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A longitudinal circulating tumor DNA-based 
model associated with survival in metastatic 
non-small-cell lung cancer

Zoe June F. Assaf1  , Wei Zou    1, Alexander D. Fine2, Mark A. Socinski3, 
Amanda Young    2, Doron Lipson2, Jonathan F. Freidin    2, Mark Kennedy2, 
Eliana Polisecki2, Makoto Nishio4, David Fabrizio2, Geoffrey R. Oxnard2, 
Craig Cummings1, Anja Rode5, Martin Reck6, Namrata S. Patil1, Mark Lee1, 
David S. Shames    1   & Katja Schulze    1 

One of the great challenges in therapeutic oncology is determining who 
might achieve survival benefits from a particular therapy. Studies on 
longitudinal circulating tumor DNA (ctDNA) dynamics for the prediction 
of survival have generally been small or nonrandomized. We assessed 
ctDNA across 5 time points in 466 non-small-cell lung cancer (NSCLC) 
patients from the randomized phase 3 IMpower150 study comparing 
chemotherapy-immune checkpoint inhibitor (chemo-ICI) combinations 
and used machine learning to jointly model multiple ctDNA metrics to 
predict overall survival (OS). ctDNA assessments through cycle 3 day 1 of 
treatment enabled risk stratification of patients with stable disease (hazard 
ratio (HR) = 3.2 (2.0–5.3), P < 0.001; median 7.1 versus 22.3 months for high- 
versus low-intermediate risk) and with partial response (HR = 3.3 (1.7–6.4), 
P < 0.001; median 8.8 versus 28.6 months). The model also identified 
high-risk patients in an external validation cohort from the randomized 
phase 3 OAK study of ICI versus chemo in NSCLC (OS HR = 3.73 (1.83–7.60), 
P = 0.00012). Simulations of clinical trial scenarios employing our ctDNA 
model suggested that early ctDNA testing outperforms early radiographic 
imaging for predicting trial outcomes. Overall, measuring ctDNA dynamics 
during treatment can improve patient risk stratification and may allow early 
differentiation between competing therapies during clinical trials.

One of the great challenges in therapeutic oncology is determining who 
might achieve survival benefits from a particular therapy. Cytotoxic 
agents, such as platinum-based alkylating agents or small-molecule inhibi-
tors of receptor tyrosine kinases, can lead to observable reductions in 
overall tumor burden as measured by computerized tomography (CT) 

or magnetic resonance imaging. Imaging-based evaluation of the thera-
peutic effects of oncology drugs during the course of treatment informs 
on the response of a patient’s tumor to the drug or drug combination, 
prognosis of the patient and aids in physician decision making. In addi-
tion, imaging-based modalities have been developed as surrogates of 
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FoundationOne Liquid CDx assay by Foundation Medicine Inc. (FMI), 
which sequenced >1.25 Mb of genomic content covering 394 genes35 
(Fig. 1a). Sequence data were processed by a cell-free DNA computa-
tional pipeline that corrected errors via the use of fragment barcodes 
as previously described35. After the algorithmic removal of common 
germline and CHIP mutations, putative tumor-derived somatic altera-
tions were identified at this baseline time point (Methods).

A subset of patients (n = 466) was chosen to be evaluated for 
on-treatment time points where we required the patient to have plasma 
available for C2D1 and/or C3D1, as well as peripheral blood mononu-
clear cells (PBMCs) available if putative tumor-derived variants were 
detected in baseline plasma (n = 438; Fig. 1a). Although common ger-
mline and CHIP variants were removed algorithmically in the original 
samples (see Methods), matched normal PBMCs were still required 
to remove less common germline and CHIP variants including those 
in canonical driver genes36. We expected a survivorship bias in the 
ctDNA-evaluable population due to our requirement for patients to 
have samples available after randomization, and while no strong PFS 
bias was found for ctDNA evaluable versus nonevaluable (HR = 0.92 
(0.82–1.05)), we did detect a survivorship bias for OS (HR = 0.86 (0.75–
0.99); Extended Data Fig. 1a). However, baseline characteristics were 
similar between the intention-to-treat (ITT) and the ctDNA evaluable 
population, including baseline Eastern Cooperative Oncology Group 
(ECOG), age, sex, race, region, among others (Supplementary Table 1).

On-treatment time points were assessed using a custom fixed 
panel assay to track changes in ctDNA in response to therapy. A custom 
assay was used to allow a higher depth of coverage for a similar cost. 
The final hybridization capture panel reduced the total panel size to 
330 kb while capturing mutations in 311 genes present in ~94% of the 
IMpower150 patients’ baseline samples (Fig. 1a; Methods). Propri-
etary software developed by FMI was used to estimate on-treatment 
variant allele frequency (VAF) for every mutation detected at baseline 
(Methods). The final assay was experimentally validated to be highly 
concordant with the baseline assay and to have high sensitivities down 
to ~0.1% VAF (Extended Data Fig. 1b; Methods). The matched normal 
PBMCs were also run on this custom panel at high sequencing coverage 
(average mean target ~5,400× consensus deduplicated), and variants 
detected in both plasma and PBMCs were considered germline or CHIP 
mutations37.

There were 282 (64%) patients who had plasma variants that 
were also detected in PBMCs, including 45 patients who switched 
from ctDNA positive (at least one mutation detected) to ctDNA nega-
tive (zero mutations detected) after this PBMC correction (Fig. 1a). 
The number of PBMC-derived variants detected among these 282 
patients ranged from 1 to 7, with mean 1.8 and median of 1 variant. The 
PBMC-derived germline/CHIP mutations had allele frequencies in 
plasma that overlapped with somatic tumor mutations in plasma (range 
0.175–69% for PBMC-derived mutations and 0.14–82% for somatic 
tumor mutations, medians 1.3 and 2.2%, respectively; Extended Data 
Fig. 1c). Common CHIP genes were excluded from our custom panel 
(TET2, DNMT3A, CBL, PPM1D, CHEK2, JAK2, ASXL1 and SF3B1). Among 
the 311 genes included in our panel, the PBMC-derived mutations were 
most prevalent in TP53 (5.3% of patients), followed by MLL3 (4.1%), FAT1 
(3.6%) and ATM (3.0%; Extended Data Fig. 1d). All PBMC-derived variants 
were subtracted from the final plasma mutation dataset.

ctDNA was detected in 393 patients (84%) at the baseline time 
point, of which 348 (89%) had pathogenic alterations detected includ-
ing in the genes TP53 (52%), KRAS (23%), STK11 (13%) and EGFR (10%; 
Extended Data Fig. 1e). For downstream analyses, the ctDNA-evaluable 
population was split into a training (n = 240) and test set (n = 226;  
Fig. 1a), which were similar in survival outcomes (Extended Data Fig. 1f), 
baseline clinical features and ctDNA status (Supplementary Table 2). We 
noted that the number of patients for each treatment arm in training 
and test set was well balanced; atezolizumab + bevacizumab + carbo-
platin + paclitaxel (ABCP) 35% (n = 84) and 32.3% (n = 73) in training 

overall survival (OS) and are widely used endpoints in oncology drug 
trials1,2. However, for certain types of drugs including cancer immuno-
therapies, progression-free survival (PFS) or overall response rate do not 
always correlate with OS3,4. Because of this lack of correlation between 
surrogate measures of drug efficacy and OS, oncology drug trials often 
depend on OS as a primary endpoint5,6. This means that trials can take 
many years to complete. Therefore, there is an important need to evalu-
ate immunotherapy drug efficacy early in the course of therapy using 
alternative methods that are better associated with OS.

Circulating tumor DNA (ctDNA) testing has the potential to 
transform patient management by providing real-time assessments 
of patient prognoses and response to treatment using a simple blood 
draw7. ctDNA is a subset of the total cell-free DNA circulating in the 
bloodstream, thought to be shed by necrotic or apoptotic cells8. It can 
be profiled using next-generation sequencing as well as other methods 
and can be differentiated from background cell-free DNA by the pres-
ence of somatic tumor mutations8.

In the surgically resectable cancer setting, a positive ctDNA test 
after surgery has shown to be a poor-prognostic factor9–14 and changes 
in ctDNA correlate with treatment response15–17. In the metastatic set-
ting, treatment response and survival times have been associated with 
changes in ctDNA levels during systemic treatment with chemother-
apy18,19, targeted therapies20,21, immune checkpoint inhibitors (ICIs)19,22 
and combination chemo-ICI23. The relatively higher ctDNA levels in 
patients with metastatic cancer compared to early-stage disease24 
suggest this setting would be well suited for developing ctDNA as an 
early endpoint for new drug or combination evaluation, or to inform 
risk-based treatment decisions25,26.

The clinical implementation of ctDNA dynamics as a surrogate of 
survival has thus far been limited by small sample sizes, study designs 
without randomization or a lack of clarity on which ctDNA collection 
time points and summary metrics are optimal for predicting survival 
outcomes. To address these challenges, we performed high-sensitivity 
longitudinal ctDNA testing of 311 genes including correction for 
clonal hematopoiesis of indeterminate potential (CHIP) variants in 
466 patients across 5 time points (1,954 samples total) in the phase 3 
IMpower150 trial (NCT02366143).

The IMpower150 study was a randomized, open-label study that 
evaluated the safety and efficacy of anti-PD-L1 atezolizumab in com-
bination with carboplatin + paclitaxel with or without bevacizumab 
compared with treatment with carboplatin + paclitaxel + bevacizumab 
in chemotherapy-naive participants with Stage IV nonsquamous 
non-small-cell lung cancer (NSCLC). The IMpower150 study met its 
primary endpoints of PFS (PFS hazard ratio (HR) = 0.62; 95% confi-
dence interval (CI), 0.52–0.74; P < 0.001) and of OS (OS HR = 0.78; 95% 
CI, 0.64–0.96; P = 0.02), which led to the approval of atezolizumab +  
carboplatin + paclitaxel + bevacizumab in 1 L NSCLC27. Clinical data 
used in this work are based on the final OS analysis for the study  
(OS HR = 0.80; 95% CI, 0.67–0.95; data cutoff September 13, 2019)28. 
Atezolizumab is also an approved treatment in the early lung cancer 
setting29 as well as for other tumor types30–34.

After performing longitudinal ctDNA testing in IMpower150, we  
(1) examined the utility of individual ctDNA metrics to risk stratify 
patients including those with stable disease (SD) or partial responses 
(PR), (2) leveraged a machine learning approach in a training/testing 
framework to jointly model multiple ctDNA metrics to predict land-
mark survival, and (3) performed simulations to investigate whether 
our ctDNA model could outperform early radiographic imaging 
to detect differences between treatment arms in early clinical trial 
scenarios.

Results
Experimental plan and assay development
Of the 1,202 patients enrolled in IMpower150, baseline plasma samples 
from 1,062 patients were evaluated using a prototype version of the 
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and test set, respectively, atezolizumab + carboplatin + paclitaxel (ACP) 
31.2% (75) and 34.5% (78), and bevacizumab + carboplatin + paclitaxel 
(BCP) 33.8% (81) and 33.2% (75) (Supplementary Table 2). Final sam-
ple counts can be found in the supplement (Extended Data Fig. 1g). 
Note that all initial exploratory analyses and model building shown in  
Figs. 1–3 were performed in the training set of data, after which model 
validation was performed in the hold-back test set shown in Figs. 4 and 5.

ctDNA levels are prognostic in training data
The baseline prevalence of ctDNA positivity (at least one mutation 
detected) was 85% in the training split of data (204/240), and preva-
lence decreased to 79.3% at C2D1, 77.0% at C3D1, 77.3% at C4D1 and 
76.4% at C8D1 (Extended Data Fig. 2a). Baseline ctDNA was assessed 
for its prognostic value and association with baseline clinical features. 
Patients with any detectable ctDNA (n = 204) trended toward worse OS 

compared to the 36 ctDNA negative patients (HR = 1.33 (0.87–2.06), 
log-rank P = 0.19; median OS 18.8 versus 26.6 months from baseline, 
respectively). Among baseline ctDNA-positive patients, the median 
ctDNA level was 64 MTM (mean tumor molecules per ml plasma), which 
corresponded to a median of 1.4% mean allele frequency (AF). Note 
that MTM and mean AF were highly correlated (Extended Data Fig. 2b). 
Patients who were positive for ctDNA could be risk stratified using the 
median ctDNA level, where patients with ctDNA above the median had 
shorter OS compared to patients with ctDNA levels below the median 
(Fig. 1b; HR = 1.9 (1.36–2.64), log-rank P < 0.001; median OS 14.1 versus 
24.0 months from baseline). Higher ctDNA levels were found to be asso-
ciated with poor prognostic features including age below 65 years (Wil-
coxon P = 0.0035), positive history of smoking (Wilcoxon P = 0.0044), 
baseline tumor size by the sum of longest diameters (SLD) above the 
median (Wilcoxon P < 0.001) and higher number of metastatic sites 
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Fig. 1 | Design of ctDNA substudy and prognostic value of baseline ctDNA 
in training set. a, Consort diagram showing how the final 466 patients in the 
ctDNA evaluable population were identified and showing the prevalence of 
ctDNA positivity at the baseline time point before and after PBMC correction. 
b, Kaplan–Meier analysis showing the prognostic value of baseline ctDNA for 
OS in the training set of patients (n = 240), where blue curve indicates ctDNA 
negative patients (zero mutations detected), red curve indicates patients with 
ctDNA levels greater than or equal to the median (≥64 MTM) and black curve 

indicates patients with ctDNA levels less than the median. c, Multivariable Cox 
regression including baseline clinical features confirms that the ctDNA level is an 
independently poor prognostic factor for OS (n = 239 patients with nonmissing 
data available for all baseline clinical features). Two-sided Wald test P values are 
reported, and points and error bars indicate HR and 95% confidence interval, 
respectively. The exact P value for the first row ‘P < 0.001’ is 0.000672. MTM, 
mean tumor molecules.
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(Kruskal–Wallis P < 0.001; Extended Data Fig. 2c). However, the baseline 
ctDNA level was confirmed to be an independently poor prognostic 
factor for OS in a multivariable Cox regression model including base-
line clinical features (HR = 1.35 (1.13–1.60), log-rank P < 0.001; Fig. 1c). 
Results were similar for PFS (Extended Data Fig. 2d,e).

Treatment initiation correlated with reductions in ctDNA levels, 
generally decreasing with each subsequent on-treatment time point 
through C4D1, which is the last time point in the series in which chemo-
therapy was given in combination with atezolizumab, bevacizumab 
or both (Extended Data Fig. 2f). Treatment responses as assessed by 
RECIST criteria at week 6 were associated with longitudinal ctDNA 
dynamics such that patients with CR or PR had lower ctDNA levels 
for all on-treatment ctDNA time points compared to patients with 
week 6 SD or progressive disease (PD; Fig. 2a). For example, baseline 
ctDNA-positive patients with a week 6 radiographic treatment response 
assessment of CR/PR (n = 67) tended to have greater reductions in 
ctDNA levels at C3D1 (mean −70% reduction in MTM level for CR/PR) 
compared to the 111 patients with week 6 SD (mean −39% reduction 
for SD) and the 16 patients with week 6 PD (mean +54% increase for 
PD; Kruskal–Wallis rank sum test P = 0.079). Radiographic tumor 

assessments were performed at baseline and every 6 weeks in the 
study, which is most contemporaneous with ctDNA collections at the BL 
and C3D1 (week 6) time points (Extended Data Fig. 2f). Levels of ctDNA 
were also correlated with tumor size (SLD) at BL and C3D1 (week 6; 
Pearson R = 0.37, P < 0.001 and Pearson R = 0.16, P = 0.042, respectively; 
Extended Data Fig. 2g,h). The percent change in ctDNA level from BL to 
C3D1 was correlated with the percent change in SLD from baseline to 
week 6 (Pearson R = 0.24, P = 0.002; Extended Data Fig. 2i).

Risk stratification using early radiographic tumor assessments 
alone showed numerically shorter OS for patients with week 6 SD 
compared to those with week 6 PR (median OS 18.5 versus 24.7 months; 
HR = 1.4 (0.96–2.02), log-rank P = 0.078; Fig. 2b). However, ctDNA data 
generated at a similar time point (C3D1) showed that patients who had 
ctDNA levels near or above the limit of detection (LOD) of the assay (≥1 
MTM) had shorter OS compared to patients who maintained or reduced 
ctDNA to below the LOD (HR = 1.92 (1.34–2.76), log-rank P < 0.001; 
median 15.3 versus 26.0 months from C3D1 for patients with <1 and ≥1 
MTM at C3D1, respectively; Fig. 2c).

We found that combining C3D1 ctDNA risk (≥1 versus <1 MTM) with 
week 6 treatment response by RECIST improved risk stratification further 
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Fig. 2 | On treatment ctDNA dynamics associate with clinical outcomes 
in the training dataset. a, On-treatment ctDNA levels as measured by MTM 
(per milliliter plasma) across longitudinal time points for patients with week 6 
radiographic assessments of treatment response of PD (red), SD (purple) and 
CR/PR (blue). b, KM curves showing OS for patients with SD (purple) versus 
PR (green) as determined at the week 6 radiographic assessment of treatment 
response. A univariable Cox proportional-hazards model was used to estimate 
HR and log-rank test to report P value. c, KM curves showing OS for patients with 

C3D1 ctDNA levels below the LOD of the assay (<1 MTM, ctDNA low risk, blue) 
versus near or above the LOD (≥1 MTM, ctDNA high risk, red). A univariable Cox 
proportional-hazards model was used to estimate HR and log-rank test to report 
P value. The exact P value for ‘P < 0.001’ is 0.00029871. d,e, KM curves showing 
OS for patients with SD (d) and PR (e) at week 6 who are further risk stratified by 
ctDNA levels at C3D1. A univariable Cox proportional-hazards model was used to 
estimate HR and log-rank test to report P value. MTM, mean tumor molecules.
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C8D1) estimated by rank concordance (c-index) calculated from leave-one-out-
cross-validation (LOOCV) to fit an elastic net model with ctDNA features. Bar height 
indicates c-index estimate, error bars indicate ± the standard error of the c-index, 
and two-sided P values are shown comparing each model’s c-index to random 
classifier. Each model is built using patients in the training subset at-risk for the 
relevant landmarked survival endpoint, where the numbers from left to right are: 
240, 240, 237, 237, 206, 202, 201, 196, 146 and 136. The exact P values from left to right 
are 6.69 × 10−5, 9.50 × 10−10, 1.06 × 10−5, 7.97 × 10−9, 2.87 × 10−9, 4.16 × 10−6, 3.35 × 10−7, 
0.000797098, 6.54 × 10−8, 3.18 × 10−7. b, Gain metric by next-door analysis for the five 
top features identified during LOOCV for the C3D1 OS ctDNA model. c, Univariable 
c-index showing the strength of association between OS from C3D1 (n = 206 
patients) and each of the five top features for the C3D1 OS ctDNA model. Error bars 

indicate ± standard error of the c-index. Exact values from top to bottom for the two-
sided P values comparing c-index to a random classifier are 2.23 × 10−5, 1.35 × 10−4, 
0.0366, 0.0021 and 0.0093. d, Forest plot showing the HR for OS from C3D1 (n = 206 
patients) estimated by univariable Cox proportional-hazards model, using the 
median value for the feature split, for the five top features for C3D1 OS ctDNA model. 
Higher feature values (above median) were generally associated with worse OS (HR 
above 1). Points and error bars indicate HR and 95% CI, respectively. e, Scatterplot 
showing final C3D1 OS ctDNA model predictions (y axis) versus OS time (x axis) in the 
training data, with dotted lines indicating the thresholds chosen in training set for 
mPD (≥0.298 prediction score), molecular response (mResp < 0.036) and molecular 
stable disease (mSD for (0.036, 0.298)). The exact value for the two-sided P value 
comparing the final C3D1 OS model’s c-index to a random classifier P value indicated 
by ‘P < 0.0001’ is 1.318316 × 10−12. f, KM curve showing that the final C3D1 OS ctDNA 
model can risk stratify patients in the training data.
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such that SD patients could be split into SD/ctDNA high-risk versus SD/
ctDNA low-risk (Fig. 2d; OS HR = 1.85 (1.21–2.83), log-rank P = 0.004; 
median 15.3 versus 22.8 months from C3D1, respectively). Week 6 PR 
patients could also be split into PR/ctDNA high-risk versus PR/ctDNA 
low-risk (Fig. 2e; OS HR = 2.18 (1.08–4.38), log-rank P = 0.025; median 14.3 
months from C3D1 versus median not reached, respectively). The week 6 
PR patients who were high risk by ctDNA had numerically shorter duration 
of treatment response compared to patients who were low risk by ctDNA 
(median 5.6 versus 11.5 months duration of treatment response; duration 

of treatment response (DoR) HR = 0.59 (0.33–1.06), log-rank P = 0.075; 
Extended Data Fig. 3a). Results were similar when analyses were repeated 
using PFS (Extended Data Fig. 3b) or alternative ctDNA thresholds or 
metrics (Extended Data Fig. 3c,d). Visualizing the SLD dynamics parallel to 
ctDNA dynamics revealed that while ctDNA changes mirror SLD changes, 
patients with different response categories by radiographic imaging 
could still have very similar ctDNA patterns (Extended Data Fig. 2e).  
Overall, these results suggest that imaging-based risk stratification at 
early on-treatment time points may be improved upon by combining 
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Fig. 4 | Machine learning model performs well for risk stratification in the 
hold-back test dataset and in the OAK external validation cohort. a, KM curve 
showing that the final C3D1 OS ctDNA model can be used for risk stratification in 
the hold-back test data, where patients with mPD (red) have worse OS compared 
to patients with a molecular response or molecular stable disease (mResp + mSD, 
blue). A univariable Cox proportional-hazards model was used to estimate HR 
and log-rank test to report P value. The exact P value indicated by ‘P < 0.001’ is 
3.7228 × 10−10. b, KM curve showing that patients with radiographic treatment 
response of SD at the week 6 tumor assessment can be risk stratified using the 
final C3D1 OS ctDNA model in the hold-back test data, identifying SD/ctDNA  
high-risk patients (mPD, solid curve) and SD/ctDNA low-intermediate risk 
patients (mSD + mResp, dashed curve). A univariable Cox proportional-hazards 
model was used to estimate HR and log-rank test to report P value. The exact  

P value indicated by ‘P < 0.001’ is 8.8076 × 10−7. c, KM curve showing that patients 
with radiographic treatment response of PR at the week 6 tumor assessment 
can be risk stratified using the final C3D1 OS ctDNA model in the hold-back test 
data, identifying PR/ctDNA high-risk patients (mPD, solid curve) and PR/ctDNA 
low-intermediate risk patients (mSD + mResp, dashed curve). A univariable Cox 
proportional-hazards model was used to estimate HR and log-rank test to report 
P value. The exact P value indicated by ‘P < 0.001’ is 0.0003018. d, KM curve 
showing that the C3D1 OS model applied to the external validation cohort of 73 
patients from the OAK clinical trial can provide predictions that identify high-
risk patients in this 2nd line mNSCLC setting that used a distinct ctDNA assay 
technology. A univariable Cox proportional-hazards model was used to estimate 
HR and log-rank test to report P value. The exact P value indicated by ‘P < 0.001’ is 
0.000119.
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radiographic imaging with ctDNA measurements, potentially informing 
risk-based treatment decisions made by clinicians.

Machine learning model predicts survival using  
ctDNA metrics
Multiple metrics can be used to describe ctDNA dynamics, for example, 
the ctDNA level can be measured using the AF, the MTM per milliliter 
plasma, the total cell-free DNA concentration, the number of mutations 
detected or the number of pathogenic mutations detected, among oth-
ers38. We derived 19 metrics of the ctDNA level (measured for every time 
point) and 59 metrics of ctDNA change relative to baseline (measured for 
each on-treatment time point) (Supplementary Table 3; Methods). The 
performance of different metrics to individually predict landmark sur-
vival can be summarized using the rank concordance (Harrell’s c-index), 
and we find that performance varies across metric types, time points and 
survival outcomes in the training data (n = 240; Extended Data Fig. 4a). 
We next jointly modeled these features in a machine learning framework 
using an elastic net approach39 to predict landmark PFS and landmark OS 
from each plasma collection time point (see Methods). This permits many 
features related to ctDNA levels and changes to be included in the model 
initially; however, nested cross-validations during the training reduce the 
number of features to an optimal subset that minimizes prediction error.

Models were trained for each visit time point, where all meas-
urements collected from baseline up until that particular visit were 
included as features, for example for C3D1 models, features from BL, 
C2D1 and C3D1 were included. Note that treatment arms were pooled 
to build a model useful as an early endpoint regardless of the treatment 
regime being used (similar concept to RECIST criteria). Pooling was also 
appealing because building a multivariable predictive model requires 
relatively large sample sizes in the training and testing splits. Results 
showed that model performance was generally best (higher c-index) for 

OS at the C3D1/C8D1 time points (Fig. 3a and Supplementary Table 4).  
We decided to focus on the OS model for the C3D1 time point given 
that C8D1 samples were available for only 60% of patients (which itself 
is a good prognostic/favored by immortal bias) and because OS is the 
most relevant metric for oncology therapeutics.

To investigate how a ctDNA-focused model compared to known 
prognostic factors, we compared C3D1 OS models trained using either 
clinical features alone or combined with ctDNA features. For clinical 
features, we included the baseline factors shown in Fig. 1c as well as 
measures of tumor size from early radiographic assessments at baseline 
and week 6 (see Methods). We find that when comparing C3D1 OS runs, 
the combined ctDNA + clinical feature set performs substantially bet-
ter compared to the clinical features alone (P = 0.0125; Extended Data  
Fig. 4b and Supplementary Table 4).

To identify top features for the C3D1 OS ctDNA model, we 
chose ctDNA features that were chosen during training in >50% of 
cross-validations and which had a positive gain metric by next-door 
analysis40. This reduced the number of features in the model to just 
five metrics, which included metrics related to MTM, the number of 
detected mutations and the total cell-free DNA concentration (Fig. 3b, 
Supplementary Table 5). Individually, these metrics showed univari-
able c-indices for OS between 0.55 and 0.60 (Fig. 3c, Extended Data  
Fig. 4c and Supplementary Table 5), and the median split of each metric 
separately provided OS HRs between 1.14 and 1.90 (Fig. 3d).

The final C3D1 OS ctDNA model was fit using the five top ctDNA fea-
tures in the entire training dataset with a final c-index of 0.66 (P < 0.001 
for comparison to random classifier; Fig. 3e and Supplementary Table 6).  
Numeric thresholds for binning C3D1 OS model predictions were 
chosen in the training data (see Methods) to bin patients into three 
groups including those at high risk (molecular progressive disease 
(mPD), 28% of training set), those at low risk (molecular response 
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Fig. 5 | Machine learning model may be useful for detecting differences 
between treatment arms in early phase 2 clinical trial scenarios. a, KM 
curve showing OS in the test dataset for the three arms in the IMpower150 trial 
including ABCP (brown) versus ACP (orange) versus the control arm of BCP 
(black, control arm). b, Bar plot showing the rate of radiographic response 
at the week 6 tumor assessment for each treatment arm (left panel, CR/PR by 
RECIST criteria), and the rate of ctDNA molecular response for each treatment 
arm (right panel, mResp by C3D1 OS ctDNA model). c, Bar plot showing results 
from simulations of early phase 2 clinical trial scenario utilizing test data, where 
an early endpoint based on ctDNA (mResp by C3D1 OS model) is compared to 

early radiographic endpoints (week 6 RECIST response, week 6 PFS). Bar height 
corresponds to the proportion of simulations in which the active arm had higher 
rates of treatment response compared to control arm (‘true go rate’) for each 
early endpoint (x axis), where the left panel shows simulations comparing active 
ABCP arm to control BCP arm (left panel, brown colors), and right panel shows 
simulations comparing active ACP arm to control BCP arm (right panel, orange 
colors). X axis corresponds to which early endpoint is used in the simulation, 
comparing ctDNA criteria alone (mResp by C3D1 OS model), radiographic 
response alone (CR/PR by RECIST), PFS alone, or ctDNA added to radiographic 
response or PFS response.
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(mResp), 32% of training set) and those with intermediate risk (molecu-
lar stable disease (mSD), 40% of training set; Fig. 3e, Extended Data  
Fig. 4d,e). Kaplan–Meier analysis confirmed the prognostic value for 
OS of these three bins in the training data (median OS from C3D1 of 9.5, 
18.8 and 31.2 months for mPD, mSD and mResp, respectively; Fig. 3f).

We tested the final C3D1 OS ctDNA model at a c-index of 0.67 
(P < 0.001, Extended Data Fig. 5a) in the hold-back test set with evalu-
able C3D1 plasma (n = 192 patients, Fig. 1b) and found that the pre-
specified thresholds chosen in the training set also provided good 
separation between risk groups in the test data (Extended Data Fig. 
5b). The ctDNA model high-risk group showed shorter OS compared 
to patients with low-intermediate risk (OS HR = 3.28 (2.2–4.9), log-rank 
P < 0.001; median 7.3 months versus 25.2 months from C3D1 for mPD 
and mResp + mSD, respectively; Fig. 4a). Model predictions in the test 
set also performed well in patients with a week 6 tumor assessment of 
SD (c-index in SD = 0.68; P < 0.001), and the prespecified threshold 
could risk stratify SD patients into high risk versus low-intermediate 
risk (OS HR in SD = 3.23 (1.98–5.29)], log-rank P < 0.001; median 7.1 
versus 22.3 from C3D1 for mPD and mResp + mSD, respectively)  
(Fig. 4b). Similarly, ctDNA model predictions in the test set performed 
well in patients with PR (c-index in PR = 0.64; P = 0.002) and was able 
to identify a high-risk PR subgroup (OS HR in PR = 3.26 (1.66–6.42)), 
log-rank P < 0.001; median 8.8 versus 28.6 from C3D1 for mPD and 
mResp + mSD, respectively; Fig. 4c).

We further validated our C3D1 OS ctDNA model in an external 
patient cohort (n = 73), which is a subset of patients from the OAK 
clinical trial (NCT02008227) who had ctDNA assessed using the Avenio 
ctDNA assay at BL, C2D1 and C3D119. In addition to a different ctDNA 
assay, the external cohort also included metastatic NSCLC patients 
from the 2nd line setting (versus 1st line in IMpower150) and differ-
ent treatment regimes (monotherapy of atezolizumab or docetaxel 
versus chemo-ICI combinations in IMpower150). Applying our C3D1 
OS predictor developed in the IMpower150 data to the OAK data (Meth-
ods), we find it validates well in this external cohort with a c-index of 
0.69 (P < 0.0001; Extended Data Fig. 5c), and the prespecified cutoffs 
were also able to identify high risk (mPD) versus low-intermediate 
risk (mResp + mSD) patients in the OAK clinical trial (OS HR = 3.73 
(1.83–7.60), log-rank P = 0.00012; Fig. 4d and Extended Data Fig. 5d). 
These findings support the potential clinical utility of our ctDNA model 
across multiple treatments and settings in NSCLC.

ctDNA model utility as an early endpoint in drug development
For a new early endpoint to be useful for clinical drug development in 
metastatic lung cancer, it should sensitively detect differences in OS 
between treatment arms at an early time point. Additionally, it should 
improve upon more traditional early radiographic-based endpoints like 
RECIST response or PFS. In this IMpower150 study, patients in the con-
trol arm received BCP and patients in the experimental arms received 
either ABCP or ACP (Fig. 5a, Extended Data Fig. 6a, test data shown). We 
note that the US approval was based on comparing ABCP arm to BCP 
arm27,41, although the ABCP and ACP arms had similar OS results28. To 
explore whether our ctDNA C3D1 OS model could provide early signals 
of treatment efficacy, we compared rates of ctDNA mResp between the 
different treatment arms and contrasted with RECIST response and 
PFS assessed near week 6.

The rate of ctDNA mResp was 33.9% in ABCP and 34.8% in ACP 
versus 29.7% in BCP control arm (Fig. 5b). Whereas in week 6 the RECIST 
response rates were numerically higher for the active ABCP versus 
control BCP arms (43.5% in ABCP and 42.2% in BCP), the active ACP arm 
had a lower rate of radiographic response compared to control at this 
early week 6 time point (31.8% in ACP).

To quantify the utility of ctDNA as an early endpoint capable of 
informing drug development decision-making in an early phase 2 
clinical trial scenario, we resampled IMpower150 to n = 30 patients per 
arm in n = 2,000 simulations using our test data. We then measured the 

proportion of simulations in which the active arm had higher rates of 
treatment response compared to control arm (‘true go rate’) using dif-
ferent early endpoints assessed near week 6 including ctDNA response, 
RECIST response, PFS, or a combination (see Methods section on opera-
tion characteristics simulations42). The results of this analysis showed 
that ctDNA response by itself had higher true go rates than either week 
6 RECIST or PFS (Fig. 5c), suggesting that ctDNA response may be more 
useful than early radiographic assessments for detecting signals of 
drug efficacy. Additionally, combining the ctDNA response metric with 
RECIST improved the true go rate compared to RECIST by itself, as did 
combining ctDNA response metric with PFS (Fig. 5c). For completeness, 
we repeated the simulations in the training data and results were simi-
lar (Extended Data Fig. 6b), and we also modified simulations to use a 
ramp-up enrollment approach (see Methods) which showed the ctDNA 
response endpoint to have less utility (Extended Data Fig. 6c). Overall, 
these findings suggest that on-treatment ctDNA measurements may 
have utility as an early endpoint to support early decision-making in 
clinical trial scenarios.

Discussion
To our knowledge, this is the first study to systematically evaluate the 
utility of longitudinal ctDNA dynamics across a large, randomized 
phase 3 clinical trial. We show that ctDNA metrics collected across 
longitudinal time points can be used to risk stratify patients and pre-
dict survival in patients with metastatic nonsquamous NSCLC treated 
with chemo-immunotherapy combinations. In addition to the high 
prognostic value of baseline ctDNA levels for PFS and OS, on-treatment 
ctDNA changes are correlated with treatment response and can be 
combined with radiographic imaging to provide finer risk stratifica-
tion of patients who achieve PR or SD. Notably, in an external cohort 
of patients our model predicted high-risk patients despite differences 
in treatment setting and ctDNA technology, further supporting the 
potential clinical utility of ctDNA for predicting OS for immunotherapy 
and immunotherapy combinations in multiple NSCLC settings.

There are diverse approaches used in the literature to summarize 
ctDNA levels and integrate ctDNA features for association with clinical 
outcomes, as well as the open question regarding which on-treatment 
time points may be optimal for longitudinal ctDNA analyses19,38,43,44. 
We leveraged a machine learning approach to address these ques-
tions by jointly modeling multiple ctDNA metrics to predict landmark 
OS and PFS. We found C3D1 to be a preferred time point for model 
performance, and due to occur relatively early in the treatment time-
line before some patients have disease progression. Additionally, we 
found top ctDNA features to include metrics related to the number of 
detected variants, the MTM per milliliter plasma and the total cell-free 
DNA extracted from plasma.

We also explored the utility of ctDNA as an early endpoint for 
detecting differences between treatment and control arms in rand-
omized clinical trial settings. Using our final C3D1 OS model, we com-
pared ctDNA response to radiographic endpoints assessed at week 6 
including PFS and RECIST response. We found that ctDNA response 
outperforms RECIST and PFS, particularly when evaluating drugs 
that are not cytotoxic agents like immunotherapies. mResp by ctDNA 
could be very useful in early clinical development decision-making for 
these types of drugs.

In terms of study limitations, the number of patients with samples 
available decreased with each consecutive time point due to coming off 
the study at disease progression, potentially limiting the statistical power 
of our approach at later time points. We note that an early endpoint will 
be of limited utility for patients that progress so rapidly because their 
clinical outcomes are also apparent early in the study timeline. Another 
caveat of our work is that while we assessed the association of ctDNA with 
clinical benefit for chemo-ICI combinations as well as monotherapies, 
additional data should be generated in other treatment contexts (for 
example, targeted therapies) to delineate treatment-dependent ctDNA 
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dynamics. Additionally, we focus on the association of ctDNA with OS 
which is an endpoint that can be confounded by poststudy treatment, 
and it is unknown how this may have affected our results. Lastly, this 
study used data from two separate ctDNA assays, both of which were 
panel-based approaches with high sensitivity down to ~0.1% ctDNA frac-
tion and high specificity via PBMC correction. However, there are other 
assays currently available on the market and it is unclear whether assay 
choice may affect the correlation between ctDNA metrics and clini-
cal outcomes. While we included a comparison of ctDNA features with 
baseline clinical factors, an interesting extension of our work would be 
to incorporate other on-treatment circulating biomarkers and assess 
whether they are superior to ctDNA for predicting outcomes.

Overall, we have mapped ctDNA dynamics in a large, randomized 
study with unprecedented resolution. We have shown that changes in 
ctDNA, as modeled in a machine learning framework and validated in 
both a hold-back test set and an external cohort, can improve patient 
risk stratification, as well as sensitively detect differences between 
treatment arms at early time points in clinical trial settings. ctDNA 
shows promise as an early endpoint for decision-making during drug 
development and, with prospective validation, potentially as a risk 
stratification tool to inform treatment decisions.
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Methods
IMpower150 trial design, participants and endpoints
Details on the IMpower150 study plan and results have been pub-
lished elsewhere27, and the study Protocol and Statistical Analysis Plan 
can be found on clinicaltirals.gov (NCT02366143). The protocol for 
IMpower150 was approved by ethics committees at each site, and the 
study followed the International Conference on Harmonisation Good 
Clinical Practice guidelines and accorded with the principles of the 
Declaration of Helsinki. The list of 161 ethics committees can be found 
in the reporting summary. All patients provided written informed 
consent and were not compensated for participation.

IMpower150 was a phase 3 study that randomly assigned patients 
in a 1:1:1 ratio to receive every 3 weeks either ACP group, or ABCP group 
or BCP group. Patients underwent radiographic (CT scan) tumor assess-
ments until the occurrence of disease progression (according to RECIST 
v1.1 criteria) or until the loss of clinical benefit among patients who 
continued to receive atezolizumab after the initial disease progression. 
These assessments were performed at screening and every 6 weeks 
from cycle 1 day 1 for the first 48 weeks, and every 9 weeks thereafter. 
The primary endpoints were PFS (as assessed by investigators accord-
ing to RECIST criteria) and OS. The final analysis including distribution 
of poststudy treatment usage has been reported previously28, although 
we note there is a lot of missingness in the poststudy treatment data due 
to patients coming off-study upon deviation from protocol-specified 
anticancer therapy.

Patient inclusion criteria were the following: stage IV or recurrent 
metastatic nonsquamous NSCLC without previously receiving chemo-
therapy, a ECOG performance-status score of 0 or 1 at baseline, available 
tumor tissue for testing and eligibility to receive bevacizumab. Patients 
who had received previous adjuvant or neoadjuvant chemotherapy 
were eligible if the last treatment was at least 6 months before rand-
omization. Any PD-L1 immunohistochemistry status was eligible, and 
tumor PD-L1 expression (on tumor cells or tumor-infiltrating immune 
cells) was assessed in archival or freshly collected tissue (or both) with 
a PD-L1 immunohistochemistry assay (Ventana Medical Systems; clone 
SP142; N/A; predilute ready to use antibody product at 36 μg/5 ml). 
Patients having EGFR or ALK genomic alterations were included if they 
previously had treatment with 1+ approved tyrosine kinase inhibitor but 
had disease progression or unacceptable side effects. Exclusion criteria 
were untreated metastases of the central nervous system, autoimmune 
disease, or receiving previous immunotherapy or anti-CTLA-4 therapy 
within 6 weeks before randomization, or receiving systemic immuno-
suppressive medications within 2 weeks before randomization.

Sample collection and processing, assay development and 
splitting into training/testing sets
The PBMCs used for analysis were isolated from one 8.5 ml of whole 
blood collected in an acid citrate dextrose tube at a specialty vendor 
and from an 8 ml cell preparation tube containing sodium citrate. The 
plasma used for analysis was separated from two times 6 ml of whole 
blood collected in K2 EDTA vacutainers and was processed within 
30 min after blood collection.

Baseline plasma samples from 1,062 patients were retrospectively 
analyzed using the assay method described previously35.

On-treatment samples from 566 patients (C2D1, C3D1, C4D1 or 
C8D1) were evaluated with a custom 330 kb assay targeting 311 genes. 
The hybrid capture panel for this assay was designed by pooling the 
alterations found for all the samples in the baseline assay, filtering for 
known germline variants based on ExAC database (http://exac.broad-
institute.org/), known CHIP genes TET2, DNMT3A, CBL, PPM1D, CHEK2, 
JAK2, ASXL1, SF3B1, noncoding variants and repetitive regions, and 
<100× coverage. The resulting pool of alterations was clustered based 
on proximity within the genome, and clusters with four or more altera-
tions plus smaller clusters that represented samples with less than three 
alterations were chosen for hybrid capture bait designs. The genomic 

regions of the clusters were compared to the baits in the baseline bait 
set, the corresponding baits were selected as the custom assay bait set.

The sequencing libraries were prepared using the same plasma 
extraction, library construction and hybrid capture-based method-
ology as FoundationACT with consistent analytical performance 
(that is, sensitivity, specificity) and has been previously described35,45. 
Briefly, between 1 ml and 5 ml of frozen plasma from each patient was 
sent to FMI. Once received, cfDNA was extracted, and isolated cfDNA 
was quantified using the 4,200 TapeStation (Agilent Technologies).  
A minimum of 20 ng of extracted cfDNA was required for a sample to 
undergo sequencing.

In this study, the assay LOD and lower limit of quantitation (LOQ) 
were determined to be 0.1% and 0.5%, respectively, as follows: 63 
on-treatment samples with residual plasma were rerun through the 
sequencing library prep, construction, hybrid capture and sequencing 
pipeline. Based on the baseline time point, there was a total of 485 variants 
expected to be present in these samples. The AF of these 485 variants was 
then assessed in the replicate on-treatment samples (Extended Data Fig. 
1b, right panel). The LOD of the assay, commonly defined as the lowest 
concentration of an analyte in a sample that can be consistently detected 
with a stated probability (typically near 90%), was then determined. It was 
found that the 32 variants with allele frequencies near 0.1% were detected 
with 85% probability across replicates. The LOQ of the assay, commonly 
defined as the lowest standard concentration that can be quantified with 
a % coefficient of variation (CV) value below a certain threshold (typically 
~20–30%), was then determined. It was found that the 28 variants with 
allele frequencies near 0.5% had % CV of 18%. Therefore, the LOD and LOQ 
have been reported to be near ~0.1% and ~0.5%, respectively.

Matched whole blood or PBMC samples were sequenced to sub-
tract germline and CHIP mutations. A total of 300 µl of sample was 
extracted using KingFisher platform (Thermo Fisher Scientific). The 
genomic DNA was sheared by ultrasonication to generate approxi-
mately 200-bp fragments (Covaris). Postshearing, 200 ng was used 
with the same protocol as the cfDNA samples mentioned above.

The training and test sets were initially chosen based on the 
sequencing batch for the set of 566 patients chosen for the ctDNA 
substudy (see Fig. 1a), where we put sequencing batch 1 in the training 
set and then added in patients from later batches to reach the target 
50%/50% split. The sequencing lab decided which samples to include 
in batch 1 without any knowledge about the baseline characteristics, 
treatment or clinical outcomes of the patients. We then checked for 
imbalances, and it was found that RACE was not well distributed due 
to all Asian patients appearing in batch 1, and so we moved half of the 
Asian patients to the test set and replaced these spots in the training 
data with a random set of patients. As the analysis progressed (in the 
training subset of data), we decided to add in PBMC correction due 
to concern over germline/CHIP variants contaminating the ctDNA 
dataset, which reduced the number of patients to those with PBMC 
available for correction, giving a final n of 466 patients and a final split 
of 240/226 patients for train/test. The final training/test sets were well 
balanced in clinical features and survival outcomes as can be seen in 
Supplementary Table 2 and Extended Data Fig. 1f.

Variant calling
Sequence data for the baseline plasma samples were processed by 
a cfDNA computational pipeline that corrected errors via the use of 
fragment barcodes previously described35. Short variants called by 
the bTMB assay were evaluated.

Sequence data processing and variant calling for on-treatment 
plasma and matched whole blood or PBMC samples were performed 
similarly to methods previously described46. In brief, reads were demul-
tiplexed and fragment barcodes used to reduce errors, deduplicated 
and merged into consensus reads representing all information in the 
set of reads for each fragment. The consensus reads were then aligned 
to the reference genome.
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For sensitively estimating on-treatment VAF, aligned consensus 
reads were postprocessed using proprietary software also developed 
by FMI. Each baseline variant was left- and right-justified to determine 
the locus of all possible overlapping reads. Those reads were then 
re-aligned to both the reference genome and the reference genome 
as modified by the presence of the variant. Striped Smith–Waterman 
alignment was used to score each of those two alignments, classifying 
each consensus read as either

•	 Supporting the presence of the variant (NRv)
•	 Supporting the absence of the variant (NRr)
•	 Has no discriminating value (equivocal) (NRe)

Equivocal, duplicate and low mapping quality reads were ignored.
VAF was estimated as NRv/(NRv + NRr).
To further refine the VAF, we assigned a classification by compar-

ing it with the distribution of VAFs using the same method on a set of 
presumed normal samples that is samples whose baseline genomic 
profile had no nearby variant calls. The VAF classifications are:

•	 Positive—at least 2 variant supporting reads and VAF > maximum 
VAF found in presumed normal samples

•	 Negative—VAF < 0.95 quantiles of presumed normal VAFs
•	 Equivocal—neither of the above conditions is met.

Variants were called and classified in matched PBMCs using the 
same methodology described for ctDNA variant calling. Alterations 
that were classified as positive in PBMCs were presumed to be germline/
CHIP and excluded from analyses.

Statistics
To remove immortality bias47 when assessing the correlation between 
on-treatment measurements and PFS/OS, patients with events before 
the collection date were excluded from the analyses and PFS and OS 
time were recalculated from the on-treatment sample collection 
date. When utilizing both week 6 tumor response assessments and  
C3D1 ctDNA metrics, PFS/OS time was recalculated from the C3D1 date.

Landmark PFS and OS were compared between groups using 
a univariable Cox proportional-hazards model to estimate HR and 
log-rank test to report P values. Cox models used the ‘exact’ method 
for handling tied event times. P values reported in forest plots for mul-
tivariable Cox regression are using two-sided Wald test. The strength 
of the association between event time and a continuous predictor was 
measured by Harrell’s c-index, which indicates the overall rank con-
cordance between event time and the predictor. Standard errors for 
the c-index were computed by assuming asymptotic normality48 and 
their P values test if an estimate is different from 0.549. Two C indices 
were compared based on a U-statistic to test for whether one predictor 
is more concordant with the outcome than another (R package version 
4.7-0. https://CRAN.R-project.org/package=Hmisc).

Descriptive statistics were used to summarize clinical character-
istics and ctDNA metrics, including the mean, median and range for 
continuous variables and frequency and percentage for categorical 
variables. Association between ctDNA positivity and baseline prognos-
tic factors was measured using a two-sided Wilcoxon Rank Sum test for 
numeric variables and Fisher’s Exact test (two-sided) for categorical 
variables. The association between continuous ctDNA metrics and 
radiographic treatment response categories was measured using a 
two-sided Wilcoxon rank sum test or Kruskal–Wallis rank sum test. 
Correlations between two continuous metrics depicted in scatterplots 
reported Pearson’s correlation.

Unless otherwise noted, all analyses combined patients across the 
three study arms and reported P values were two-sided and unadjusted 
for multiplicity or covariates. All statistical analyses were performed 
in R version 3.6 (https://www.R-project.org/). P values were reported 
for descriptive purposes and were unadjusted for multiple hypothesis 
testing.

ctDNA feature derivation for predictive modeling in 
IMpower150 training/test and OAK validation data
Every ctDNA mutation had an associated AF reported by the assay 
at each time point, and in this study, the assay limit of quantitation 
(LOQ) and LOD were determined to be 0.5% and 0.1%, respectively 
(Extended Data Fig. 1b). Reported mutations with AF below the LOQ 
were censored to LOQ/2, and reported mutations with AF below the 
LOD were censored to LOQ/4.

The ctDNA analysis plan for the machine learning model was final-
ized before the development of the model. ctDNA levels (AF, MTM, 
AUC, etc.) were quantified using 23 different metrics measured for each 
time point (BL, C2D1, C3D1, C4D1 and C8D1), and the change in ctDNA 
relative to baseline was quantified using 55 different metrics for each 
on-treatment time point (C2D1, C3D1, C4D1 and C8D1).

Additional feature processing before running the ML model 
included handling missingness and interquartile range (IQR) normali-
zation. If a patient in the ctDNA evaluable population has a record of a 
blood sample collection for a given visit with an associated date for that 
sample collection, then the patient is included in the landmark analysis 
for that visit. However, if the ctDNA data are missing despite the record 
of a blood sample collection (for example due to failing ctDNA assay 
QC), then ctDNA features were imputed using the population median 
of the feature for that visit. We considered this imputation for patients 
with ctDNA collected but QC-failing samples to be important because 
models included ctDNA features from multiple time points (that is C3D1 
OS run included BL and C2D1 features as well) and so theoretically a 
patient with a QC-failing sample for C3D1 still may have C2 and/or BL 
ctDNA data informative for predicting survival time from C3D1. Final 
sample counts for each visit time point can be found in Extended Data 
Fig. 1g. Individual features were scaled by the IQR of that feature before 
running the machine learning model.

A complete list of ctDNA features can be found in Supplementary 
Table 3, along with the rank concordance (c-index) of each metric with 
landmark OS and PFS for each visit.

To test the validity of our ctDNA C3D1 OS model in an external 
cohort, we leveraged the availability of ctDNA data for n = 73 patients 
from the OAK clinical trial (NCT02008227). A continuous predictor 
was derived from the 5 ctDNA metrics measured by the Avenio panel 
and their coefficients which were used in the final C3D1 OS model. 
Note that for the feature ‘Number of pathogenic mutations detected 
at C3D1’, we considered Avenio mutations to be pathogenic when they 
were both nonsilent and present in COSMIC database (https://cancer.
sanger.ac.uk/cosmic). OAK ctDNA features were processed as detailed 
for IMpower150 above, including censoring of small values, imputation 
for missing data and IQR normalization. Please note the censoring of 
small values occurred before feature derivation and used the same 
approach as described above for IMpower150 in which the LOD and 
LOQ were considered to be 0.1% and 0.5%, respectively. We applied 
the same thresholds identified in IMpower150 training data to identify 
high-risk mPD patients, low-risk mResp patients and intermediate-risk 
mSD patients.

Training the ML model and choosing thresholds for mPD,  
mSD and mResp
At a visit, all ctDNA measurements collected from baseline up to the 
particular visit, among patients who are still at risk for PFS/OS, were 
used to associate with the rebaselined endpoint. All modeling was 
repeated with leave-one-out-cross-validation (LOOCV). Linear com-
binations of individual features were associated with landmark PFS 
and OS in an elastic network (R package glmnet v3.0-2) with an equal 
weight of lasso penalty and ridge penalty at each visit (alpha = 0.5). 
The optimal lasso penalty (lambda) was chosen for each LOOCV where 
nested cross-validation was repeated 10 times and the average of the 
lambda that minimizes the prediction error was used. Feature inter-
action was addressed in survival random forest modeling (R package 
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randomForestSRC v 2.9.3) with default parameters, but no improve-
ments in model performance were detected. Feature importance was 
assessed as the number of cross-validations a feature was retained, and 
by the ‘Gain’ metric as assessed by the average worsening statistic from 
the next-door analysis40 across LOOCV. Model performance, measured 
by c-index, was estimated after pooling all LOOCV predictions together 
to reconstruct the original training dataset. The final time point and 
endpoint were chosen to be C3D1 and OS due to numerically superior 
performance by c-index during LOOCV.

For model runs utilizing baseline clinical factors, the features 
included the following: ECOG score (0 or 1), age (continuous metric), 
number of metastatic sites (continuous metric), sex (M/F), history of 
tobacco use (y/n), PD-L1 high status (y/n) and SLD (of target lesions from 
radiographic assessment, a continuous metric). For the C3D1 model 
runs, we also included the week 6 radiographic tumor assessment data 
available, including week 6 SLD (continuous metric), difference in SLD 
between baseline and week 6 (continuous metric), and percent change 
in SLD between baseline and week 6 (continuous metric).

The final top features included in the ctDNA C3D1 OS model were 
features that were chosen in at least 50% of CV and with positive gain 
metric (5 features total) and can be found in Supplementary Table 5. 
The final C3D1 OS model was fit in the entire training set using these 
five features and coefficients can be found in Supplementary Table 6.

The threshold for the high-risk (mPD) group was chosen by visu-
alizing different splits of the C3D1 OS model predictions for patients 
with week 6 SD and PR separately, choosing the optimal split within 
each and then taking the mean (Extended Data Fig. 4d) in the training 
dataset which corresponded to a numeric value of 0.298. The threshold 
for low-risk ctDNA responders (mResp) was chosen by finding the 32% 
percentile of the prediction scores, which corresponds to the propor-
tion of patients who achieved durable (3 years) OS (Extended Data Fig. 
4e). This 32% quantile of C3D1 OS model predictions corresponded to a 
numeric value of 0.036 in the training dataset (Extended Data Fig. 4e).

Simulation of operation characteristics
To assess the utility of the ctDNA model in early clinical decision- 
making, with and without the radiographic endpoints, we performed 
operational characteristics analyses in simulated randomized  
phase 2 studies42.

Two routine endpoints used in early clinical developments are 
PFS and tumor response as assessed by the investigator according to 
RECIST criteria version 1.1. PFS is the time from randomization until 
tumor progression or death. We note that in phase 3 IMpower150 
study patients have ~39.8 months of median follow-up; thus, these 
two endpoints are mature. In contrast, for this simulation, we are inter-
ested in early ctDNA and early PFS or tumor response signals observed 
within the first ~6 weeks of treatment initiation and whether these early 
endpoints can predict the outcome of the clinical trial (in the case of 
IMpower150, superior OS of treatment ABCP versus control BCP, or of 
treatment ACP versus control BCP).

The operation characteristics were assessed as follows: after run-
ning the final C3D1 OS model in the test dataset to obtain ctDNA model 
predictions, patients with predictions below the predefined threshold 
for mResp were identified. To characterize true go rates, we sampled 
30 random patients (n = 2,000 simulations) from active arms (ABCP/
ACP) arm and control (BCP) arm with replacement, which mimics those 
developmental settings where a Go decision is favorable. To character-
ize False Go Rates, we sampled two sets of 30 patients from the control 
arm, with one set as the standard of care treatment and the other as 
the new treatment, which mimics those development settings where 
a No-Go decision is favorable. In each simulated study, we compared 
the number of mResp patients between the treatment and control arms 
(Fisher’s exact test), as well as the distribution of PFS times (log-rank 
test), or number of radiographic response by RECIST (Fisher’s exact 
test). All P values were one-sided. When combining a ctDNA criterion 

with a RECIST criterion, the smaller one of the two P values is used for 
Go/No-Go decisions. For a single metric, the 15% (the desired False Go 
Rate) percentile of P values for an arm BCP versus BCP comparison was 
found (n = 2,000 simulations) and was considered the cutoff value for a 
Go decision for the arm ABCP/ACP versus BCP comparison. If the P value 
for ABCP-versus-BCP comparison is less than the cutoff value, then a 
Go decision is made, and the true go rate is the proportion of 2,000 
P values less than the cutoff value. Under instantaneous enrollment 
scenario, all patients have the same length of follow. Under ramp-up 
enrollment, the clinical cutoff date is 14 days (expected ctDNA assay 
turnaround time) plus the C3D1 day of the last enrolled patient in a 
cohort of random samples. For simulation purposes, when selecting 
30 patients, the actual enrollment of the chosen 30 must be within 12 
months of each other.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All clinical and ctDNA data for IMpower150 are deposited to the 
European Genome-Phenome Archive under accession number 
EGAS00001006703. Qualified researchers may request access to 
individual patient-level data through the clinical study data request 
platform (https://vivli.org/). Further details on Roche’s criteria for 
eligible studies are available at https://vivli.org/members/ourmem-
bers. For further details on Roche’s Global Policy on the Sharing of 
Clinical Information and how to request access to related clinical study 
documents, see https://www.roche.com/research_and_development/
who_we_are_how_we_work/clinical_trials/our_commitment_to_data_
sharing.htm.

Code availability
The documented code for the R statistical computing environ-
ment for analyses related to ctDNA in IMpower150 is deposited to 
the European Genome-Phenome Archive under accession number 
EGAS00001006703.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | (a) KM curves showing OS (left) and PFS (right) for 
IMpower150 patients in the ctDNA biomarker evaluable population (BEP, 
blue) versus the ctDNA non-biomarker-evaluable-population (non-BEP, red). 
(b) Quality control experiments to show (left panel) high concordance of 330kb 
custom assay (‘IMP150’) compared to larger 1.25Mb assay (‘T7’), and to show 
(right panel) high reproducibility and sensitivity of 63 samples run in replicate 
on the 330kb custom assay where the LOD of the assay is found to be near 0.1% 
(where 85% of mutations near this frequency are detected reproducibly, blue 
dashed line) and the LOQ of the assay is near 0.5% (where the % CV of mutations 
near this frequency is 18%, orange dashed line). (c) Histogram of variant allele 
frequencies (%) for mutations identified using the custom 330kb panel, showing 
mutations present in plasma cell-free DNA and absent from PBMCs (left), and for 
mutations identified in plasma cell-free DNA and present in PBMCs (right). (d) 
Bar plot showing the genes in which PBMC-derived mutations (CHIP/germline) 
were most prevalent (y axis, percent of patients). PBMC-derived mutations are 

defined as those which were identified in both cell-free DNA and PBMCs for genes 
included in the custom 330kb panel. (e) Bar plot showing the genes in which 
tumor-derived mutations were most prevalent (y axis, percent of patients). 
Mutations that are known or likely pathogenic alterations (blue) are delineated 
from those which are variants of unknown significance (gray). Tumor-derived 
mutations are defined as those detected in cell-free DNA and absent from PBMCs 
for genes included in the custom 330kb panel. (f ) KM curves showing OS (left) 
and PFS (right) for patients in the ctDNA biomarker evaluable population in 
the training split (blue) versus the test split of data (red). (g) Table showing the 
number of plasma samples collected at each time point, including a breakdown 
of the number in the training and test subsets which passed ctDNA assay QC, 
which were used for model training and testing. The bottom table shows number 
of patients who had C3D1 plasma samples which passed ctDNA assay QC and also 
treatment response assessments available for week 6 tumor assessment.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | (a) Bar plot of number of ctDNA positive and negative 
samples at each time point in training. (b) Scatterplots showing correlation 
between mean variant allele frequencies versus mean tumor molecules per 
ml plasma in training. The baseline timepoint, in addition to having higher 
patient ctDNA tumor fractions due to occurring prior to treatment initiation, 
was sequenced with a 1.25Mb assay with reportable VAF range down to ~0.5%. 
On-treatment time points were sequenced with a 330kb assay with a reportable 
range down to ~0.01%, and restricted to only mutations detected at baseline. 
Pearson’s correlation coefficient is reported and its P value based on Pearson’s 
product moment correlation. (c) Boxplots showing association between baseline 
clinical features (6 panels, one for each feature) and ctDNA levels as measured 
by MTM (y axis) in training, where P values reported using a two-sided Wilcoxon 
rank sum test. The box plots depict the median at the middle line, with the lower 
and upper hinges at the first and third quartiles, respectively, the whiskers 
showing the minima to maxima no greater than 1.5× the interquartile range, and 

the remaining outlying data points plotted individually. Additionally, the mean 
and standard error are overlayed as red points. Sample sizes for the box plots 
from left to right are n = 99, 140; 133, 107; 98, 142; 45, 195; 120, 120; 102, 92, 46; 177, 
63. (d) KM curve showing the prognostic value of baseline ctDNA MTM levels 
for PFS in training data. (e) Multivariable cox regression for PFS in training data. 
Two-sided Wald test P values are reported, and points and error bars indicate 
HR and 95% confidence interval, respectively. (f ) Study schema showing when 
radiographic and plasma collections were performed in the treatment course. (g-
h) Scatterplots showing association between radiographic assessment of tumor 
size by SLD measurement (x axis) versus ctDNA levels measure by MTM (y axis) 
for (g) baseline time point, (h) C3D1 time point, (i) change from BL to C3D1. Plots 
restrict to patients with ctDNA detected at baseline. Error band indicates 95% 
confidence interval. Pearson’s correlation coefficient is reported and its P value 
based on Pearson’s product moment correlation.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02226-6

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | (a) KM analysis for duration of treatment response 
(DoR) in patients with PR (left) or SD (right) at week 6 tumor assessment 
who are risk stratified using ctDNA levels above or below 1 MTM, in training. 
(b) KM analysis for PFS in patients with SD or PR at week 6 tumor assessment 
who are risk stratified using ctDNA levels above or below 1 MTM, in training. (c) 
Forest plot showing prognostic value of other thresholds of MTM splits at C3D1 
timepoint for risk stratification for OS in entire training dataset. Note that here 
MTM is labeled mean_of_TMPMP (for mean tumor molecules per ml plasma). HRs 
are comparing patients with MTM level below (‘Less’) versus above (‘Greater’) 
each threshold for splitting C3D1 MTM, where the number of patients can be 
found in the third column (‘N’). MST indicates median survival time. Points and 
error bars indicate HR and 95% confidence interval, respectively. Univariable Cox 
proportional-hazards model was used to estimate HR and logrank test to report 

P values. (d) Forest plot showing prognostic value of other ctDNA metrics for OS 
and PFS in PR and SD patients in training. Note that here MTM is labeled mean_of_
TMPMP (for mean tumor molecules per ml plasma). HRs are comparing patients 
with feature values ≤ versus > than the median value for that feature. RespGrp 
column indicates whether the subset for the risk stratification analysis is the PR 
or SD patients. BEP column indicates ‘biomarker evaluable population’, meaning 
the subset of patients included in the analysis, which is either ‘all’ patients (for 
features summarizing ctDNA levels), or for patients who are ctDNA positive at the 
baseline time point (‘BL_ctDNApos’, for features summarizing ctDNA change). 
Outcome column indicates if the HR is for OS or PFS. MST indicates median 
survival time. Points and error bars indicate HR and 95% confidence interval, 
respectively. (e) Four example patient time courses showing longitudinal ctDNA 
MTM level and tumor size by SLD for 4 example patients.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | (a) Scatterplots showing the univariable rank 
concordance (c-index, x axis) for each individual ctDNA feature for 
landmarked OS and PFS estimated at each time point (panels), in training. 
‘n’ indicates number of detected variants’, ‘n_path’ indicates number of detected 
known/likely pathogenic variants, ‘percChg’ and ‘diff’ indicate percent change 
and difference in ctDNA level from baseline. (b) Comparison of models trained 
using either clinical features alone (red), ctDNA features alone (green), or 
ctDNA+Clinical features (blue), with annotation as to which metrics were top 
features in each run. The bar height is rank concordance (c-index) calculated 
from leave-one-out-cross-validation (LOOCV) to fit an elastic net model, error 
bars are standard error of the c-index, P values are two-sided and based on a 
U-statistic to compare two predictors. Models were built using n = 206 patients 
in the training subset at-risk for an OS event at C3D1. (c) Scatterplots for the 5 top 
features from C3D1 OS model, showing the association between each feature 
value with landmark OS. (d) Forest plots showing prognostic value of C3D1 OS 

ctDNA model predictions in training data for patients with SD (top forest plot) 
and Partial Response (bottom forest plot), where the number of patients can be 
found in the third column (‘N’), ‘MST’ indicates median survival time. Points and 
error bars indicate HR and 95% confidence interval, respectively. Univariable 
Cox proportional-hazards model was used to estimate HR and logrank test to 
report P values. Note that the threshold chosen for categorizing a patient as 
having molecular progressive disease (mPD) was done by taking the mean of the 
optimal split in SD patients (75th percentile, top forest plot) and the optimal split 
in PR patients (70th percentile, bottom forest plot). (e) Choosing a threshold in 
training data of C3D1 OS ctDNA model predictions for categorizing a patient as 
having mResp was done by identifying the patients in training data who achieved 
durable OS of ≥ 30 months (which was 32.2% of the population, see top table), and 
then taking the median prediction score of this population (which was 0.036, see 
bottom table) in training data.
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Extended Data Fig. 5 | (a) Scatterplot showing the final C3D1 OS ctDNA model 
predictions (y axis) versus OS time (x axis) in the hold-back test data for 
IMpower150 (c-index, 0.67). Dotted lines show thresholds for mPD (≥ 0.298 
prediction score), mResp (< 0.036 prediction score), and mSD (for [0.036, 
0.298) prediction scores), which were thresholds chosen in the training set of 
data. (b) KM curves for OS in hold-back test set showing the final subgroups 
identified using the C3D1 OS model prediction thresholds chosen in training 
data. Subgroups include mPD (red line), mResp (blue line), and mSD (black line), 
all confirmed to have prognostic value in this test data. (c) Scatterplot showing 

the final C3D1 OS ctDNA model predictions (y axis) versus OS time (x axis) in the 
external validation OAK cohort of 73 patients (c-index, 0.69). Dotted lines show 
thresholds for mPD (≥ 0.298 prediction score), mResp (< 0.036 prediction score), 
and mSD (for [0.036, 0.298) prediction scores), which were thresholds chosen 
in the training set of data. (d) KM curves for OS in external validation OAK cohort 
of 73 patients showing the final subgroups identified using the C3D1 OS model 
prediction thresholds chosen in training data. Subgroups include mPD (red line), 
mResp (blue line), and mSD (black line), all confirmed to have prognostic value in 
this external validation data.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | (a) KM curve showing PFS in the test dataset for the 
three arms in the IMpower150 trial including ABCP (brown), ACP (orange), 
and control arm BCP (black, control arm). (b–c) Complete results of operation 
characteristics simulations showing the rate of true ‘Go’ decisions in (b) 
instantaneous enrollment scenario (every patient has their clinical data cut at 
their respective C3D1 time point), versus (c) ramp-up enrollment scenario (use all 

clinical data available for patient after last patient enrolls, so some patients could 
have additional radiographic data available after the week 6 time point). Training 
data shown in top rows, test data shown in bottom rows. The early endpoint is 
either ctDNA criteria alone (red bar), RECIST criteria alone (light blue) or RECIST 
criteria combined with ctDNA (dark blue), PFS alone (light green bar) or PFS 
combined with ctDNA criteria (dark green bar).
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