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W Check for updates

One of the great challenges in therapeutic oncology is determining who
might achieve survival benefits from a particular therapy. Studies on
longitudinal circulating tumor DNA (ctDNA) dynamics for the prediction
of survival have generally been small or nonrandomized. We assessed
ctDNA across 5 time points in 466 non-small-cell lung cancer (NSCLC)
patients from the randomized phase 3 IMpower150 study comparing
chemotherapy-immune checkpoint inhibitor (chemo-ICI) combinations
and used machine learning to jointly model multiple ctDNA metrics to
predict overall survival (OS). ctDNA assessments through cycle 3 day 1 of
treatment enabled risk stratification of patients with stable disease (hazard
ratio (HR) =3.2 (2.0-5.3), P < 0.001; median 7.1 versus 22.3 months for high-
versus low-intermediate risk) and with partial response (HR =3.3 (1.7-6.4),
P <0.001; median 8.8 versus 28.6 months). The model also identified
high-risk patients in an external validation cohort from the randomized
phase 3 OAK study of ICI versus chemo in NSCLC (OSHR =3.73 (1.83-7.60),
P=0.00012). Simulations of clinical trial scenarios employing our ctDNA
model suggested that early ctDNA testing outperforms early radiographic
imaging for predicting trial outcomes. Overall, measuring ctDNA dynamics
during treatment canimprove patient risk stratification and may allow early
differentiation between competing therapies during clinical trials.

Oneofthegreat challengesintherapeuticoncologyisdeterminingwho  ormagnetic resonanceimaging. Imaging-based evaluation of the thera-
might achieve survival benefits from a particular therapy. Cytotoxic  peuticeffects of oncology drugs duringthe course of treatmentinforms
agents, suchasplatinum-based alkylating agents or small-moleculeinhibi-  on the response of a patient’s tumor to the drug or drug combination,
tors of receptor tyrosine kinases, can lead to observable reductionsin  prognosis of the patient and aids in physician decision making. In addi-
overall tumor burden as measured by computerized tomography (CT)  tion, imaging-based modalities have been developed as surrogates of
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overall survival (OS) and are widely used endpoints in oncology drug
trials'’. However, for certain types of drugs including cancer immuno-
therapies, progression-free survival (PFS) or overall response rate do not
always correlate with OS**. Because of this lack of correlation between
surrogate measures of drug efficacy and OS, oncology drug trials often
depend on OS as a primary endpoint>. This means that trials can take
many yearstocomplete. Therefore, thereisanimportant need to evalu-
ateimmunotherapy drug efficacy early in the course of therapy using
alternative methods that are better associated with OS.

Circulating tumor DNA (ctDNA) testing has the potential to
transform patient management by providing real-time assessments
of patient prognoses and response to treatment using a simple blood
draw’. ctDNA is a subset of the total cell-free DNA circulating in the
bloodstream, thought to be shed by necrotic or apoptotic cells®. It can
be profiled using next-generation sequencing as well as other methods
and can be differentiated from background cell-free DNA by the pres-
ence of somatic tumor mutations®.

In the surgically resectable cancer setting, a positive ctDNA test
after surgery has shown to be apoor-prognostic factor’** and changes
in ctDNA correlate with treatment response™ . In the metastatic set-
ting, treatment response and survival times have been associated with
changes in ctDNA levels during systemic treatment with chemother-
apy'®", targeted therapies®*”, immune checkpoint inhibitors (ICls)"**
and combination chemo-ICI?. The relatively higher ctDNA levels in
patients with metastatic cancer compared to early-stage disease”*
suggest this setting would be well suited for developing ctDNA as an
early endpoint for new drug or combination evaluation, or to inform
risk-based treatment decisions®?.

The clinicalimplementation of ctDNA dynamics as a surrogate of
survival has thus far been limited by small sample sizes, study designs
without randomization or a lack of clarity on which ctDNA collection
time points and summary metrics are optimal for predicting survival
outcomes. Toaddress these challenges, we performed high-sensitivity
longitudinal ctDNA testing of 311 genes including correction for
clonal hematopoiesis of indeterminate potential (CHIP) variants in
466 patients across 5 time points (1,954 samples total) in the phase 3
IMpower150 trial (NCT02366143).

The IMpower150 study was arandomized, open-label study that
evaluated the safety and efficacy of anti-PD-L1 atezolizumab in com-
bination with carboplatin + paclitaxel with or without bevacizumab
compared with treatment with carboplatin + paclitaxel + bevacizumab
in chemotherapy-naive participants with Stage IV nonsquamous
non-small-cell lung cancer (NSCLC). The IMpowerl50 study met its
primary endpoints of PFS (PFS hazard ratio (HR) = 0.62; 95% confi-
denceinterval (Cl), 0.52-0.74; P < 0.001) and of OS (OSHR = 0.78; 95%
Cl, 0.64-0.96; P=0.02), which led to the approval of atezolizumab +
carboplatin + paclitaxel + bevacizumab in 1L NSCLC?. Clinical data
used in this work are based on the final OS analysis for the study
(OS HR =0.80; 95% Cl, 0.67-0.95; data cutoff September 13, 2019)*.
Atezolizumab is also an approved treatment in the early lung cancer
setting” as well as for other tumor types®* %,

After performing longitudinal ctDNA testing in IMpower150, we
(1) examined the utility of individual ctDNA metrics to risk stratify
patientsincluding those with stable disease (SD) or partial responses
(PR), (2) leveraged a machine learning approach in a training/testing
framework to jointly model multiple ctDNA metrics to predict land-
mark survival, and (3) performed simulations to investigate whether
our ctDNA model could outperform early radiographic imaging
to detect differences between treatment arms in early clinical trial
scenarios.

Results

Experimental plan and assay development

Ofthe 1,202 patients enrolled in IMpower150, baseline plasma samples
from 1,062 patients were evaluated using a prototype version of the

FoundationOne Liquid CDx assay by Foundation Medicine Inc. (FMI),
which sequenced >1.25 Mb of genomic content covering 394 genes®
(Fig. 1a). Sequence data were processed by a cell-free DNA computa-
tional pipeline that corrected errors via the use of fragment barcodes
as previously described®. After the algorithmic removal of common
germline and CHIP mutations, putative tumor-derived somatic altera-
tions were identified at this baseline time point (Methods).

A subset of patients (n =466) was chosen to be evaluated for
on-treatment time points where we required the patient to have plasma
available for C2D1 and/or C3D1, as well as peripheral blood mononu-
clear cells (PBMCs) available if putative tumor-derived variants were
detected in baseline plasma (n = 438; Fig. 1a). Although common ger-
mline and CHIP variants were removed algorithmically in the original
samples (see Methods), matched normal PBMCs were still required
to remove less common germline and CHIP variants including those
in canonical driver genes®. We expected a survivorship bias in the
ctDNA-evaluable population due to our requirement for patients to
have samples available after randomization, and while no strong PFS
bias was found for ctDNA evaluable versus nonevaluable (HR = 0.92
(0.82-1.05)), we did detect a survivorship bias for OS (HR = 0.86 (0.75—
0.99); Extended Data Fig. 1a). However, baseline characteristics were
similar between the intention-to-treat (ITT) and the ctDNA evaluable
population, including baseline Eastern Cooperative Oncology Group
(ECOG), age, sex, race, region, among others (Supplementary Table 1).

On-treatment time points were assessed using a custom fixed
panel assay to track changesin ctDNA inresponse to therapy. A custom
assay was used to allow a higher depth of coverage for a similar cost.
The final hybridization capture panel reduced the total panel size to
330 kb while capturing mutations in 311 genes present in ~-94% of the
IMpowerl50 patients’ baseline samples (Fig. 1a; Methods). Propri-
etary software developed by FMI was used to estimate on-treatment
variant allele frequency (VAF) for every mutation detected at baseline
(Methods). The final assay was experimentally validated to be highly
concordant with the baseline assay and to have high sensitivities down
to ~0.1% VAF (Extended Data Fig. 1b; Methods). The matched normal
PBMCswere also run on this custom panel at high sequencing coverage
(average mean target -5,400x consensus deduplicated), and variants
detectedinboth plasmaand PBMCs were considered germline or CHIP
mutations®.

There were 282 (64%) patients who had plasma variants that
were also detected in PBMCs, including 45 patients who switched
from ctDNA positive (at least one mutation detected) to ctDNA nega-
tive (zero mutations detected) after this PBMC correction (Fig. 1a).
The number of PBMC-derived variants detected among these 282
patientsranged from1to 7, withmean 1.8 and median of 1 variant. The
PBMC-derived germline/CHIP mutations had allele frequencies in
plasmathat overlapped with somatic tumor mutationsin plasma(range
0.175-69% for PBMC-derived mutations and 0.14-82% for somatic
tumor mutations, medians 1.3 and 2.2%, respectively; Extended Data
Fig. 1c). Common CHIP genes were excluded from our custom panel
(TET2, DNMT3A, CBL, PPM1D, CHEK2, JAK2, ASXL1 and SF3BI). Among
the311genesincludedinour panel, the PBMC-derived mutations were
most prevalentin TP53(5.3% of patients), followed by MLL3 (4.1%), FAT1
(3.6%) and ATM (3.0%; Extended Data Fig. 1d). Al PBMC-derived variants
were subtracted from the final plasma mutation dataset.

ctDNA was detected in 393 patients (84%) at the baseline time
point, of which 348 (89%) had pathogenic alterations detected includ-
ing in the genes TP53 (52%), KRAS (23%), STK11 (13%) and EGFR (10%;
Extended DataFig. 1e). For downstream analyses, the ctDNA-evaluable
population was split into a training (n =240) and test set (n =226;
Fig.1a), whichwere similarin survival outcomes (Extended Data Fig. 1f),
baseline clinical features and ctDNA status (Supplementary Table 2). We
noted that the number of patients for each treatment armin training
and test set was well balanced; atezolizumab + bevacizumab + carbo-
platin + paclitaxel (ABCP) 35% (n=384) and 32.3% (n=73) in training
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Fig.1|Design of ctDNA substudy and prognostic value of baseline ctDNA
in training set. a, Consort diagram showing how the final 466 patientsin the
ctDNA evaluable population were identified and showing the prevalence of
ctDNA positivity at the baseline time point before and after PBMC correction.
b, Kaplan-Meier analysis showing the prognostic value of baseline ctDNA for
OSinthetraining set of patients (n = 240), where blue curve indicates ctDNA
negative patients (zero mutations detected), red curve indicates patients with
ctDNA levels greater than or equal to the median (=64 MTM) and black curve

indicates patients with ctDNA levels less than the median. ¢, Multivariable Cox
regression including baseline clinical features confirms that the ctDNA level is an
independently poor prognostic factor for OS (n =239 patients with nonmissing
data available for all baseline clinical features). Two-sided Wald test P values are
reported, and points and error bars indicate HR and 95% confidence interval,
respectively. The exact Pvalue for the first row ‘P < 0.001"is 0.000672. MTM,
mean tumor molecules.

and test set, respectively, atezolizumab + carboplatin + paclitaxel (ACP)
31.2% (75) and 34.5% (78), and bevacizumab + carboplatin + paclitaxel
(BCP) 33.8% (81) and 33.2% (75) (Supplementary Table 2). Final sam-
ple counts can be found in the supplement (Extended Data Fig. 1g).
Note that all initial exploratory analyses and model building shown in
Figs.1-3 were performed in the training set of data, after which model
validation was performed inthe hold-back test set shownin Figs.4 and 5.

ctDNA levels are prognosticin training data

The baseline prevalence of ctDNA positivity (at least one mutation
detected) was 85% in the training split of data (204/240), and preva-
lence decreased to 79.3% at C2D1, 77.0% at C3D1, 77.3% at C4D1 and
76.4% at C8D1 (Extended Data Fig. 2a). Baseline ctDNA was assessed
forits prognostic value and association with baseline clinical features.
Patients withany detectable ctDNA (n =204) trended toward worse OS

compared to the 36 ctDNA negative patients (HR =1.33 (0.87-2.06),
log-rank P=0.19; median OS 18.8 versus 26.6 months from baseline,
respectively). Among baseline ctDNA-positive patients, the median
ctDNAlevel was 64 MTM (mean tumor molecules per ml plasma), which
corresponded to a median of 1.4% mean allele frequency (AF). Note
that MTM and mean AF were highly correlated (Extended Data Fig. 2b).
Patients who were positive for ctDNA could berisk stratified using the
median ctDNA level, where patients with ctDNA above the median had
shorter OS compared to patients with ctDNA levels below the median
(Fig.1b; HR=1.9(1.36-2.64), log-rank P < 0.001; median OS 14.1 versus
24.0 months frombaseline). Higher ctDNA levels were found to be asso-
ciated with poor prognostic featuresincluding age below 65 years (Wil-
coxonP=0.0035), positive history of smoking (Wilcoxon P = 0.0044),
baseline tumor size by the sum of longest diameters (SLD) above the
median (Wilcoxon P < 0.001) and higher number of metastatic sites
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Fig.2|Ontreatment ctDNA dynamics associate with clinical outcomes

in the training dataset. a, On-treatment ctDNA levels as measured by MTM
(per milliliter plasma) across longitudinal time points for patients with week 6
radiographic assessments of treatment response of PD (red), SD (purple) and
CR/PR (blue). b, KM curves showing OS for patients with SD (purple) versus

PR (green) as determined at the week 6 radiographic assessment of treatment
response. A univariable Cox proportional-hazards model was used to estimate
HR and log-rank test to report Pvalue. ¢, KM curves showing OS for patients with

C3D1ctDNA levels below the LOD of the assay (<1MTM, ctDNA low risk, blue)
versus near or above the LOD (21 MTM, ctDNA high risk, red). A univariable Cox
proportional-hazards model was used to estimate HR and log-rank test to report
Pvalue. The exact Pvalue for ‘P < 0.001’is 0.00029871.d,e, KM curves showing
OS for patients with SD (d) and PR (e) at week 6 who are further risk stratified by
ctDNA levels at C3D1. A univariable Cox proportional-hazards model was used to
estimate HR and log-rank test to report Pvalue. MTM, mean tumor molecules.

(Kruskal-Wallis P < 0.001; Extended Data Fig. 2c). However, the baseline
ctDNA level was confirmed to be an independently poor prognostic
factor for OS in a multivariable Cox regression model including base-
line clinical features (HR =1.35(1.13-1.60), log-rank P < 0.001; Fig. 1c).
Results were similar for PFS (Extended Data Fig. 2d,e).

Treatment initiation correlated with reductions in ctDNA levels,
generally decreasing with each subsequent on-treatment time point
through C4D1, whichis the last time pointin the seriesin which chemo-
therapy was given in combination with atezolizumab, bevacizumab
or both (Extended Data Fig. 2f). Treatment responses as assessed by
RECIST criteria at week 6 were associated with longitudinal ctDNA
dynamics such that patients with CR or PR had lower ctDNA levels
for all on-treatment ctDNA time points compared to patients with
week 6 SD or progressive disease (PD; Fig. 2a). For example, baseline
ctDNA-positive patients withaweek 6 radiographic treatment response
assessment of CR/PR (n = 67) tended to have greater reductions in
ctDNA levels at C3D1 (mean -70% reduction in MTM level for CR/PR)
compared to the 111 patients with week 6 SD (mean -39% reduction
for SD) and the 16 patients with week 6 PD (mean +54% increase for
PD; Kruskal-Wallis rank sum test P=0.079). Radiographic tumor

assessments were performed at baseline and every 6 weeks in the
study, whichis most contemporaneous with ctDNA collections at the BL
and C3D1(week 6) time points (Extended Data Fig. 2f). Levels of ctDNA
were also correlated with tumor size (SLD) at BL and C3D1 (week 6;
PearsonR=0.37,P<0.001and PearsonR = 0.16, P= 0.042, respectively;
Extended DataFig.2g,h). The percent changein ctDNA level from BLto
C3D1was correlated with the percent change in SLD from baseline to
week 6 (Pearson R =0.24, P= 0.002; Extended Data Fig. 2i).

Risk stratification using early radiographic tumor assessments
alone showed numerically shorter OS for patients with week 6 SD
compared to those withweek 6 PR (median OS18.5 versus 24.7 months;
HR =1.4(0.96-2.02), log-rank P= 0.078; Fig.2b). However, ctDNA data
generated at asimilar time point (C3D1) showed that patients who had
ctDNA levels near or above the limit of detection (LOD) of the assay (=1
MTM) had shorter OS compared to patients who maintained or reduced
ctDNA to below the LOD (HR =1.92 (1.34-2.76), log-rank P < 0.001;
median15.3 versus 26.0 months from C3D1 for patients with <land >1
MTM at C3D]1, respectively; Fig. 2c).

We found that combining C3D1 ctDNA risk (=1 versus <1MTM) with
week 6 treatment response by RECIST improved risk stratification further
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Fig.3|Building amachine learning model in the training dataset. a, Model
performance for each survival outcome (PFS, OS) and plasma collection (BL thru
C8D1) estimated by rank concordance (c-index) calculated from leave-one-out-
cross-validation (LOOCV) tofit an elastic net model with ctDNA features. Bar height
indicates c-index estimate, error barsindicate + the standard error of the c-index,
and two-sided Pvalues are shown comparing each model’s c-index to random
classifier. Each modelis built using patients in the training subset at-risk for the
relevantlandmarked survival endpoint, where the numbers fromleft to right are:
240,240,237,237,206,202,201,196,146 and 136. The exact Pvalues from left to right
are 6.69x107°,9.50x10™°,1.06 x10°%,7.97 x10™°,2.87 x 10%,4.16 x10%,3.35 1077,
0.000797098, 6.54 x 10°%,3.18 x 107 b, Gain metric by next-door analysis for the five
top featuresidentified during LOOCV for the C3D1 0S ctDNA model. ¢, Univariable
c-index showing the strength of association between OS from C3D1 (n =206
patients) and each of the five top features for the C3D10S ctDNA model. Error bars

indicate + standard error of the c-index. Exact values from top to bottom for the two-
sided Pvalues comparing c-index to arandom classifierare 2.23 x107%,1.35x10™,
0.0366,0.0021and 0.0093.d, Forest plot showing the HR for OS from C3D1 (n =206
patients) estimated by univariable Cox proportional-hazards model, using the
median value for the feature split, for the five top features for C3D1 OS ctDNA model.
Higher feature values (above median) were generally associated with worse OS (HR
abovel). Pointsand error barsindicate HR and 95% Cl, respectively. e, Scatterplot
showing final C3D10S ctDNA model predictions (y axis) versus OS time (x axis) in the
training data, with dotted linesindicating the thresholds chosen in training set for
mPD (=0.298 prediction score), molecular response (mResp < 0.036) and molecular
stable disease (mSD for (0.036, 0.298)). The exact value for the two-sided Pvalue
comparing the final C3D1 0S model’s c-index to arandom classifier Pvalue indicated
by ‘P<0.0001 is1.318316 x 10™2.f, KM curve showing that the final C3D10S ctDNA
model canrisk stratify patients in the training data.
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Fig. 4| Machine learning model performs well for risk stratificationin the
hold-back test dataset and in the OAK external validation cohort. a, KM curve
showing that the final C3D1 OS ctDNA model can be used for risk stratification in
the hold-back test data, where patients with mPD (red) have worse OS compared
to patients with amolecular response or molecular stable disease (mResp + mSD,
blue). A univariable Cox proportional-hazards model was used to estimate HR
and log-rank test to report Pvalue. The exact Pvalue indicated by ‘P < 0.001’is
3.7228 x107'°. b, KM curve showing that patients with radiographic treatment
response of SD at the week 6 tumor assessment can be risk stratified using the
final C3D10S ctDNA model in the hold-back test data, identifying SD/ctDNA
high-risk patients (mPD, solid curve) and SD/ctDNA low-intermediate risk
patients (mSD + mResp, dashed curve). A univariable Cox proportional-hazards
model was used to estimate HR and log-rank test to report Pvalue. The exact
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Pvalueindicated by ‘P< 0.001 is 8.8076 x 107" ¢, KM curve showing that patients
with radiographic treatment response of PR at the week 6 tumor assessment
canberisk stratified using the final C3D1 OS ctDNA model in the hold-back test
data, identifying PR/ctDNA high-risk patients (mPD, solid curve) and PR/ctDNA
low-intermediate risk patients (mSD + mResp, dashed curve). A univariable Cox
proportional-hazards model was used to estimate HR and log-rank test to report
Pvalue. The exact Pvalueindicated by ‘P < 0.001'is 0.0003018.d, KM curve
showing that the C3D10S model applied to the external validation cohort of 73
patients from the OAK clinical trial can provide predictions that identify high-
risk patientsin this 2nd line mNSCLC setting that used a distinct ctDNA assay
technology. A univariable Cox proportional-hazards model was used to estimate
HR and log-rank test to report Pvalue. The exact Pvalue indicated by ‘P < 0.001’is
0.000119.

such that SD patients could be split into SD/ctDNA high-risk versus SD/
ctDNA low-risk (Fig. 2d; OS HR =1.85 (1.21-2.83), log-rank P= 0.004;
median 15.3 versus 22.8 months from C3D1, respectively). Week 6 PR
patients could also be split into PR/ctDNA high-risk versus PR/ctDNA
low-risk (Fig.2e; OSHR =2.18 (1.08-4.38), log-rank P= 0.025; median14.3
months from C3D1versus median not reached, respectively). The week 6
PR patientswho were high risk by ctDNA had numerically shorter duration
of treatment response compared to patients who were low risk by ctDNA
(median 5.6 versus 11.5months duration of treatment response; duration

of treatment response (DoR) HR = 0.59 (0.33-1.06), log-rank P= 0.075;
Extended DataFig.3a). Results were similar when analyses were repeated
using PFS (Extended Data Fig. 3b) or alternative ctDNA thresholds or
metrics (Extended DataFig.3c,d). Visualizing the SLD dynamics parallel to
ctDNA dynamicsrevealed that while ctDNA changes mirror SLD changes,
patients with different response categories by radiographic imaging
could still have very similar ctDNA patterns (Extended Data Fig. 2e).
Overall, these results suggest that imaging-based risk stratification at
early on-treatment time points may be improved upon by combining
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Fig. 5| Machine learning model may be useful for detecting differences
between treatment arms in early phase 2 clinical trial scenarios. a, KM
curve showing OSin the test dataset for the three arms in the IMpower150 trial
including ABCP (brown) versus ACP (orange) versus the control arm of BCP
(black, control arm). b, Bar plot showing the rate of radiographic response
atthe week 6 tumor assessment for each treatment arm (left panel, CR/PR by
RECIST criteria), and the rate of ctDNA molecular response for each treatment
arm (right panel, mResp by C3D10S ctDNA model). ¢, Bar plot showing results
from simulations of early phase 2 clinical trial scenario utilizing test data, where
an early endpoint based on ctDNA (mResp by C3D10S model) is compared to

ABCP vs BCP ACP vs BCP

24.2

N

Early endpoint (data cut week 6/C3D1)

early radiographic endpoints (week 6 RECIST response, week 6 PFS). Bar height
corresponds to the proportion of simulations in which the active arm had higher
rates of treatment response compared to control arm (‘true go rate’) for each
early endpoint (x axis), where the left panel shows simulations comparing active
ABCP armto control BCP arm (left panel, brown colors), and right panel shows
simulations comparing active ACP arm to control BCP arm (right panel, orange
colors). Xaxis corresponds to which early endpoint is used in the simulation,
comparing ctDNA criteria alone (mResp by C3D1 OS model), radiographic
response alone (CR/PR by RECIST), PFS alone, or ctDNA added to radiographic
response or PFS response.

radiographicimaging with ctDNA measurements, potentially informing
risk-based treatment decisions made by clinicians.

Machine learning model predicts survival using
ctDNA metrics
Multiple metrics can be used to describe ctDNA dynamics, for example,
the ctDNA level can be measured using the AF, the MTM per milliliter
plasma, the total cell-free DNA concentration, the number of mutations
detected or the number of pathogenic mutations detected, among oth-
ers®®, Wederived 19 metrics of the ctDNA level (measured for every time
point) and 59 metrics of ctDNA change relative to baseline (measured for
each on-treatment time point) (Supplementary Table 3; Methods). The
performance of different metrics to individually predict landmark sur-
vival canbe summarized using the rank concordance (Harrell’s c-index),
and we find that performance varies across metric types, time points and
survival outcomes in the training data (n = 240; Extended Data Fig. 4a).
We nextjointly modeled these featuresinamachine learning framework
usingan elastic netapproach® to predictlandmark PFS and landmark OS
fromeachplasma collectiontime point (see Methods). This permits many
featuresrelated to ctDNAlevels and changestobeincludedin the model
initially; however, nested cross-validations during the training reduce the
number of features to an optimal subset that minimizes predictionerror.
Models were trained for each visit time point, where all meas-
urements collected from baseline up until that particular visit were
included as features, for example for C3D1 models, features from BL,
C2D1and C3D1wereincluded. Note that treatment arms were pooled
tobuild amodel useful asanearly endpoint regardless of the treatment
regime being used (similar concept to RECIST criteria). Pooling was also
appealing because building amultivariable predictive model requires
relatively large sample sizes in the training and testing splits. Results
showed that model performance was generally best (higher c-index) for

OS atthe C3D1/C8D1time points (Fig. 3aand Supplementary Table 4).
We decided to focus on the OS model for the C3D1 time point given
that C8D1samples were available for only 60% of patients (whichitself
isagood prognostic/favored by immortal bias) and because OS is the
most relevant metric for oncology therapeutics.

To investigate how a ctDNA-focused model compared to known
prognostic factors, we compared C3D10S models trained using either
clinical features alone or combined with ctDNA features. For clinical
features, we included the baseline factors shown in Fig. 1c as well as
measures of tumor size fromearly radiographic assessments at baseline
and week 6 (see Methods). We find that when comparing C3D10Sruns,
the combined ctDNA + clinical feature set performs substantially bet-
ter compared to the clinical features alone (P= 0.0125; Extended Data
Fig.4b and Supplementary Table 4).

To identify top features for the C3D1 OS ctDNA model, we
chose ctDNA features that were chosen during training in >50% of
cross-validations and which had a positive gain metric by next-door
analysis*’. This reduced the number of features in the model to just
five metrics, which included metrics related to MTM, the number of
detected mutations and the total cell-free DNA concentration (Fig. 3b,
Supplementary Table 5). Individually, these metrics showed univari-
able c-indices for OS between 0.55 and 0.60 (Fig. 3c, Extended Data
Fig.4cand Supplementary Table 5), and the median split of each metric
separately provided OS HRs between 1.14 and 1.90 (Fig. 3d).

The final C3D10S ctDNA model was fit using the five top ctDNA fea-
turesinthe entire training dataset with afinal c-index 0of 0.66 (P < 0.001
forcomparisontorandomclassifier; Fig. 3e and Supplementary Table 6).
Numeric thresholds for binning C3D1 OS model predictions were
chosen in the training data (see Methods) to bin patients into three
groups including those at high risk (molecular progressive disease
(mPD), 28% of training set), those at low risk (molecular response
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(mResp), 32% of training set) and those with intermediate risk (molecu-
lar stable disease (mSD), 40% of training set; Fig. 3e, Extended Data
Fig.4d,e). Kaplan-Meier analysis confirmed the prognostic value for
OS ofthese three binsinthe training data (median OS from C3D10f 9.5,
18.8 and 31.2 months for mPD, mSD and mResp, respectively; Fig. 3f).

We tested the final C3D1 OS ctDNA model at a c-index of 0.67
(P<0.001, Extended Data Fig. 5a) in the hold-back test set with evalu-
able C3D1 plasma (n =192 patients, Fig. 1b) and found that the pre-
specified thresholds chosen in the training set also provided good
separation between risk groups in the test data (Extended Data Fig.
5b). The ctDNA model high-risk group showed shorter OS compared
to patients with low-intermediate risk (OS HR = 3.28 (2.2-4.9), log-rank
P <0.001; median 7.3 months versus 25.2 months from C3D1 for mPD
and mResp + mSD, respectively; Fig. 4a). Model predictionsin the test
setalso performed well in patients with aweek 6 tumor assessment of
SD (c-index in SD = 0.68; P < 0.001), and the prespecified threshold
could risk stratify SD patients into high risk versus low-intermediate
risk (OS HR in SD =3.23 (1.98-5.29)], log-rank P < 0.001; median 7.1
versus 22.3 from C3D1 for mPD and mResp + mSD, respectively)
(Fig.4b).Similarly, ccDNA model predictionsin the test set performed
well in patients with PR (c-index in PR = 0.64; P= 0.002) and was able
to identify a high-risk PR subgroup (OS HR in PR =3.26 (1.66-6.42)),
log-rank P < 0.001; median 8.8 versus 28.6 from C3D1 for mPD and
mResp + mSD, respectively; Fig. 4c).

We further validated our C3D1 OS ctDNA model in an external
patient cohort (n=73), which is a subset of patients from the OAK
clinicaltrial (NCT02008227) who had ctDNA assessed using the Avenio
ctDNA assay at BL, C2D1 and C3D1”. In addition to a different ctDNA
assay, the external cohort also included metastatic NSCLC patients
from the 2nd line setting (versus 1st line in IMpower150) and differ-
ent treatment regimes (monotherapy of atezolizumab or docetaxel
versus chemo-ICI combinations in IMpower150). Applying our C3D1
OS predictor developedin the IMpower150 datato the OAK data (Meth-
ods), we find it validates well in this external cohort with a c-index of
0.69 (P<0.0001; Extended Data Fig. 5c), and the prespecified cutoffs
were also able to identify high risk (mPD) versus low-intermediate
risk (mResp + mSD) patients in the OAK clinical trial (OS HR=3.73
(1.83-7.60), log-rank P=0.00012; Fig. 4d and Extended Data Fig. 5d).
These findings support the potential clinical utility of our ctDNA model
across multiple treatments and settings in NSCLC.

ctDNA model utility as an early endpoint in drug development

Foranew early endpoint to be useful for clinical drug developmentin
metastatic lung cancer, it should sensitively detect differences in OS
betweentreatment arms at an early time point. Additionally, it should
improve upon more traditional early radiographic-based endpoints like
RECIST response or PFS. In this IMpower150 study, patients in the con-
trolarmreceived BCP and patients in the experimental arms received
either ABCP or ACP (Fig. 5a, Extended Data Fig. 6a, test datashown). We
note that the US approval was based on comparing ABCP arm to BCP
arm®*, although the ABCP and ACP arms had similar OS results*. To
explore whether our ctDNA C3D10S model could provide early signals
of treatment efficacy, we compared rates of ctDNA mResp between the
different treatment arms and contrasted with RECIST response and
PFS assessed near week 6.

The rate of ctDNA mResp was 33.9% in ABCP and 34.8% in ACP
versus 29.7%in BCP control arm (Fig. 5b). Whereas in week 6 the RECIST
response rates were numerically higher for the active ABCP versus
control BCParms (43.5%in ABCP and 42.2% in BCP), the active ACP arm
had alower rate of radiographic response compared to control at this
early week 6 time point (31.8% in ACP).

To quantify the utility of ctDNA as an early endpoint capable of
informing drug development decision-making in an early phase 2
clinical trial scenario, we resampled IMpower150 to n = 30 patients per
arminn=2,000simulations using our test data. We then measured the

proportion of simulations in which the active arm had higher rates of
treatment response compared to control arm (‘true gorate’) using dif-
ferent early endpoints assessed near week 6 including ctDNA response,
RECIST response, PFS, or acombination (see Methods section on opera-
tion characteristics simulations*?). The results of this analysis showed
that ctDNA response by itselfhad higher true go rates than either week
6 RECIST or PFS (Fig. 5¢), suggesting that ctDNA response may be more
useful than early radiographic assessments for detecting signals of
drugefficacy. Additionally, combining the ctDNA response metric with
RECIST improved the true go rate compared to RECIST by itself, as did
combining ctDNA response metric with PFS (Fig. 5c). For completeness,
we repeated the simulations in the training data and results were simi-
lar (Extended Data Fig. 6b), and we also modified simulationstousea
ramp-up enrollment approach (see Methods) which showed the ctDNA
response endpoint to haveless utility (Extended Data Fig. 6¢c). Overall,
these findings suggest that on-treatment ctDNA measurements may
have utility as an early endpoint to support early decision-making in
clinical trial scenarios.

Discussion

To ourknowledge, this is the first study to systematically evaluate the
utility of longitudinal ctDNA dynamics across a large, randomized
phase 3 clinical trial. We show that ctDNA metrics collected across
longitudinal time points can be used to risk stratify patients and pre-
dictsurvivalin patients with metastatic nonsquamous NSCLC treated
with chemo-immunotherapy combinations. In addition to the high
prognostic value of baseline ctDNA levels for PFS and OS, on-treatment
ctDNA changes are correlated with treatment response and can be
combined with radiographic imaging to provide finer risk stratifica-
tion of patients who achieve PR or SD. Notably, in an external cohort
of patients our model predicted high-risk patients despite differences
in treatment setting and ctDNA technology, further supporting the
potential clinical utility of ctDNA for predicting OS forimmunotherapy
and immunotherapy combinations in multiple NSCLC settings.

Therearediverse approaches usedintheliterature tosummarize
ctDNA levels and integrate ctDNA features for association with clinical
outcomes, aswell asthe open question regarding which on-treatment
time points may be optimal for longitudinal ctDNA analyses'>*%>*,
We leveraged a machine learning approach to address these ques-
tions by jointly modeling multiple ctDNA metrics to predict landmark
OS and PFS. We found C3D1 to be a preferred time point for model
performance, and due to occur relatively early in the treatment time-
line before some patients have disease progression. Additionally, we
found top ctDNA features to include metrics related to the number of
detected variants, the MTM per milliliter plasma and the total cell-free
DNA extracted from plasma.

We also explored the utility of ctDNA as an early endpoint for
detecting differences between treatment and control arms in rand-
omized clinical trial settings. Using our final C3D1 OS model, we com-
pared ctDNA response to radiographic endpoints assessed at week 6
including PFS and RECIST response. We found that ctDNA response
outperforms RECIST and PFS, particularly when evaluating drugs
thatare not cytotoxic agents likeimmunotherapies. mResp by ctDNA
couldbe very useful in early clinical development decision-making for
these types of drugs.

Interms of study limitations, the number of patients with samples
available decreased witheach consecutive time point due to coming off
thestudy atdisease progression, potentially limiting the statistical power
of our approach at later time points. We note that an early endpoint will
be of limited utility for patients that progress so rapidly because their
clinical outcomes are also apparent early in the study timeline. Another
caveat of our workis that while we assessed the association of ctDNA with
clinical benefit for chemo-ICI combinations as well as monotherapies,
additional data should be generated in other treatment contexts (for
example, targeted therapies) to delineate treatment-dependent ctDNA
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dynamics. Additionally, we focus on the association of ctDNA with OS
which is an endpoint that can be confounded by poststudy treatment,
and it is unknown how this may have affected our results. Lastly, this
study used data from two separate ctDNA assays, both of which were
panel-based approaches with high sensitivity down to~0.1% ctDNA frac-
tionand high specificity viaPBMC correction. However, there are other
assays currently available on the market and it is unclear whether assay
choice may affect the correlation between ctDNA metrics and clini-
cal outcomes. While we included a comparison of ctDNA features with
baseline clinical factors, an interesting extension of our work would be
to incorporate other on-treatment circulating biomarkers and assess
whether they are superior to ctDNA for predicting outcomes.

Overall, we have mapped ctDNA dynamicsinalarge, randomized
study withunprecedented resolution. We have shown that changesin
ctDNA, as modeled in amachine learning framework and validated in
both ahold-back test set and an external cohort, can improve patient
risk stratification, as well as sensitively detect differences between
treatment arms at early time points in clinical trial settings. ctDNA
shows promise as an early endpoint for decision-making during drug
development and, with prospective validation, potentially as a risk
stratification tool to inform treatment decisions.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

IMpowerl150 trial design, participants and endpoints

Details on the IMpowerl50 study plan and results have been pub-
lished elsewhere”, and the study Protocol and Statistical Analysis Plan
can be found on clinicaltirals.gov (NCT02366143). The protocol for
IMpower150 was approved by ethics committees at each site, and the
study followed the International Conference on Harmonisation Good
Clinical Practice guidelines and accorded with the principles of the
Declaration of Helsinki. The list of 161 ethics committees can be found
in the reporting summary. All patients provided written informed
consent and were not compensated for participation.

IMpower150 was a phase 3 study that randomly assigned patients
inal:l:1ratiotoreceive every 3weekseither ACP group, or ABCP group
or BCPgroup. Patients underwent radiographic (CT scan) tumor assess-
ments until the occurrence of disease progression (according to RECIST
vl.1 criteria) or until the loss of clinical benefit among patients who
continued toreceive atezolizumab after theinitial disease progression.
These assessments were performed at screening and every 6 weeks
fromcycle1day 1for the first 48 weeks, and every 9 weeks thereafter.
The primary endpoints were PFS (as assessed by investigators accord-
ing to RECIST criteria) and OS. The final analysis including distribution
of poststudy treatment usage has been reported previously*, although
wenotethereisalot of missingnessin the poststudy treatment datadue
to patients coming off-study upon deviation from protocol-specified
anticancer therapy.

Patientinclusion criteria were the following: stage IV or recurrent
metastaticnonsquamous NSCLC without previously receiving chemo-
therapy,aECOG performance-status score of 0 or 1at baseline, available
tumor tissue for testing and eligibility to receive bevacizumab. Patients
who had received previous adjuvant or neoadjuvant chemotherapy
were eligible if the last treatment was at least 6 months before rand-
omization. Any PD-L1immunohistochemistry status was eligible, and
tumor PD-L1expression (on tumor cells or tumor-infiltratingimmune
cells) was assessed in archival or freshly collected tissue (or both) with
aPD-Llimmunohistochemistry assay (Ventana Medical Systems; clone
SP142; N/A; predilute ready to use antibody product at 36 pg/5 ml).
Patients having EGFR or ALK genomic alterations wereincluded if they
previously had treatment with 1+ approved tyrosine kinase inhibitor but
had disease progression or unacceptable side effects. Exclusion criteria
were untreated metastases of the central nervous system, autoimmune
disease, or receiving previousimmunotherapy or anti-CTLA-4 therapy
within 6 weeks before randomization, or receiving systemic immuno-
suppressive medications within 2 weeks before randomization.

Sample collection and processing, assay development and
splitting into training/testing sets
The PBMCs used for analysis were isolated from one 8.5 ml of whole
blood collected in an acid citrate dextrose tube at a specialty vendor
and froman 8 ml cell preparation tube containing sodium citrate. The
plasma used for analysis was separated from two times 6 ml of whole
blood collected in K2 EDTA vacutainers and was processed within
30 min after blood collection.

Baseline plasmasamples from1,062 patients were retrospectively
analyzed using the assay method described previously™.

On-treatment samples from 566 patients (C2D1, C3D1, C4D1 or
C8D1) were evaluated with acustom 330 kb assay targeting 311 genes.
The hybrid capture panel for this assay was designed by pooling the
alterations found for all the samples in the baseline assay; filtering for
known germline variants based on ExXAC database (http://exac.broad-
institute.org/), known CHIP genes TET2, DNMT3A, CBL, PPM1D, CHEK?2,
JAK2, ASXL1, SF3B1, noncoding variants and repetitive regions, and
<100x coverage. Theresulting pool of alterations was clustered based
on proximity within the genome, and clusters with four or more altera-
tions plus smaller clusters that represented samples with lessthanthree
alterations were chosen for hybrid capture bait designs. The genomic

regions of the clusters were compared to the baits in the baseline bait
set, the corresponding baits were selected as the custom assay bait set.

The sequencing libraries were prepared using the same plasma
extraction, library construction and hybrid capture-based method-
ology as FoundationACT with consistent analytical performance
(thatis, sensitivity, specificity) and has been previously described*.
Briefly, between 1 mland 5 ml of frozen plasma from each patient was
sent to FMI. Once received, cfDNA was extracted, and isolated cfDNA
was quantified using the 4,200 TapeStation (Agilent Technologies).
A minimum of 20 ng of extracted cfDNA was required for a sample to
undergo sequencing.

In this study, the assay LOD and lower limit of quantitation (LOQ)
were determined to be 0.1% and 0.5%, respectively, as follows: 63
on-treatment samples with residual plasma were rerun through the
sequencing library prep, construction, hybrid capture and sequencing
pipeline.Based onthebaseline time point, there was atotal of 485 variants
expectedtobe presentinthesesamples. The AF of these 485 variants was
thenassessedinthereplicate on-treatment samples (Extended DataFig.
1b, right panel). The LOD of the assay, commonly defined as the lowest
concentrationofananalyteinasample thatcanbe consistently detected
withastated probability (typically near 90%), was then determined. It was
found thatthe 32 variants with allele frequencies near 0.1% were detected
with 85% probability across replicates. The LOQ of the assay, commonly
defined as thelowest standard concentration that canbe quantified with
a% coefficientof variation (CV) value below a certain threshold (typically
~20-30%), was then determined. It was found that the 28 variants with
allele frequencies near 0.5% had % CV of 18%. Therefore, the LOD and LOQ
havebeenreported to be near -0.1% and ~0.5%, respectively.

Matched whole blood or PBMC samples were sequenced to sub-
tract germline and CHIP mutations. A total of 300 pl of sample was
extracted using KingFisher platform (Thermo Fisher Scientific). The
genomic DNA was sheared by ultrasonication to generate approxi-
mately 200-bp fragments (Covaris). Postshearing, 200 ng was used
with the same protocol as the cfDNA samples mentioned above.

The training and test sets were initially chosen based on the
sequencing batch for the set of 566 patients chosen for the ctDNA
substudy (see Fig.1a), where we put sequencing batchlinthetraining
set and then added in patients from later batches to reach the target
50%/50% split. The sequencing lab decided which samples to include
in batch 1 without any knowledge about the baseline characteristics,
treatment or clinical outcomes of the patients. We then checked for
imbalances, and it was found that RACE was not well distributed due
to all Asian patients appearing in batch 1, and so we moved half of the
Asian patients to the test set and replaced these spots in the training
data with arandom set of patients. As the analysis progressed (in the
training subset of data), we decided to add in PBMC correction due
to concern over germline/CHIP variants contaminating the ctDNA
dataset, which reduced the number of patients to those with PBMC
available for correction, giving a final n of 466 patients and a final split
0f240/226 patients for train/test. The final training/test sets were well
balanced in clinical features and survival outcomes as can be seen in
Supplementary Table 2 and Extended Data Fig. 1f.

Variant calling

Sequence data for the baseline plasma samples were processed by
a cfDNA computational pipeline that corrected errors via the use of
fragment barcodes previously described®. Short variants called by
the bTMB assay were evaluated.

Sequence data processing and variant calling for on-treatment
plasma and matched whole blood or PBMC samples were performed
similarly to methods previously described*. Inbrief, reads were demul-
tiplexed and fragment barcodes used to reduce errors, deduplicated
and merged into consensus reads representing all information in the
setof reads for each fragment. The consensus reads were then aligned
tothereference genome.
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For sensitively estimating on-treatment VAF, aligned consensus
reads were postprocessed using proprietary software also developed
by FMI. Each baseline variant was left- and right-justified to determine
the locus of all possible overlapping reads. Those reads were then
re-aligned to both the reference genome and the reference genome
as modified by the presence of the variant. Striped Smith-Waterman
alignment was used to score each of those two alignments, classifying
each consensusread as either

« Supporting the presence of the variant (NRv)
« Supporting the absence of the variant (NRr)
« Hasnodiscriminating value (equivocal) (NRe)

Equivocal, duplicate and low mapping quality reads were ignored.

VAF was estimated as NRv/(NRv + NRr).

To further refine the VAF, we assigned a classification by compar-
ing it with the distribution of VAFs using the same method on a set of
presumed normal samples that is samples whose baseline genomic
profile had no nearby variant calls. The VAF classifications are:

* Positive—at least 2 variant supporting reads and VAF > maximum
VAF found in presumed normal samples

« Negative—VAF < 0.95 quantiles of presumed normal VAFs

« Equivocal—neither of the above conditions is met.

Variants were called and classified in matched PBMCs using the
same methodology described for ctDNA variant calling. Alterations
that were classified as positive in PBMCs were presumed to be germline/
CHIP and excluded from analyses.

Statistics

Toremove immortality bias” when assessing the correlation between
on-treatment measurements and PFS/0S, patients with events before
the collection date were excluded from the analyses and PFS and OS
time were recalculated from the on-treatment sample collection
date. When utilizing both week 6 tumor response assessments and
C3D1ctDNA metrics, PFS/OS time was recalculated from the C3D1date.

Landmark PFS and OS were compared between groups using
a univariable Cox proportional-hazards model to estimate HR and
log-rank test to report P values. Cox models used the ‘exact’ method
for handling tied event times. Pvalues reported in forest plots for mul-
tivariable Cox regression are using two-sided Wald test. The strength
ofthe association between event time and a continuous predictor was
measured by Harrell’s c-index, which indicates the overall rank con-
cordance between event time and the predictor. Standard errors for
the c-index were computed by assuming asymptotic normality*® and
their Pvalues test if an estimate is different from 0.5*. Two C indices
were compared based ona U-statistic to test for whether one predictor
ismore concordant with the outcome than another (R package version
4.7-0. https://CRAN.R-project.org/package=Hmisc).

Descriptive statistics were used to summarize clinical character-
istics and ctDNA metrics, including the mean, median and range for
continuous variables and frequency and percentage for categorical
variables. Association between ctDNA positivity and baseline prognos-
tic factors was measured using a two-sided Wilcoxon Rank Sum test for
numeric variables and Fisher’s Exact test (two-sided) for categorical
variables. The association between continuous ctDNA metrics and
radiographic treatment response categories was measured using a
two-sided Wilcoxon rank sum test or Kruskal-Wallis rank sum test.
Correlations between two continuous metrics depicted in scatterplots
reported Pearson’s correlation.

Unless otherwise noted, all analyses combined patients across the
three study armsandreported Pvalues were two-sided and unadjusted
for multiplicity or covariates. All statistical analyses were performed
inRversion 3.6 (https://www.R-project.org/). P values were reported
for descriptive purposes and were unadjusted for multiple hypothesis
testing.

ctDNA feature derivation for predictive modelingin
IMpower150 training/test and OAK validation data

Every ctDNA mutation had an associated AF reported by the assay
at each time point, and in this study, the assay limit of quantitation
(LOQ) and LOD were determined to be 0.5% and 0.1%, respectively
(Extended Data Fig. 1b). Reported mutations with AF below the LOQ
were censored to LOQ/2, and reported mutations with AF below the
LOD were censored to LOQ/4.

The ctDNA analysis plan for the machine learning model was final-
ized before the development of the model. ctDNA levels (AF, MTM,
AUC, etc.) were quantified using 23 different metrics measured for each
time point (BL, C2D1, C3D1, C4D1and C8D1), and the change in ctDNA
relative to baseline was quantified using 55 different metrics for each
on-treatment time point (C2D1, C3D1, C4D1and C8D1).

Additional feature processing before running the ML model
included handling missingness and interquartile range (IQR) normali-
zation. Ifa patientinthe ctDNA evaluable population hasarecord of a
blood sample collection for agiven visit with an associated date for that
sample collection, thenthe patientisincluded in the landmark analysis
for that visit. However, if the ctDNA data are missing despite the record
of ablood sample collection (for example due to failing ctDNA assay
QC), then ctDNA features were imputed using the population median
ofthe feature for that visit. We considered this imputation for patients
with ctDNA collected but QC-failing samples to be important because
modelsincluded ctDNA features from multiple time points (thatis C3D1
OS runincluded BL and C2D1 features as well) and so theoretically a
patient with a QC-failing sample for C3D1 still may have C2 and/or BL
ctDNA data informative for predicting survival time from C3DL1. Final
sample counts for each visit time point can be found in Extended Data
Fig.1g.Individual features were scaled by the IQR of that feature before
running the machine learning model.

Acompletelist of ctDNA features can be found in Supplementary
Table 3, along with the rank concordance (c-index) of each metric with
landmark OS and PFS for each visit.

To test the validity of our ctDNA C3D1 OS model in an external
cohort, we leveraged the availability of ctDNA data for n = 73 patients
from the OAK clinical trial (NCT02008227). A continuous predictor
was derived from the 5 ctDNA metrics measured by the Avenio panel
and their coefficients which were used in the final C3D1 OS model.
Note that for the feature ‘Number of pathogenic mutations detected
at C3D1, we considered Avenio mutations to be pathogenic when they
were bothnonsilentand presentin COSMIC database (https://cancer.
sanger.ac.uk/cosmic). OAK ctDNA features were processed as detailed
for IMpowerl50 above, including censoring of small values, imputation
for missing data and IQR normalization. Please note the censoring of
small values occurred before feature derivation and used the same
approach as described above for IMpower150 in which the LOD and
LOQ were considered to be 0.1% and 0.5%, respectively. We applied
thesame thresholdsidentified in IMpowerl50 training data to identify
high-risk mPD patients, low-risk mResp patients and intermediate-risk
mSD patients.

Training the ML model and choosing thresholds for mPD,

mSD and mResp

At avisit, all ctDNA measurements collected from baseline up to the
particular visit, among patients who are still at risk for PFS/OS, were
used to associate with the rebaselined endpoint. All modeling was
repeated with leave-one-out-cross-validation (LOOCV). Linear com-
binations of individual features were associated with landmark PFS
and OS in an elastic network (R package glmnet v3.0-2) with an equal
weight of lasso penalty and ridge penalty at each visit (alpha=0.5).
The optimal lasso penalty (lambda) was chosen foreach LOOCV where
nested cross-validation was repeated 10 times and the average of the
lambda that minimizes the prediction error was used. Feature inter-
action was addressed in survival random forest modeling (R package
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randomForestSRC v 2.9.3) with default parameters, but no improve-
ments inmodel performance were detected. Feature importance was
assessed as the number of cross-validations afeature was retained, and
by the ‘Gain” metric as assessed by the average worsening statistic from
the next-door analysis*’ across LOOCV. Model performance, measured
by c-index, was estimated after pooling all LOOCV predictions together
to reconstruct the original training dataset. The final time point and
endpoint were chosen to be C3D1and OS due to numerically superior
performance by c-index during LOOCV.

For model runs utilizing baseline clinical factors, the features
included the following: ECOG score (0 or 1), age (continuous metric),
number of metastatic sites (continuous metric), sex (M/F), history of
tobaccouse (y/n), PD-L1 highstatus (y/n) and SLD (of target lesions from
radiographic assessment, a continuous metric). For the C3D1 model
runs, we alsoincluded the week 6 radiographic tumor assessment data
available, including week 6 SLD (continuous metric), difference in SLD
between baseline and week 6 (continuous metric), and percent change
in SLD between baseline and week 6 (continuous metric).

Thefinal top featuresincludedin the ctDNA C3D10S model were
features that were chosen in atleast 50% of CV and with positive gain
metric (5 features total) and can be found in Supplementary Table 5.
The final C3D1 OS model was fit in the entire training set using these
five features and coefficients canbe found in Supplementary Table 6.

The threshold for the high-risk (mPD) group was chosen by visu-
alizing different splits of the C3D1 OS model predictions for patients
with week 6 SD and PR separately, choosing the optimal split within
eachandthen taking the mean (Extended Data Fig. 4d) in the training
dataset which corresponded to anumeric value of 0.298. The threshold
for low-risk ctDNA responders (mResp) was chosen by finding the 32%
percentile of the prediction scores, which corresponds to the propor-
tion of patients who achieved durable (3 years) OS (Extended Data Fig.
4e). This 32% quantile of C3D1 0S model predictions correspondedtoa
numericvalue of 0.036 in the training dataset (Extended Data Fig. 4e).

Simulation of operation characteristics

To assess the utility of the ctDNA model in early clinical decision-
making, with and without the radiographic endpoints, we performed
operational characteristics analyses in simulated randomized
phase 2 studies*.

Two routine endpoints used in early clinical developments are
PFS and tumor response as assessed by the investigator according to
RECIST criteria version 1.1. PFS is the time from randomization until
tumor progression or death. We note that in phase 3 IMpower150
study patients have ~39.8 months of median follow-up; thus, these
two endpoints are mature. In contrast, for this simulation, we are inter-
estedinearly ctDNA and early PFS or tumor response signals observed
withinthefirst~6 weeks of treatment initiation and whether these early
endpoints can predict the outcome of the clinical trial (in the case of
IMpower150, superior OS of treatment ABCP versus control BCP, or of
treatment ACP versus control BCP).

The operation characteristics were assessed as follows: after run-
ningthe final C3D10S modelin the test dataset to obtain ctDNA model
predictions, patients with predictions below the predefined threshold
for mResp were identified. To characterize true go rates, we sampled
30 random patients (n =2,000 simulations) from active arms (ABCP/
ACP) arm and control (BCP) arm with replacement, which mimics those
developmental settings where a Go decisionis favorable. To character-
ize False Go Rates, we sampled two sets of 30 patients from the control
arm, with one set as the standard of care treatment and the other as
the new treatment, which mimics those development settings where
aNo-Go decision is favorable. In each simulated study, we compared
the number of mResp patients between the treatment and control arms
(Fisher’s exact test), as well as the distribution of PFS times (log-rank
test), or number of radiographic response by RECIST (Fisher’s exact
test). All Pvalues were one-sided. When combining a ctDNA criterion

with a RECIST criterion, the smaller one of the two P values is used for
Go/No-Go decisions. For asingle metric, the15% (the desired False Go
Rate) percentile of Pvalues for an arm BCP versus BCP comparison was
found (n=2,000 simulations) and was considered the cutoffvalue fora
Godecision forthe arm ABCP/ACP versus BCP comparison. Ifthe Pvalue
for ABCP-versus-BCP comparison is less than the cutoff value, then a
Go decision is made, and the true go rate is the proportion of 2,000
Pvalues less than the cutoff value. Under instantaneous enrollment
scenario, all patients have the same length of follow. Under ramp-up
enrollment, the clinical cutoff date is 14 days (expected ctDNA assay
turnaround time) plus the C3D1 day of the last enrolled patientin a
cohort of random samples. For simulation purposes, when selecting
30 patients, the actual enrollment of the chosen 30 must be within 12
months of each other.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All clinical and ctDNA data for IMpower150 are deposited to the
European Genome-Phenome Archive under accession number
EGAS00001006703. Qualified researchers may request access to
individual patient-level data through the clinical study data request
platform (https://vivli.org/). Further details on Roche’s criteria for
eligible studies are available at https://vivli.org/members/ourmem-
bers. For further details on Roche’s Global Policy on the Sharing of
Clinical Informationand how to request access torelated clinical study
documents, see https://www.roche.com/research_and_development/
who_we_are_how we work/clinical_trials/our_ commitment_to data_
sharing.htm.

Code availability

The documented code for the R statistical computing environ-
ment for analyses related to ctDNA in IMpower150 is deposited to
the European Genome-Phenome Archive under accession number
EGAS00001006703.
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Extended Data Fig. 1| (a) KM curves showing OS (left) and PFS (right) for
IMpowerl50 patients in the ctDNA biomarker evaluable population (BEP,

blue) versus the ctDNA non-biomarker-evaluable-population (non-BEP, red).

(b) Quality control experiments to show (left panel) high concordance of 330kb
custom assay (‘IMP150’) compared to larger 1.25Mb assay (‘T7’), and to show
(right panel) high reproducibility and sensitivity of 63 samples runinreplicate
on the 330kb custom assay where the LOD of the assay is found to be near 0.1%
(where 85% of mutations near this frequency are detected reproducibly, blue
dashed line) and the LOQ of the assay is near 0.5% (where the % CV of mutations
near this frequency is 18%, orange dashed line). (c) Histogram of variant allele
frequencies (%) for mutations identified using the custom 330kb panel, showing
mutations presentin plasma cell-free DNA and absent from PBMCs (left), and for
mutations identified in plasma cell-free DNA and presentin PBMCs (right). (d)
Bar plot showing the genes in which PBMC-derived mutations (CHIP/germline)
were most prevalent (y axis, percent of patients). PBMC-derived mutations are

defined as those which were identified in both cell-free DNA and PBMCs for genes
included in the custom 330kb panel. (e) Bar plot showing the genes in which
tumor-derived mutations were most prevalent (y axis, percent of patients).
Mutations that are known or likely pathogenic alterations (blue) are delineated
from those which are variants of unknown significance (gray). Tumor-derived
mutations are defined as those detected in cell-free DNA and absent from PBMCs
for genesincluded in the custom 330kb panel. (f) KM curves showing OS (left)
and PFS (right) for patients in the ctDNA biomarker evaluable population in

the training split (blue) versus the test split of data (red). (g) Table showing the
number of plasma samples collected at each time point, including a breakdown
of the number in the training and test subsets which passed ctDNA assay QC,
which were used for model training and testing. The bottom table shows number
of patients who had C3D1 plasma samples which passed ctDNA assay QC and also
treatment response assessments available for week 6 tumor assessment.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| (a) Bar plot of number of ctDNA positive and negative
samples at each time point in training. (b) Scatterplots showing correlation
between mean variant allele frequencies versus mean tumor molecules per

ml plasmain training. The baseline timepoint, in addition to having higher
patient ctDNA tumor fractions due to occurring prior to treatment initiation,
was sequenced with a1.25Mb assay with reportable VAF range down to ~0.5%.
On-treatment time points were sequenced with a 330kb assay with areportable
range down to -0.01%, and restricted to only mutations detected at baseline.
Pearson’s correlation coefficient is reported and its P value based on Pearson’s
product moment correlation. (c) Boxplots showing association between baseline
clinical features (6 panels, one for each feature) and ctDNA levels as measured
by MTM (y axis) in training, where Pvalues reported using a two-sided Wilcoxon
rank sumtest. The box plots depict the median at the middle line, with the lower
and upper hinges at the first and third quartiles, respectively, the whiskers
showing the minima to maxima no greater than 1.5x the interquartile range, and

the remaining outlying data points plotted individually. Additionally, the mean
and standard error are overlayed as red points. Sample sizes for the box plots
from left to right are n=99,140;133,107; 98,142; 45,195;120,120; 102, 92, 46;177,
63. (d) KM curve showing the prognostic value of baseline ctDNA MTM levels

for PFSin training data. (e) Multivariable cox regression for PFS in training data.
Two-sided Wald test Pvalues are reported, and points and error bars indicate

HR and 95% confidence interval, respectively. (f) Study schema showing when
radiographic and plasma collections were performed in the treatment course. (g-
h) Scatterplots showing association between radiographic assessment of tumor
size by SLD measurement (x axis) versus ctDNA levels measure by MTM (y axis)
for (g) baseline time point, (h) C3D1time point, (i) change from BL to C3D1. Plots
restrict to patients with ctDNA detected at baseline. Error band indicates 95%
confidence interval. Pearson’s correlation coefficientis reported and its P value
based on Pearson’s product moment correlation.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| (a) KM analysis for duration of treatment response
(DoR) in patients with PR (left) or SD (right) at week 6 tumor assessment

who arerisk stratified using ctDNA levels above or below 1MTM, in training.
(b) KM analysis for PFS in patients with SD or PR at week 6 tumor assessment

who arerisk stratified using ctDNA levels above or below 1MTM, in training. (c)
Forest plot showing prognostic value of other thresholds of MTM splits at C3D1
timepoint for risk stratification for OSin entire training dataset. Note that here
MTM s labeled mean_of TMPMP (for mean tumor molecules per ml plasma). HRs
are comparing patients with MTM level below (‘Less’) versus above (‘Greater’)
eachthreshold for splitting C3D1 MTM, where the number of patients can be
found in the third column (‘N’). MST indicates median survival time. Points and
error bars indicate HR and 95% confidence interval, respectively. Univariable Cox
proportional-hazards model was used to estimate HR and logrank test to report

Pvalues. (d) Forest plot showing prognostic value of other ctDNA metrics for OS
and PFSin PR and SD patients in training. Note that here MTM is labeled mean_of_
TMPMP (for mean tumor molecules per ml plasma). HRs are comparing patients
with feature values < versus > than the median value for that feature. RespGrp
columnindicates whether the subset for the risk stratification analysis is the PR
or SD patients. BEP columnindicates ‘biomarker evaluable population’, meaning
the subset of patients included in the analysis, which s either ‘all’ patients (for
features summarizing ctDNA levels), or for patients who are ctDNA positive at the
baseline time point (‘BL_ctDNApos’, for features summarizing ctDNA change).
Outcome columnindicates if the HRis for OS or PFS. MST indicates median
survival time. Points and error bars indicate HR and 95% confidence interval,
respectively. (e) Four example patient time courses showing longitudinal ctDNA
MTM level and tumor size by SLD for 4 example patients.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02226-6

oo e
npah- o @
ciDNAGonc - o .
meanAF -

meanMTM - o e

n- o e
n_path-
cfDNAconc - o e
meanAF -
meanMTM -
uc- o
diff_n- .
diff_n_path - e o
percentChg_cfDNAconc - o e
percentChg_meanAF- @ O
percentChg_meanMTM - ® o

BL
c2D1
cap1
c4D1
c81

n- o .
n_path- o e
cfDNAconc - o .
meanAF - °
meanMTM - o
ue- o e
diff_n- ©
diff_n_path -
percentChg_cfDNAconc -
percentChg_meanAF - ® o
percentChg_meanMTM - &0

FEATURES

outcome
e 0s
o PFS
n- o e
n_path- o e
cfDNAconc - o .
meanAF - o e
meanMTM - o e
uc- o e
diff_n-
diff_n_path - ®
percentChg_cfDNAconc- @ O
percentChg_meanAF - c®
percentChg_meanMTM- O ®

n- e o
n_path- e o
cfDNAconc - o e
meanAF - .
meanMTM - ©
uc- e o
diff_n- o .
diff_n_path - oe
percentChg_ciDNAconc- @
percentChg_meanAF - o .
percentChg_meanMTM~ o e
050 055 060
cindex

Training Training
Feature: G3D1_mean_of_TMPMP ; min = 0.0936
(cindex=0.604)

9
Feature: CaD1_n_ki
(cindex=0.59)

b)

C-index +/- SE for C3D1 OS models during LOOCV
(all significantly different from random classifier; p<0.001)

Comparing C3D1 OS models
using different feature sets

p=0.0125

o
3

0.7-

o
Y

o
o

o
~

Clinical_only

. 0o o
100001

feature + minValue

p=0.5256

CtDNA_only ctDNA+Clinical
Feature sets

ining
Feature: C2D1_CHG_diff_of_n
(cindex=0.55)

feature_set

. Clinical_only
B ctona ony
I conasciinical L

Training

Feature: C3D1_cfDNA_conc ; min = 1.8458

(cindex=0.576)

Top Features in each run

linical_only:
Baseline ECOG score
Baseline Number of Metastatic Sites
Percent Change in SLD from BL to C3D1

CtDNA only:

Number of pathogenic mutations detected at C3D1
Change in number of mutations detected from BL to C2D1
The area under the curve for ctDNA level from BL to C2D1
Total cell-free DNA concentration at C3D1

Mean Tumor Molecules per mL plasma (MTM) at C3D1

CtDNA+Clinical
Baseline Number of Metastatic Sites

Number of pathogenic mutations detected at C3D1
Change in number of mutations detected from BL to C2D1
The area under the curve for ctDNA level from BL to C2D1
Total cell-free DNA concentration at C3D1

Mean Tumor Molecules per mL plasma (MTM) at C3D1

raining
Feature: C2D1_AUC_mean_of_AF ; mi
(cindex=0.567)

00011

TTEOS rebasaiine_C3D1

asfactor(0S _vert) © 0 o 1

d)

] E3 )
TTEOS rebaseline_C3D1

asfactor(0S_evert) © 0 o 1

Trained in all pts, spiitin SD (training) Within-arm Effect of Biomarker

, prediction

Unadjusted, unstratified analysis

625

Sugrop Growp_EvensN_uST_bn_(c1) awp
Prodcion IO GTa) Grester S0/ 114 1715
Sl 037 (016-085) 0019 —————e———
precicion(<20%,-0.01) Greater 79/100 1676
Leee 17127 2487 05 (036-102) 006 —_—
predcon(<2s%,002)  Graater 77147 1879
ess | 1o/3 2339 062 (038-109 0066 _—
precicion(<30%,004)  Grester 7189 1662
e 25/% 28 06 04-1) 00w RN
predciont<de,008)  Greater 81/78 1670
ess | 35/49 226 074 (049-112) 015 —r
prodicion(<50%,01)  Greater 50/62 1625
<" /e ;e 072 ©4a-107) 01 [
procicion(<60%,0.16)  Grester 42/52 1636
Lose 54775 1942 073 (049-11) 013 —_—
predcion(<70%,023)  Graater 33/30 1745
Lose " 63/8 1870 088 (045-108) 0074 —
predicion(<75%,031)  Grester 28/31 1258
Less 68/96 1932 056 (035-087) 00099 —_—
predcon(<a0e,048)  Greater 24/25 1147
Loss 727102 1942 046 (029073 0001 —
predicion(<90% 087)  Greater 13/13. 113
G 551114 19% 035 19-080 oo | - | .
016 o0 10 25
WA
Trained in all pts, split in PR (training) Within-arm Effect of Biomarker
, predictior
Unadjusted, unstratified analysis
Swgrow _____Growp _Even MST bR (c) e
Predcion IO oA Giossr 40163 1087
s 170 018 (002-131) 000
precicion(<20%,-0.07) Greator 3655 17.95
i 038 (015-098) 00¢

/52 644
5117

34149
7

prodiction(<25%, -0.04)
u 037
1531
03¢ (15-078)
2040 1267
12120 034
27/3 1180
s 14135
2528
|

(©15-087) 0028
preciction(<30%,0)

prediction<40%,0.05)
©17-087) 0002
prodiction(<50%,0.11)

§

(©14-053) 000011

prediction(<60%,0.15) e
T8/ 03 @6-057)

19721 802

s 22148 o
15717 802

Less  26/52 3598 03
T2/13 802

205 22 031

717

34/62

00019
prodiction<70%,0.33)

3 (012-049) 576-08

prediction<75%, 0.35)

(0:16-057) 000028

prediction(<80%,0.54)
(0:15-062) 0.00084

prodiction(<00%, 1.02) 53

2745 021 (009-048) 00002¢

Extended Data Fig. 4 | See next page for caption.
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Extended DataFig. 4 | (a) Scatterplots showing the univariable rank
concordance (c-index, x axis) for each individual ctDNA feature for
landmarked OS and PFS estimated at each time point (panels), in training.
‘n’indicates number of detected variants’, ‘n_path’ indicates number of detected
known/likely pathogenic variants, ‘percChg’ and ‘diff’ indicate percent change
and differencein ctDNA level from baseline. (b) Comparison of models trained
using either clinical features alone (red), ctDNA features alone (green), or
ctDNA+Clinical features (blue), with annotation as to which metrics were top
featuresin each run. The bar height is rank concordance (c-index) calculated
from leave-one-out-cross-validation (LOOCV) to fit an elastic net model, error
bars are standard error of the c-index, Pvalues are two-sided and based on a
U-statistic to compare two predictors. Models were built using n =206 patients
inthe training subset at-risk for an OS event at C3D1. (c) Scatterplots for the 5 top
features from C3D10S model, showing the association between each feature
value with landmark OS. (d) Forest plots showing prognostic value of C3D1 0S

ctDNA model predictionsin training data for patients with SD (top forest plot)
and Partial Response (bottom forest plot), where the number of patients can be
found in the third column (‘N’), ‘MST’ indicates median survival time. Points and
error barsindicate HR and 95% confidence interval, respectively. Univariable
Cox proportional-hazards model was used to estimate HR and logrank test to
report Pvalues. Note that the threshold chosen for categorizing a patient as
having molecular progressive disease (mPD) was done by taking the mean of the
optimal splitin SD patients (75th percentile, top forest plot) and the optimal split
in PR patients (70th percentile, bottom forest plot). (e) Choosing a threshold in
training data of C3D1 OS ctDNA model predictions for categorizing a patient as
having mResp was done by identifying the patients in training data who achieved
durable OS of > 30 months (which was 32.2% of the population, see top table), and
then taking the median prediction score of this population (which was 0.036, see
bottomtable) in training data.
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a) Hold-back test data in IMpower150 (cindex = 0.67)
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Extended DataFig. 5| (a) Scatterplot showing the final C3D1 0S ctDNA model
predictions (y axis) versus OS time (xaxis) in the hold-back test data for
IMpowerl50 (c-index, 0.67). Dotted lines show thresholds for mPD (> 0.298
prediction score), mResp (< 0.036 prediction score), and mSD (for [0.036,
0.298) prediction scores), which were thresholds chosen in the training set of
data. (b) KM curves for OS in hold-back test set showing the final subgroups
identified using the C3D10S model prediction thresholds chosen in training
data. Subgroups include mPD (red line), mResp (blue line), and mSD (black line),
all confirmed to have prognostic value in this test data. (c) Scatterplot showing

Hold-back test set in IMpower150
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the final C3D10S ctDNA model predictions (y axis) versus OS time (x axis) in the
external validation OAK cohort of 73 patients (c-index, 0.69). Dotted lines show
thresholds for mPD (= 0.298 prediction score), mResp (< 0.036 prediction score),
and mSD (for [0.036, 0.298) prediction scores), which were thresholds chosen
inthe training set of data. (d) KM curves for OS in external validation OAK cohort
of 73 patients showing the final subgroups identified using the C3D1 OS model
prediction thresholds chosen in training data. Subgroupsinclude mPD (red line),
mResp (blue line), and mSD (black line), all confirmed to have prognostic value in
this external validation data.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | (a) KM curve showing PFS in the test dataset for the
three armsin the IMpower150 trial including ABCP (brown), ACP (orange),
and control arm BCP (black, control arm). (b—-c) Complete results of operation
characteristics simulations showing the rate of true ‘Go’ decisions in (b)
instantaneous enrollment scenario (every patient has their clinical data cut at
their respective C3D1time point), versus (c) ramp-up enrollment scenario (use all

clinical data available for patient after last patient enrolls, so some patients could
have additional radiographic data available after the week 6 time point). Training
datashownin top rows, test data shown in bottom rows. The early endpoint is
either ctDNA criteria alone (red bar), RECIST criteria alone (light blue) or RECIST
criteriacombined with ctDNA (dark blue), PFS alone (light green bar) or PFS
combined with ctDNA criteria (dark green bar).
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Public datasets that were used during data processing included ExAC database (http://exac.broadinstitute.org/) and IDs from COSMIC database (https://
cancer.sanger.ac.uk/cosmic).




The data and code required to reproduce results are deposited to the European Genome-Phenome Archive under accession number EGAS00001006703, and can be
made available upon request. Qualified researchers may request access to individual patient-level data through the clinical study data request platform (https://
vivli.org/). Further details on Roche’s criteria for eligible studies are available at https://vivli.org/members/ourmembers. For further details on Roche’s Global Policy
on the Sharing of Clinical Information and how to request access to related clinical study documents, see https://www.roche.com/research_and_development/
who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm.
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Reporting on sex and gender

Population characteristics

Recruitment

Ethics oversight

Gender was not collected in this study, and accordingly we do not use this term in the paper. Please refer to Extended Data
Tables 1 and 2 for covariate-relevant population characteristics of the human research participants in the IMpower150
ctDNA study, which includes Sex.

Patient metadata are included in the manuscript, including tables of population characteristics for both the full IMpower150
population and this retrospective exploratory ctDNA substudy reported in this manuscript (Supp Table ST1). Briefly,
IMpower150 patients had stage IV or recurrent metastatic nonsquamous NSCLC for which they had not previously received
chemotherapy, a baseline Eastern Cooperative Oncology Group (ECOG) performance-status score of 0 or 1, and tumor tissue
available for biomarker testing and if they were eligible to receive bevacizumab; patients with any PD-L1
immunohistochemistry status were eligible. Please refer to Extended Data Tables 1 and 2 for covariate-relevant population
characteristics of the human research participants in the IMpower150 ctDNA study, including baseline ECOG score, Age, Sex,
Tobocco use, Race, Region, Number of metastatic sites, and PDL1 status.

In the IMpower150 study patients were eligible for inclusion in this retrospective exploratory ctDNA substudy reported in this
manuscript if they had plasma samples available for ctDNA testing at both baseline and an early on-treatment timepoint
(either cycle 2 day 1 or cycle 3 day 1), as well as PBMCs available in order to perform germline subtraction. This reduced the
number of patients in this ctDNA substudy to 466. We expected a survivorship bias in this ctDNA-evaluable population due to
our requirement for patients to have samples available after randomization, and while no strong PFS bias was found for
ctDNA evaluable versus non-evaluable (HR=0.92 [0.82-1.05]), we did detect a survivorship bias for OS (HR=0.86 [0.75 — 0.99])
(Extended Data Figure ED1a). However, baseline characteristics were similar between the full IMpower150 and ctDNA
evaluable population, including baseline ECOG, age, sex, race, region, among others (Supplementary Table ST1). We do not
expect this OS survivorship to strongly impact our results, because this exploratory ctDNA substudy is concerned with
building ctDNA-based models to predict overall survival, and typically patients who do not have evaluable on-treatment
samples available are those who unfortunately had very rapid disease progression, and therefore for which a ctDNA model to
predict survival is of limited utility.

The study was conducted in accordance with the International Conference on Harmonisation Good Clinical Practice
guidelines and with the principles of the Declaration of Helsinki. All patients provided written informed consent, and the
protocol was approved by independent ethics committees at each participating site. The study protocol is in the appendix of
the primary clinical manuscript for IMpower150 (Socinski et al, NEJM 2018) and can also be found at https://clinicaltrials.gov/
ct2/show/NCT02366143.
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[155] "National Hospital Organization Kyushu Cancer Center"

[156] "Kanagawa Cardiovascular and Respiratory Center IRB"

[157] "National Hospital Organization Kyushu Medical Center IRB"

[158] "National Hospital Organization Shikoku Cancer Center IRB"

[159] "Miyagi Cancer Center IRB"

[160] "Kyorin University Hospital IRB"

[161] "Center Hospital of the National Center for Global Health and Medicine IRB"
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Details on the IMpower150 study plan are published elsewhere. No sample size calculations were done for the ctDNA subsidy of IMpower150.
The sample size was determined by the number of patients in IMpower150 (n=1201) which had baseline samples run on a 1.25 Mb ctDNA
assay (n=1062), and those were subset to those patients with aliquots of C2D1 or C3D1 plasma available (n=910). 566 patients were then




randomly chosen for the ctDNA subsidy, only 466 of which had PBMC available for CHIP/germline correction who were included in the final
ctDNA analysis population.

Data exclusions  Patients were excluded if they did not have baseline plasma and C2D1/C3D1 and PBMC available. Please refer to Figure 1 for sample flow
diagram.

Replication Biomarkers measured in patient plasma samples were not replicated. Replication was not possible due to the limited patient samples
available. The one experiment that had replication was during assay development in which 63 replicates were run to measure the
concordance between the baseline assay and on-treatment assay. This experiment showed high concordance between the replicates
(R2=0.9961; Supplementary Figure 1B right). No other experiments were replicated.

Randomization  Details on the original IMpower150 study plan including randomization has been published elsewhere and can also be found at https://
clinicaltrials.gov/ct2/show/NCT02366143. For this exploratory retrospective ctDNA substudy reported in this manuscript, the 466 ctDNA-
evaluable patients were split into a training cohort and a testing cohort for model development. The training and test sets were initially
chosen based on sequencing batch for the set of 566 patients chosen for the ctDNA substudy (see Figure 1a), where we put sequencing
batch1l in training set and then added in patients from later batches to reach the target 50%/50% split. The sequencing lab decided which
samples to include in batch 1 without any knowledge about the baseline characteristics, treatment, or clinical outcomes of the patients. We
then checked for imbalances and it was found that RACE was not well distributed due to all Asian patients appearing in batch1, and so we
moved half of the Asian patients to the test set and replaced these spots in the training data with a random set of patients. As the analysis
progressed (in the training subset of data) we decided to add in PBMC correction due to concern over germline/CHIP variants contaminating
the ctDNA dataset, which reduced the number of patients to those with PBMC available for correction, giving a final n of 466 patients and a
final split of 240/226 patients for train/test. The final training/test sets were well balanced in clinical features and survival outcomes as can be
seen in Supplementary Table ST2 and Extended Data Figure ED1f.
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Blinding Details about blinding during arm allocation for the IMpower150 study itself can be found in the IMpower150 primary clinical manuscript or at
https://clinicaltrials.gov/ct2/show/NCT02366143 . For this retrospective exploratory ctDNA substudy, our model development analysis was
not initiated until after samples were allocated to either the training or testing subgroup. The allocation of training/testing was not performed
blinded, as the goal was to ensure that the training and testing subgroups were similar in baseline characteristics. Sample collection was
performed prior to this retrospective analysis, and so investigators were blinded during sample collection. Data was generated by a diagnostic
company separate from the analysts who performed the model development, and so data generation was also performed by blinded
individuals.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChiIP-seq
|:| Eukaryotic cell lines IZI |:| Flow cytometry
D Palaeontology and archaeology IZ D MRI-based neuroimaging

|:| Animals and other organisms
Clinical data

[] pual use research of concern

XOXNX X[ S

Antibodies

Antibodies used PD-L1 expression on tumor cells or tumor-infiltrating immune cells was analyzed in archival or freshly collected tumor tissue (or both)
with the use of a PD-L1 immunohistochemistry assay (Ventana Medical Systems; clone SP142; catalog number N/A; pre-dilute ready
to use antibody product at 36ug/5mL)

Validation Ventana PD-L1 (SP142) assay validation can be found at the following link: https://www.accessdata.fda.gov/cdrh_docs/pdf16/
p160002c.pdf

Clinical data

Lc0c Y21o

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NCT02366143

Study protocol The protocol was published with the primary clinical manuscript and can be found here: https://www.nejm.org/doi/suppl/10.1056/
NEJMo0al716948/suppl_file/nejmoal716948_protocol.pdf




Data collection Details of clinical data collection can be found in primary clinical manuscript for IMpower150. Briefly, IMpower150 data was collected
between March 2015 and December 2019, patients from 26 countries or regions were enrolled at 240 sites. The list of 240 sites is
the following:

United States, Arizona

Ironwood Cancer & Research Centers
Chandler, Arizona, United States, 85224
Arizona Oncology Associates

Flagstaff, Arizona, United States, 86001
United States, California

Southern CA Permanente Med Grp
Bellflower, California, United States

Marin Cancer Care Inc

Greenbrae, California, United States, 94904
Scripps Health

La Jolla, California, United States, 92037
Chao Family Comprehensive Cancer Center UCI
Orange, California, United States, 92868
United States, Colorado

Rocky Mountain Cancer Center

Denver, Colorado, United States, 80218
Kaiser Permanente

Lonetree, Colorado, United States, 80124
United States, Connecticut

Danbury Hospital

Danbury, Connecticut, United States, 06810
Yale Cancer Center

New Haven, Connecticut, United States, 06520
United States, Florida

Holy Cross Hospital Inc

Fort Lauderdale, Florida, United States, 33308
Cancer Specialists of North Florida - Baptist South
Jacksonville, Florida, United States, 32258
Mount Sinai Medical Center

Miami Beach, Florida, United States, 33140
Hematology Oncology Associates of the Treasure Coast
Port Saint Lucie, Florida, United States, 34952
United States, Georgia

Piedmont Cancer Institute, PC

Atlanta, Georgia, United States, 30318
United States, lllinois

Rush University Medical Center

Chicago, lllinois, United States, 60612

Univ of Chicago

Chicago, lllinois, United States, 60637

Ingalls Memorial Hospital

Harvey, lllinois, United States, 60426
Oncology Specialists, S.C.

Park Ridge, lllinois, United States, 60068
United States, lowa

Hematology-Oncology; Associates of the Quad Cities
Bettendorf, lowa, United States, 52722
United States, Kentucky

Norton Cancer Institute

Louisville, Kentucky, United States, 40202
United States, Maine

New England Cancer Specialists

Scarborough, Maine, United States, 04074
United States, Maryland

Mercy Medical Center

Baltimore, Maryland, United States, 21202
Regional Cancer Care Associates

Bethesda, Maryland, United States, 20817
Maryland Oncology Hematology, P.A.
Columbia, Maryland, United States, 21044
United States, Michigan

St. Joseph Mercy Health System

Ann Arbor, Michigan, United States, 48106
United States, Minnesota

St. Luke's Regional Cancer Center

Duluth, Minnesota, United States, 55805
Park Nicolett - Frauenshuh Cancer Center
Saint Louis Park, Minnesota, United States, 55426
United States, Missouri

St. Luke's Cancer Institute

Kansas City, Missouri, United States, 64111
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Missouri Baptist Medical Center

Saint Louis, Missouri, United States, 63131
United States, Montana

Billings Clinic

Billings, Montana, United States, 59102
Montana Cancer Specialists

Missoula, Montana, United States, 59802
United States, Nevada

Comprehensive Cancer Centers of Nevada
Henderson, Nevada, United States, 89014
United States, New Jersey

Summit Medical Group

Berkeley Heights, New Jersey, United States, 07922
Valley Hospital; Oncology Research

Paramus, New Jersey, United States, 07652
Regional Cancer Care Associates LLC

Sewell, New Jersey, United States, 08080
United States, New York

Montefiore Medical Center

Bronx, New York, United States, 10467
Maimonides Medical Center

Brooklyn, New York, United States, 11219
United States, North Carolina

First Health of the Carolinas

Pinehurst, North Carolina, United States, 28374
United States, Ohio

University of Cincinnati

Cincinnati, Ohio, United States, 45203-0542
Mercy St Anne Hospital

Toledo, Ohio, United States, 43623

United States, Oregon

Bend Memorial Clinic

Bend, Oregon, United States, 97701

St. Charles Medical Center Bend; Cancer Care Of The Cascades
Bend, Oregon, United States, 97701
Willamette Valley Cancer Insitute and Research Center
Springfield, Oregon, United States, 97477
United States, Pennsylvania

St. Luke's Cancer Care Associates

Bethlehem, Pennsylvania, United States, 18015
Allegheny Cancer Center

Pittsburgh, Pennsylvania, United States, 15212
Univ of Pittsburgh Medical Ctr

Pittsburgh, Pennsylvania, United States, 15232
United States, Tennessee

West Clinic

Germantown, Tennessee, United States, 38138
Tennessee Cancer Specialists

Knoxville, Tennessee, United States, 37920
United States, Texas

Houston Methodist Cancer Center

Houston, Texas, United States, 77030
Longview Cancer Center

Longview, Texas, United States, 75601
University of Texas Health Science Center at San Antonio
San Antonio, Texas, United States, 78229
United States, Virginia

Virginia Cancer Specialists, PC

Fairfax, Virginia, United States, 22031

Virginia Oncology Associates

Norfolk, Virginia, United States, 23502

Virginia Cancer Institute

Richmond, Virginia, United States, 23226

Blue Ridge Cancer Care

Roanoke, Virginia, United States, 24014

United States, Washington

MultiCare Regional Cancer Center - Auburn
Auburn, Washington, United States, 98002-4117
Providence Regional Cancer Partnership
Everett, Washington, United States, 98201
Virginia Mason Medical Center

Seattle, Washington, United States, 98101
Medical Oncology Associates

Spokane, Washington, United States, 99208
United States, West Virginia

West Virginia University; Mary Babb Randolph Can Ctr
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Morgantown, West Virginia, United States, 26506
Argentina

Centro Medico Austral

Buenos Aires, Argentina, 1019

Fundacién CENIT para la Investigacion en Neurociencias
Buenos Aires, Argentina, C1125ABD
Sanatorio Allende

Cordoba, Argentina, X5000JHQ

Centro Oncologico Riojano Integral (CORI)

La Rioja, Argentina, F5300COE

Hospital Provincial del Centenario

Rosario, Argentina, 2000

Fundacion Koriza

Santa Rosa, Argentina, 6300

Centro de Investigacion; Clinica - Clinica Viedma S.A.
Viedma, Argentina, R8500ACE

Australia, New South Wales

Chris O'Brien Lifehouse

Camperdown, New South Wales, Australia, 2050
Concord Repatriation General Hospital
Concord, New South Wales, Australia, 2139
Nepean Cancer Care Centre

Sydney, New South Wales, Australia, 2747
Australia, Queensland

Prince Charles Hospital; Department of Medical Oncology
Chermside, Queensland, Australia, 4032
Townsville Hospital

Townsville, Queensland, Australia, 4810
Princess Alexandra Hospital

Woolloongabba, Queensland, Australia, 4102
Australia, South Australia

Royal Adelaide Hospital

Adelaide, South Australia, Australia, 5000
Adelaide Cancer Centre

Kurralta Park, South Australia, Australia, 5037
Australia, Tasmania

Royal Hobart Hospital

Hobart, Tasmania, Australia, 7000
Launceston General Hospital

Launceston, Tasmania, Australia, 7250
Australia, Victoria

Frankston Hospital

Frankston, Victoria, Australia, 3199

Austin Health

Heidelberg, Victoria, Australia, 3084

Cabrini Hospital Malvern

Malvern, Victoria, Australia, 3144

The Alfred Hospital

Prahan, Victoria, Australia, 3181

Sunshine Hospital

St Albans, Victoria, Australia, 3021

Australia, Western Australia

Sir Charles Gairdner Hospital

Nedlands, Western Australia, Australia, 6009
Austria

Paracelsus Medizinische Privatuniversitat
Salzburg, Austria, 5020

Klinikum Wels-Grieskirchen

Wels, Austria, 4600

Belgium

CHU de Liege

Liege, Belgium, 4000

Clinique Ste-Elisabeth

Namur, Belgium, 5000

Brazil

CETUS Hospital Dia Oncologia

Uberaba, MG, Brazil, 38082-049

Instituto Do Cancer Delondrina_X; Unidade De Pesquisa Clinica
Londrina, PR, Brazil, 86 015 520

Liga Norte Riograndense Contra O Cancer
Natal, RN, Brazil, 59040150

IPCEM; Instituto de Pesquisa de Estudos Multicéntricos
Caxias do Sul, RS, Brazil, 95070-560

Hospital Mae de Deus

Porto Alegre, RS, Brazil, 90470-340

Hospital de Cancer de Barretos
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Barretos, SP, Brazil, 14784-400

Instituto Ribeirdopretano de Combate Ao Cancer; Centro Especializado De Oncologia
Ribeirdo Preto, SP, Brazil, 14015-130

Hospital de Base de Sao Jose do Rio Preto

Sao Jose do Rio Preto, SP, Brazil, 15090-000

Hospital A. C. Camargo; Oncologia

Sao Paulo, SP, Brazil, 01509-010

Bulgaria

Multiprofile Hospital for Active Treatment Central Onco Hospital OOD
Plovdiv, Bulgaria, 4000

MHAT Serdika, EOOD

Sofia, Bulgaria, 1303

Canada, Ontario

Lakeridge Health Center

Oshawa, Ontario, Canada, L1J 2J2

Chile

Clinica Santa Maria

Santiago, Chile, 0

Health & Care SPA

Santiago, Chile, 7500006

Sociedad de Investigaciones Medicas Ltda (SIM)

Temuco, Chile, 4810469

France

Institut Bergonié Centre Régional de Lutte Contre Le Cancer de Bordeaux Et Sud Ouest
Bordeaux, France, 33076

CHU de Grenoble

Grenoble, France, 38043

Centre Jean Bernard Clinique Victor Hugo

Le Mans, France, 72015

Hopital Saint Joseph

Marseille, France, 13008

Hopital Nord AP-HM

Marseille, France, 13015

Hopital Européen Georges Pompidou

Paris, France, 75908

CHU de Bordeaux

Pessac, France, 33600

Service de Pneumologie Centre Hospitalier Régional La Réunion Site Felix Guyon
Saint Denis Cedex, France, 97405

CH de Saint Quentin

Saint Quentin, France, 2100

Centre Hospitalier Intercommunal Toulon - La Seyne sur Mer
Toulon, France, 83000

Hopital d'Instruction des Armées de Sainte Anne; Service de Pneumologie
Toulon, France, 83000

Hopital Larrey;Université Paul Sabatier

Toulouse, France, 31059

Germany

Zentralklinikum Augsburg

Augsburg, Germany, 86156

Helios Klinikum Emil von Behring GmbH

Berlin, Germany, 14165

Ev.Krankenhaus Bielefeld gGmbH; Klinik fir Innere Medizin und Geriatrie
Bielefeld, Germany, 33611

Augusta Kranken-Anstalt gGmbH

Bochum, Germany, 44791

Universitatsklinikum "Carl Gustav Carus" der Technischen Universitat Dresden
Dresden, Germany, 01307

St. Elisabethen Krankenhaus

Frankfurt am Main, Germany, 60487

LungenClinic GroRhansdorf GmbH

GroRhansdorf, Germany, 22927

Krankenhaus Martha-Maria; Halle-Dolau gGmbH

Halle, Germany, 06120

Asklepios Klinik Harburg

Hamburg, Germany, 21075

Lungenklinik Hemer

Hemer, Germany, 58675

Universitat Des Saarlandes; Klinik fir Innere Medizin V

Homburg, Germany, 66421

Kliniken der Stadt Koln gGmbH; Lungenklinik Onkologische Ambulanz
Koln, Germany, 51109

Klinik Loewenstein gGmbH; Onk & Pal

Loewenstein, Germany, 74245

Klinikum Bogenhausen

Miunchen, Germany, 81925
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Krankenhaus Barmherzige Bruder Regensburg
Regensburg, Germany, 93049

Klinikum der Universitat Regensburg

Regensburg, Germany, 93053

Stiftung Mathias-Spital Rheine

Rheine, Germany, 48431

Italy

AORN A Cardarelli

Napoli, Campania, Italy, 80131

Policlinico Universitario Campus Biomedico; Uoc Oncologia Medica
Roma, Lazio, Italy, 00128

Azienda Ospedaliera San Camillo Forlanini

Roma, Lazio, Italy, 00152

Universita Cattolica Del S Cuore

Roma, Lazio, Italy, 00168

Istituto Nazionale per la Ricerca sul Cancro di Genova
Genova, Liguria, Italy, 16132

ASL 3 Genovese; DSM

Genova, Liguria, Italy, 16147

A.O.U. Maggiore della Carita

Novara, Piemonte, Italy, 28100

Azienda Unita Sanitaria Locale N1 Sassari; Unita Operativa Di Oncologia Medica
Sassari, Sardegna, Italy, 07100

Policlinico Vittorio Emanuele

Catania, Sicilia, Italy, 95123

Ospedale Versilia

Lido Di Camaiore, Toscana, Italy, 55043

Ospedale Civile - Livorno

Livorno, Toscana, Italy, 57124

Japan

National Hospital Organization Shikoku Cancer Center
Ehime, Japan, 791-0280

National Hospital Organization Kyushu Medical Center
Fukuoka, Japan, 810-8563

NHO Kyushu Cancer Center

Fukuoka, Japan, 811-1395

Kurume University Hospital

Fukuoka, Japan, 830-0011

Kanagawa Cardiovascular and Respiratory Center
Kanagawa, Japan, 236-0051

Kitasato University Hospital

Kanagawa, Japan, 252-0375

Kyoto University Hospital

Kyoto, Japan, 606-8507

Miyagi Cancer Center

Miyagi, Japan, 981-1293

Niigata Cancer Center Hospital

Niigata, Japan, 951-8566

Osaka City University Hospital

Osaka, Japan, 545-8586

National Hospital Organization Osaka Toneyama Medical Center
Osaka, Japan, 560-8552

Toranomon Hospital

Tokyo, Japan, 105-8470

Center Hospital of the National Center for Global Health and Medicine
Tokyo, Japan, 162-0052

Kyorin University Hospital

Tokyo, Japan, 181-8611

Wakayama Medical University Hospital

Wakayama, Japan, 641-8510

Latvia

Riga East Clinical University Hospital Latvian Oncology Centre
Riga, Latvia, LV-1079

Pauls Stradins Clinical University Hospital

Riga, Latvia, LV-1002

Lithuania

National Cancer Institute

Vilnius, Lithuania, 08660

Mexico

Centro Universitario Contra El Cancer

Monterrey, Mexico, 64020

Cancerologia de Queretaro

Queretaro, Mexico, 76090

Centro Hemato Oncologico Privado; Oncologia
Toluca, Mexico, 50080

Netherlands
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Jeroen Bosch Ziekenhuis

'S Hertogenbosch, Netherlands, 5223 GZ
Amsterdam UMC Location VUMC

Amsterdam, Netherlands, 1081 HV

Amphia Ziekenhuis; Afdeling Longziekten

Breda, Netherlands, 4818 CK

Ziekenhuis Gelderse Vallei

EDE, Netherlands, 6716 RP

Tergooiziekenhuizen

Hilversum, Netherlands, 1201 DA

Spaarne Gasthuis; Spaarne Ziekenhuis

Hoofddorp, Netherlands, 2134 TM

Maastricht University Medical Center

Maastricht, Netherlands, 6229 HX

St. Antonius Ziekenhuis; R&D Long

Nieuwegein, Netherlands, 3435 CM

Erasmus MC; Afdeling Longziekten

Rotterdam, Netherlands, 3015 GD

Maasstad ziekenhuis

Rotterdam, Netherlands, 3079 DZ

Universitair Medisch Centrum Utrecht

Utrecht, Netherlands, 3584 CX

Gelre Ziekenhuizen, Zutphen

Zutphen, Netherlands, 7207 AE

Peru

Centro Medico Monte Carmelo

Arequipa, Peru, 04001

Centro Especializado de Enfermedades Neoplasicas
Arequipa, Peru

Instituto Nacional de Enfermedades Neoplasicas
Lima, Peru, Lima 34

Portugal

Centro Hospitalar E Universitario de Coimbra EPE
Coimbra, Portugal, 3000-602

Instituto Portugues Oncologia de Lisboa Francisco Gentil EPE
Lisboa, Portugal, 1099-023

Hospital Pulido Valente; Servico de Pneumologia
Lisboa, Portugal, 1796-001

Centro Hospitalar do Porto - Hospital de Santo Anténio
Porto, Portugal, 4099-001

Instituto Portugues de Oncologia Do Porto Francisco Gentil Epe
Porto, Portugal, 4200-072

Hospital de Sao Joao; Servico de Pneumologia
Porto, Portugal, 4200

Russian Federation

Moscow City Oncology Hospital #62

Moscovskaya Oblast, Moskovskaja Oblast, Russian Federation, 143423
Russian Oncology Research Center n.a. N.N. Blokhin
Moscow, Russian Federation, 115478

Clinical Oncology Dispensary

Omsk, Russian Federation, 644013

Evromedservis LCC

Pushkin, Russian Federation, 196603

City Clinical Oncology Dispensary

Saint-Petersburg, Russian Federation, 197022
Singapore

National Cancer Centre; Medical Oncology
Singapore, Singapore, 169610

Slovakia

Univerzitna nemocnica Bratislava

Bratislava, Slovakia, 813 69

Narodny onkologicky ustav

Bratislava, Slovakia, 833 10

POKO Poprad s.r.o.

Poprad, Slovakia, 058 01

Spain

Instituto Catalan de Oncologia de Hospitalet (ICO); Servicio de Farmacia
L'Hospitalet de Llobregat, Barcelona, Spain, 08908
Corporacio Sanitaria Parc Tauli; Servicio de Oncologia
Sabadell, Barcelona, Spain, 8208

Hospital Universitario Marques de Valdecilla
Santander, Cantabria, Spain, 39008

Hospital Universitario Son Espases

Palma De Mallorca, Islas Baleares, Spain, 07014
Hospital Universitario Insular de Gran Canaria

Las Palmas de Gran Canaria, LAS Palmas, Spain, 35016
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Complejo Hospitalario U. de Ourense

Ourense, Orense, Spain, 32005

Hospital Lluis Alcanyis De Xativa

Xativa, Valencia, Spain, 46800

Hospital del Mar

Barcelona, Spain, 08003

Hospital Univ Vall d'Hebron; Servicio de Oncologia

Barcelona, Spain, 08035

Hospital Clinic de Barcelona

Barcelona, Spain, 08036

Hospital Universitario Reina Sofia

Cordoba, Spain, 14004

Hospital Lucus Augusti; Servicio de Oncologia

Lugo, Spain, 27003

Hospital General Universitario Gregorio Marafion; Servicio de Oncologia
Madrid, Spain, 28007

Hospital Universitario La Paz

Madrid, Spain, 280146

Hospital Ramon y Cajal; Servicio de Oncologia

Madrid, Spain, 28034

Hospital Clinico San Carlos; Servicio de Oncologia

Madrid, Spain, 28040

Hospital Universitario Fundacién Jimenez Diaz

Madrid, Spain, 28040

Hospital Universitario 12 de Octubre

Madrid, Spain, 28041

Hospital Universitario HM Sanchinarro-CIOCC

Madrid, Spain, 28050

Hospital Clinico Universitario de Valencia

Valencia, Spain, 46010

Switzerland

Kantonsspital Baselland

Bruderholz, Switzerland, 4101

Luzerner Kantonsspital Sursee

Luzern, Switzerland, 6000

Kantonsspital St. Gallen; Onkologie/Hamatologie

St. Gallen, Switzerland, 9007

Taiwan

Changhua Christian Hospital; Hematology-Oncology
Changhua, Taiwan, 500

Kaohsiung Medical University Hospital; Department of Urology
Kaohsiung City, Taiwan, 807

Chi Mei Medical Center Liou Ying Campus

Liuying Township, Taiwan, 736

Chang Gung Memorial Hospital Chiayi

Putzu, Taiwan, 613

National Cheng Kung Univ Hosp

Tainan, Taiwan, 00704

National Taiwan Uni Hospital

Taipei City, Taiwan, 10041

Cheng Hsin General Hospital

Taipei, Taiwan, 112

Tri-Service General Hospital

Taipei, Taiwan, 11490

Chang Gung Medical Foundation Linkou Branch

Taoyuan City, Taiwan, 333

Taichung Veterans General Hospital

Xitun Dist., Taiwan, 40705

Ukraine

ME Bukovinian Clinical Oncology Center

Chernivtsi, Chernihiv Governorate, Ukraine, 58013

Municipal Institution City Clinical Hospital #4 of Dnipro City Council - PPDS; Dept of Chemotherapy
Dnipropetrovsk, Katerynoslav Governorate, Ukraine, 49102
Uzhgorod Central City Clinical Hospital

Uzhhorod, Katerynoslav Governorate, Ukraine, 88000

MNPE Zaporizhzhia Regional Antitumor Center ZRC
Zaporizhzhia, Katerynoslav Governorate, Ukraine, 69040
Communal Non profit Enterprise Regional Center of Oncology; Oncosurgical dept of thoracic organs
Kharkiv, Kharkiv Governorate, Ukraine, 61070

MNPE Transcarpathian Antitumor Center of the Transcarpathian Regional Council; Chemotherapy Dept
Uzhhorod, Kherson Governorate, Ukraine, 88014

Municipal Institution SubCarpathian Clinical Oncological Centre; Surgical department#2
Ivano-Frankivsk, KIEV Governorate, Ukraine, 76018

Communal Nonprofit Enterprise Podilsky Regional Center Of Oncology OfTheVinnytsia Regional Council
Vinnytsia, KIEV Governorate, Ukraine, 21029

Sl Institute of Medical Radiology n.a. S.P. Hryhoriev of NAMS of Ukraine
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Outcomes

Kharkiv, Ukraine, 61024

ME Kryviy Rih Oncology Dispensary of Dnipropetrovs'k Regional Council; Chemotherapy Department
Kryvyi Rih, Ukraine, 50048

Kyiv City Clinical Oncological Center

Kyiv, Ukraine, 03115

Poltava Regional Clinical Oncology Dispensary of Poltava Regional Council; Thoracic department
Poltava, Ukraine, 36011

Regional Municipal Institution Sumy Regional Clinical Oncology Dispensary

Sumy, Ukraine, 40005

The two primary end points of IMpower150 were progression-free survival (as assessed by investigators according to RECIST criteria)
both among patients in the intention-to-treat population who had a wild-type genotype (WT population; patients with EGFR or ALK
genomic alterations were excluded) and among patients in the WT population who had high expression of an effector T-cell (Teff)
gene signature in the tumor (Teff-high WT population) and overall survival in the WT population. The ctDNA substudy also used the
Overall Survival and radiographic response as assessed by RECIST v1.1. Additional details on the IMpower150 study can be found in
the primary clinical manuscript.
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