations 
(n) for each of the 535 models, storing the PR-AUC-E for each permutation. For models where the 
number (r) of permutations leading to PR-AUC-E values as or more extreme than the original model 
was smaller than five, we ran an additional 10,000 permutations, up to a maximum of 30,000 permu-
tations. A p value ‍(p = (r + 1)/n)‍ was calculated for each model (Supplementary file 1f). The Benja-
mini–Hochberg procedure was used to control the FDR and resulting adjusted p values (q values) 
smaller than 0.05 were shortlisted (Supplementary file 1h). In conclusion, 48 models of 24 genes were 
shortlisted for further investigation.

Evaluating model performance in the opposite data set
For each model, we evaluated the ability to predict mutations in the opposite data set, as a way to 
evaluate if the model is restricted to metastatic/primary tumours or not. To do this, we identified 
the set of mutated and WT samples in the opposite data set and used the model on each sample to 
acquire a posterior probability. Based on these, we calculated the PR-AUC-E of each model in the 
opposite data set (Figure 3—figure supplement 1; Supplementary file 1h). We permuted the muta-
tion status of the samples 30.000 times to evaluate the significance of the PR-AUC-E of each model.

Survival analysis
For the 48 shortlisted models, we performed a survival analysis of the underlying data (Figure 3—
figure supplement 2; Supplementary file 1j). For each model, we fitted a Cox-regression model 
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estimating the hazard ratio based on overall survival as a function of the mutational status of the 
gene. For the PCAWG data, survival times and status were made available in the most recent data 
release at the ICGC/PCAWG webpage (https://dcc.icgc.org/api/v1/download?fn=/PCAWG/clinical_​
and_histology/pcawg_donor_clinical_August2016_v9.xlsx). For samples with no registered survival 
time, we used the feature ‘donor_interval_of_last_followup’.

For the HMF data, we acquired metadata as part of the DR-282 data package. These data included 
biopsy date, date of death (when applicable) and treatment end date. For deceased patients, we 
measured the survival time from biopsy date to date of death; for the remaining patients we measured 
the survival time from biopsy date to treatment end date.

Expression analysis
For the metastatic cancers of unknown primary (n = 77), we also analysed the SMARCA4 expression 
patterns. RNAseq FASTQ files were obtained from the HMF (DR-282) for 58 of the tumours. Reads 
were pseudoaligned to GRCh37 transcripts from Gencode (V37lift37) and quantified using Kallisto 
version 0.48.0 (Bray et al., 2016). For each sample, we then extracted the protein-coding SMARCA4 
transcripts (ENST00000644737.1) and calculated an overall gene-level TPM score as the sum of the 
transcript-level TPM scores.

Code availability
The code needed to reproduce the analysis will be made available at https://github.com/Simon-
Grund/DDR_Predict, (copy archived at swh:1:rev:c4daf1b7a9526ea411ad763c05d0c9317b45d42e; 
Sørensen, 2021) including data pre-processing, modelling of the 535 predictive models and model-
ling of ≥10,000 data permutation null models for each of the 535 models.
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applications to gbGaP and DACO, which should include a project proposal, as instructed on this 
site https://docs.icgc.org/pcawg/data/. The ICGC study ID of the project is EGAS00001001692. The 
HMF data used in this project may be found by accession code DR-044 and can be obtained by 
submitting an application with a project proposal to the Hartwig Medical Foundation (https://www.​
hartwigmedicalfoundation.nl/en). Non-personal summary data have been supplied in supplementary 
tables. Supplementary table (a) All included tumours and their primary tumour locations. Supple-
mentary table (b) 736 DDR genes, hg19 coordinates and the number ofpathogenic events across 
6065 cancer genomes. Supplementary table (c) All SBS signature contributions, indels counts, and 
SV counts, per sample. Supplementary table (d) All SBS signature contributions, indels counts, and 
SV counts, per sample, log-transformed and scaled to z-scores. Supplementary table (e) Proposed 
Etiologies of base substitution signatures. Supplementary table (f) All models (n=535). Supple-
mentary table (g) Pathogenic events in each of the 535 LOF-sets Supplementary table (h) Short-
listed models (n=48). Supplementary table (i) Correlation between features in shortlisted models. 
Supplementary table (j) Survival analysis for the shortlisted models. The third-party software used 
for data analysis includes: Pathogenicity annotation using CADD annotation software, which may 
be accessed at https://cadd.gs.washington.edu Signature analysis using Signature Tools Lib, which 
has been installed from the GitHub: https://github.com/Nik-Zainal-Group/signature.tools.lib, (copy 
archived at swh:1:rev:af1d46750dbc2c86a60d85ef50f19f40fa33e768) that we developed locally for 
the analysis can be accessed at: https://github.com/SimonGrund/DDR_Predict, (copy archived at 
swh:1:rev:c4daf1b7a9526ea411ad763c05d0c9317b45d42e).
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