
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11121-021-01253-4

Incremental Model Fit Assessment in the Case of Categorical Data: 
Tucker–Lewis Index for Item Response Theory Modeling

Li Cai1 · Seung Won Chung2 · Taehun Lee3

Accepted: 26 April 2021 
© The Author(s) 2021

Abstract
The Tucker–Lewis index (TLI; Tucker & Lewis, 1973), also known as the non-normed fit index (NNFI; Bentler & Bonett, 
1980), is one of the numerous incremental fit indices widely used in linear mean and covariance structure modeling, particularly 
in exploratory factor analysis, tools popular in prevention research. It augments information provided by other indices such as 
the root-mean-square error of approximation (RMSEA). In this paper, we develop and examine an analogous index for cat-
egorical item level data modeled with item response theory (IRT). The proposed Tucker–Lewis index for IRT (TLIRT) is based 
on Maydeu-Olivares and Joe’s (2005) M

2
 family of limited-information overall model fit statistics. The limited-information 

fit statistics have significantly better Chi-square approximation and power than traditional full-information Pearson or likeli-
hood ratio statistics under realistic situations. Building on the incremental fit assessment principle, the TLIRT compares the 
fit of model under consideration along a spectrum of worst to best possible model fit scenarios. We examine the performance 
of the new index using simulated and empirical data. Results from a simulation study suggest that the new index behaves as 
theoretically expected, and it can offer additional insights about model fit not available from other sources. In addition, a more 
stringent cutoff value is perhaps needed than Hu and Bentler’s (1999) traditional cutoff criterion with continuous variables. 
In the empirical data analysis, we use a data set from a measurement development project in support of cigarette smoking 
cessation research to illustrate the usefulness of the TLIRT. We noticed that had we only utilized the RMSEA index, we could 
have arrived at qualitatively different conclusions about model fit, depending on the choice of test statistics, an issue to which 
the TLIRT is relatively more immune.

Keywords  Categorical data analysis · Model evaluation · Item response theory · Goodness of fit · Limited-information 
testing · TLI

Introduction

Item response theory (IRT) is widely used in educational 
and psychological measurement research and practice 
(Thissen & Steinberg, 2009), and becoming more noticed 
in prevention research (e.g., Kirisci et  al.,  2001; Lac 
et al., 2016) as methods for the analysis of categorical data 
continue to develop. IRT models are nonlinear latent variable 
models for multivariate categorical data arranged in the form 

of multinomial contingency tables (Cai et al., 2016). Full-
information maximum marginal likelihood (FIML) is the 
standard approach in IRT for parameter estimation (Wirth 
& Edwards, 2007).

As a prerequisite to any model-based statistical infer-
ence, and the subsequent policy or intervention decisions 
based on statistical analysis, evidence about model fit must 
be amassed. Just as a covariance structure model, an IRT 
model also seeks to represent population item response prob-
abilities akin to a moment structure with a more parsimoni-
ous and interpretable set of parameters. Frameworks such 
as Cudeck and Henly (1991) that explicitly account for the 
presence of lack of model fit in the population are particu-
larly helpful in this context.

The two most widely available IRT model fit statistics 
are Pearson’s X2 statistic and the likelihood ratio statistic 
G2 (Maydeu-Olivares, 2013). These test statistics depend 
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on cell probabilities in the full item-by-item contingency 
table and hence are referred to as full-information test statis-
tics. Despite their ease of computation, they have a serious 
drawback for testing IRT model fit, because the contingency 
tables for IRT modeling are often extremely sparse.

To solve this problem, limited-information goodness-
of-fit tests e.g (Bartholomew & Leung,  2002; Cai 
et al., 2006; Maydeu-Olivares & Joe, 2006; Joe & Maydeu-
Olivares, 2010) have emerged in the IRT literature. Maydeu-
Olivares and Joe’s (2005) test statistic, M2 , for example, 
uses residuals in the first- and second-order margins of 
the contingency table. These margins are better filled, and 
consequently, the test statistics have better calibration and 
power (Joe & Maydeu-Olivares, 2010). The chi-squaredness 
of these new test statistics also facilitates the derivation of 
fit indices that are sample size independent, such as the Root 
Mean Square Error of Approximation (RMSEA; Browne & 
Cudeck, 1993; Maydeu-Olivares & Joe, 2014). Additional 
M2-inspired limited-information test statistics have been 
proposed by Cai and Hansen (2013) and Monroe and Cai 
(2015) for polytomous data.

The interpretation of RMSEA under categorical item 
level data, however, is not entirely without controversy. 
Standard cutoff values appear to be inadequate in accounting 
for potential differences caused by the number of categories 
(see Maydeu-Olivares & Joe, 2014; Monroe & Cai, 2015). In 
addition, while the proliferation of M2-inspired test statistics 
have given researchers more choices, they further complicate 
the problem of interpreting RMSEA for categorical data. 
Each test statistic leads to a different estimate of the popula-
tion non-centrality, a quantifier of the degree of model error 
in the population that is critical in computing the RMSEA. 
The degrees of freedom are also different across different 
test statistics. Taken together, Cai and Hansen (2013) and 
Monroe and Cai (2015) showed that RMSEA values com-
puted from different flavors of M2 statistic may lead to quali-
tatively different conclusions about model fit. We believe 
that while more research on RMSEA is much needed, alter-
native approaches should be considered.

We draw inspirations from limited-information estima-
tion methods originating from the factor analysis tradition. 
These limited-information methods can be used to fit a 
restricted set of IRT models for ordinal data (see Forero & 
Maydeu-Olivares, 2009). Typically, a multistage weighted 
least-squares estimator is employed with intermediate 
moment matrices such as polychoric correlations. With 
these summary moment matrices, it is simple to specify a 
zero-factor model and obtain the relevant chi-squares for 
computing incremental fit indices such as the Tucker–Lewis 
index (TLI; Tucker & Lewis, 1973). Also known as the non-
normed fit index (NNFI; Bentler & Bonett, 1980), TLI is 
one of the numerous incremental fit indices widely used in 
linear mean and covariance structure modeling, particularly 

in exploratory factor analysis. Because the TLI is based on 
the incremental fit assessment principle, we have reasons to 
believe that its application to IRT may be less affected by the 
number of categories and the choice of particular M2 statis-
tics, unlike the RMSEA (see Maydeu-Olivares & Joe, 2014); 
Monroe & Cai, 2015) for IRT models.

The only remaining issue is that FIML does not operate 
on the summary moment matrices, so we propose to solve 
the problem with limited-information goodness-of-fit statis-
tics based on FIML parameter estimates. There are a number 
of reasons why this approach is the most practicable method 
in IRT research and data analytic practice. FIML is far more 
powerful in terms of its ability to handle complex data col-
lection designs (e.g., with planned missing data, unequal 
probability of selection, and nesting relationships) as well as 
large data sets involving many hundreds of items and poten-
tially many thousands of respondents. Wirth and Edwards 
(2007) discussed this latter point in detail. In addition, with 
FIML estimation, a much larger variety of IRT models, e.g., 
the so-called three-parameter logistic (3PL) model, nominal 
model, or polytomous models with adjacent-categories logit 
link functions become estimable. Such flexibility, while not 
necessarily deemed essential until recently for researchers 
who focus on data derived from Likert-type questionnaires, 
has always been mission-critical in a large segment of educa-
tional and psychological measurement. Even for Likert-type 
responses, more complex IRT models capable of handling 
additional construct-irrelevant facets of variation to improve 
the qualify of measurement routinely require FIML (e.g., 
Falk & Cai, 2016).

In the research presented here, we formalize and examine 
a new approach for incremental model fit assessment in IRT. 
The general recipe is as follows: use FIML to fit the IRT 
model, and then use a limited-information goodness-of-fit 
statistic to derive an incremental fit index with a null model 
implying full independence. This new index can be thought 
of as the IRT equivalent of the TLI out of classical structural 
equation modeling, especially exploratory factor analysis. 
These multivariate statistical tools are popular among pre-
vention science researchers, so we will not belabor their 
importance or the TLI’s practical significance.

Our basic idea is deceptively simple: The fit of the 
IRT model under consideration is compared against that 
of a null model in a principled manner with a TLI-type 
index. The interpretation of the index leverages and 
modifies the standard guidelines for interpreting the TLI 
as widely understood and utilized in practice. The pro-
posed Tucker–Lewis index for IRT (TLIRT) is based on 
the M2 family of limited-information model fit statistics. 
In principle, any limited-information fit statistic with 
known asymptotic distribution properties may be used, 
e.g., Cai and Hansen’ (2013) chi-square statistic, but we 
focus on Maydeu-Olivares and Joe’s (2005) M2 statistic, 
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in particular. We will develop the index formally. Results 
from a set of simulation studies will be reported to examine 
the properties of the index to help gauge its interpreta-
tion in practice. Empirical data from a health-outcomes 
measurement development study in the smoking cessation 
research context will be used to illustrate the added value 
of the new index. It is important to note that all of the meth-
ods reported here are readily available for any substantive 
researcher’s use.

A Brief Review of the Necessary Statistical 
Theory

Model‑building

To begin, let us consider an IRT model for dichotomous 
data. Let Ui be a random variable indicating the response 
to item i, and let ui be a realization of Ui . In the case of 
dichotomously scored items, Ui takes on two values, either 
0 or 1. A plausible IRT model may be the multidimen-
sional generalization of the two-parameter logistic (2PL) 
model, where the correct/endorsement/positive response 
(coded as Ui = 1 ) is modeled as a function of item param-
eters and latent variables:

and �i is the intercept term, � i a potentially vector-valued 
item slope parameter conformable with the dimensions of 
the latent variables �.

We use Samejima’s (1969) graded response model 
(GRM) as an example of models for ordered categorical 
data. GRM for two categories is the 2PL model. For K > 2 
ordered categories, the GRM can be derived from the 2PL 
model. Upon defining the cumulative response probability 
for item i and category k according to a 2PL model

the category response probability is given by

for k = 0, ...K − 1 . Note that we choose to define 
P(Ui ≥ 0|�) = 1 and P(Ui ≥ K|�) = 0 for the two boundary 
cases, so there are only K − 1 intercept parameters.

Arguably the most important assumption in IRT mod-
eling is the conditional independence assumption, which 
states that the conditional probability of a pattern of 
responses to n items factors into a product:

(1)P(Ui = 1|�) = 1

1 + exp[−(�i + ��
i
�)]

,

(2)P(Ui ≥ k|�) = 1

1 + exp[−(�ik + ��
i
�)]

,

(3)P(Ui = k|�) = P(Ui ≥ k|�) − P(Ui ≥ k + 1|�),

were ∩ means the intersection of events. Equation (4) indi-
cates that upon conditioning on (controlling for) the latent 
variable(s), the responses become independent. In other 
words, all observed correlatedness among item responses 
are presumed to be caused by the presence of � . This is not 
different from assumptions made in linear exploratory fac-
tor analysis about the lack of correlations among the unique 
factors.

Standard model-building approaches in IRT, (e.g., Bock 
& Aitkin, 1981) require the specification of a population 
(prior) distribution on the latent variable(s) in � . Upon intro-
ducing this prior g(�) , the marginal response pattern prob-
ability becomes

In contrast to conditional independence, as embodied by 
Equations (4) and (5), a complete-independence model does 
not contain any latent variables at all

It may be considered a worst possible case when the speci-
fication of factor analytic dimensions is of interest. Func-
tionally, the complete-independence (zero-factor) model has 
item intercepts only and no item slopes.

Parameter Estimation

Using conventional notation from statistical sciences, let us 
refer to all the free item parameters generically as � . The 
task of item calibration is to estimate � . For a sample of item 
response data from N respondents to n items, fitting an IRT 
model to this N × n categorical data matrix using a standard 
software package leads to the maximum likelihood estimate, 
standard errors, and log-likelihood statistics.

To elaborate, the IRT model’s likelihood is based on a 
multinominal distribution with C = Kn cells. Upon know-
ing the item parameters, each cell probability is uniquely 
determined by the pattern of responses (the ui’s). There-
fore, we may conveniently sort all possible response pat-
terns in the lexicographical ordering, e.g., from (0,… , 0) to 
(1,… , 1) for all dichotomous responses, and index them as 
c = 1,… ,C . Consequently, we may write a generic marginal 
response pattern probability (Equation 5) as �c(�) , where 
the parentheses emphasize the dependence of �c on the item 

(4)P

(
n⋂

i=1

Ui = ui|�
)

=

n∏

i=1

P(Ui = ui|�),

(5)P

(
n⋂

i=1

Ui = ui

)
= ∫

n∏

i=1

P(Ui = ui|�)g(�)d�.

P

(
n⋂

i=1

Ui = ui

)
=

n∏

i=1

P(Ui = ui).
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parameters. The IRT model is said to be correctly specified 
if there exists some �0 such that �c(�0) = �0c , for all c, where 
�0c may be referred to as the true multinomial proportions.

Correspondingly, the observed item response data can 
be rearranged into response patterns by proportions, i.e., 
in grouped format as an n-way contingency table. Given a 
random sample of N respondents, we shall use pc to denote 
the observed proportion of individuals that have response 
pattern c. We see that the IRT model is directly defined on a 
multinomial with C cells. The likelihood function is

Maximization of L(�) leads to the maximum marginal likeli-
hood estimate of the item parameters 𝜽̂ . A standard approach 
is FIML with the EM algorithm (e.g., Bock & Aitkin, 1981), 
which we use throughout.

Equivalently, one may also choose to minimize the fol-
lowing likelihood ratio discrepancy function

Under the null hypothesis of exactly correct model specifi-
cation, the minimum discrepancy function G(𝜽̂) , when mul-
tiplied by N, is distributed as a central chi-square random 
variable with C − 1 − dim(�) degrees-of-freedom when N 
is several times of C. N times G(𝜽̂) is also referred to as the 
likelihood ratio G2 test statistic in categorical data analysis:

where 𝜋̂c = 𝜋c(𝜽̂) is the model-implied response probability 
under maximum likelihood estimation. As an alternative to 
G2 , the asymptotically equivalent Pearson X2 statistic may 
be employed for overall model fit testing as well:

Note that pc − 𝜋̂c is the residual from cell c of the underlying 
item-by-item contingency table.

Limited‑information Model Fit Testing

As mentioned earlier, both G2 and X2 statistics require large 
cell frequencies for the chi-square approximation to work. 
This is rarely if ever true in the practice of IRT modeling 
(Bartholomew & Tzamourani,  1999), where the length 
of the tests are often long and the value of C astronomi-
cally large, making the contingency table extremely sparse. 

(6)L(�) ∝

C∏

c=1

[�c(�)]
pc .

(7)G(�) = 2

C∑

c=1

pc log

(
pc

�c(�)

)
.

(8)G2 = 2N

C∑

c=1

pc log

(
pc

𝜋̂c

)
,

(9)X2 = N

C∑

c=1

(pc − 𝜋̂c)
2

𝜋̂c
.

Under sparseness, the Type I error rates of G2 and X2 become 
severely mis-calibrated. As sparseness becomes more severe, 
the power of G2 to detect model misspecification plummets, 
while that of X2 becomes far too elevated to be useful as all 
models are rejected (see e.g., Cai et al., 2006). The practical 
utility of G2 and X2 is dubious in IRT.

As a solution to the problem of sparseness, psychometric 
researchers have turned increasingly to limited-information 
goodness-of-fit test statistics that are based on marginal residu-
als (Maydeu-Olivares & Joe, 2005, 2006; Cai et al., 2006; Joe & 
Maydeu-Olivares, 2010; Maydeu-Olivares & Montaño, 2012). 
These test statistics can maintain adequate Type I error rates even 
when the contingency table is sparse, and they can be more pow-
erful than the full-information counterparts.

In the theory developed by Maydeu-Olivares and Joe 
(2005) marginal residuals up to order 2 are used as opposed 
to the multinomial cell residuals. For n dichotomous items, 
there are n first-order marginal residuals, and n(n − 1)∕2 
second-order marginal residuals. Let them be denoted as �2 . 
The M2 statistic is defined as

where �̂2 represents an error covariance matrix for the mar-
ginal probabilities, and �̂2 represents the Jacobian matrix 
associated with the marginal probabilities. The details are 
fully described in the online supplemental material. It suf-
fices to state that M2 is asymptotically chi-square distrib-
uted with n(n + 1)∕2 − dim(�) degrees of freedom under the 
null hypothesis that the model fits exactly in the population. 
Furthermore, under the alternative hypothesis (lack of fit), 
the statistic will behave like a non-central chi-square variate 
when N is large (Browne, 1984).

Tucker–Lewis Index for IRT Models

All statistical models, IRT models included, have one thing 
in common: They are all wrong to some degree (Box, 1979; 
MacCallum,  2003). The notion of model being always 
imperfect implies that even if a proposed IRT model is 
closely approximating the structure of constructs being 
measured, that model will not exactly reproduce the response 
pattern probabilities in the population. This general lack of 
fit of a model in the population has been known as model 
error (MacCallum & Tucker, 1991), approximation discrep-
ancy (Cudeck & Henly, 1991) or a fundamental contradic-
tion between the model and the real world (Meehl, 1990). 
Recognizing such imperfection of statistical models, there is 
little to be gained by testing the hypothesis that a postulated 
IRT model holds exactly in the population, which is never 

(10)M2 = N��
2

[
�̂
−1

2
− �̂

−1

2
�̂2

(
�̂
�

2
�̂
−1

2
�̂2

)−1

�̂
�

2
�̂
−1

2

]
�
�
2
,
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true. A statistically significant result merely suggests that 
the researchers has adequate sample size to reject the null 
hypothesis of exact fit.

In the context of factor analysis and structural equation 
models, discussions about the problems associated with 
testing hypotheses that are never true date back to Thurstone 
(1930, p.469), who used the phrase “practical irrelevancies” 
to represent the aspects of real world that cause violations of 
a model but might well be of little practical importance to the 
meaningfulness or utility of the model (MacCallum, 2003, 
p.115). Beyond simple acknowledgment of imperfection 
of statistical models, Tucker and Lewis (1973) proposed a 
practical index for factor analysis and structural equation 
models. Specifically, TLI evaluates the incremental 
improvement in fit of a given substantive model over that of 
a null model, which corresponds to one of the worst possible 
representations of the data (Widaman & Thompson, 2003). 
To quantify the degree of improvement, the substantive 
model’s incremental improvement in fit is compared against 
that of an ideal model in the form of a ratio.

We follow the same principle and propose a TLI for 
evaluating incremental model fit in IRT. As in factor analysis 
and structural equation modeling (SEM), a zero-factor or 
complete-independence model can serve as the null model. 
This choice of the null model is of course not without its own 
fair share of controversies, as is true of many discussions in 
model fit assessment. Widaman and Thompson (2003) were 
among the first to raise general concerns about the choice of 
the null model in incremental fit assessment. A “no common 
factor” null model is a useful starting point for discussions 
about the TLIRT because it is strongly tied to latent 
dimensionality specification. The complete-independence 
model is a plausible but not the only plausible model. In the 
case of testing a sequence of progressively constrained models, 
e.g., the difference between the fit of a 2PL IRT model and 
a Rasch model, the most constrained model may well serve 
as a more viable null model, provided that the test statistic 
chosen as the basis of TLIRT has sufficient power to discern 
the differences in fit. If, on the other hand, the main interest is 
on dimensionality specification, which often precedes more 
detailed work on item model fit, the zero-factor null model 
offers some important insights that should be examined first.

Instead of X2 or G2 statistics, we propose to use M2-type 
statistics to take advantage of the more superior chi-square 
approximation. Specifically, the Tuker-Lewis Index for IRT 
models, termed TLIRT hereafter can be computed as

where �2
0
 and �2

m
 represents the observed values of M2 for 

the null model and the substantive model being evaluated, 
respectively. The ��0 and ��m represents their respective 

(11)TLIRT =
�2
0
∕��0 − �2

m
∕��m

�2
0
∕��0 − 1

,

degrees of freedom. The chi-square to degrees of freedom 
ratios provide the per-degree-of-freedom lack of fit and one 
can see that they estimate the ratios in the population defini-
tion. For the null model, the ratio is expected to be large. For 
an ideal model that fits well, the ratio is expected to be one. 
Therefore, the numerator represents the substantive model’s 
incremental fit improvement over the null model and the 
denominator represents the ideal model’s improvement over 
the null. We note that the sample value of TLIRT may be 
outside of the (0,1) interval but a higher value is generally 
indicative of better model fit.

Simulation Study

A simulation study was conducted to evaluate the perfor-
mance of TLIRT. Specifically, we investigate how TLIRT 
based on the M2 family of fit statistics behaves for unidimen-
sional IRT model under correct dimensionality specifica-
tion and misspecification. We examine the effectiveness of 
conventional TLI cutoff values for IRT models. Four sample 
sizes ( N = 500, 1000, 2500, 5000 ) and two conditions for the 
number of categories per item ( K = 2, 5 ) were considered. 
The length of the simulated test is 30 items.

The generating item model is the GRM. In order to 
systematically vary the item location and discrimination 
parameters, we adopted an alternative parameterization of 
the item intercepts akin to Muraki’s (1990) rating scale for-
mulation. Recall in the case of unidimensional IRT, where 
� is a scalar, the linear predictor in the graded model may 
be equivalently expressed as �ik + �i� = �i(� − bi + dk) , 
where bi is an overall location parameter for the item, and 
the set of deviation (step) parameters dk describe category 
boundaries. For identification the sum of dk ’s should be 0. 
In the case of K = 2 , the step term vanishes. It is clear that 
�ik = −�i(bi − dk) = −�ibik , where bik = bi − dk is the tradi-
tional graded difficulty parameter.

The location and step parameterization is easier to systemati-
cally manipulate and allows us to cover plausible regions of the 
parameter space more easily. In our study, we first considered 
three different realistic values for the slope parameter: 1.0, 1.5, 
and 2.0. Next, we chose realistic values for the overall item 
location parameter ranging from -1.0 to 1.0 with equal spac-
ing of 0.5. We then matched each slope parameter with every 
item location parameter such that poorly and highly discrimi-
nating items are matched with all types of item difficulty. We 
then chose a set of step parameters that are roughly equally 
spaced within an item: for K = 5 , the step parameters are 
(1.2, 0.4,−0.4,−1.2) . This creates the parameter values for the 
first 15 items (items 1 - 15). We duplicated the same parameter 
values for the remaining 15 items (items 16 - 30). The generat-
ing parameter values are displayed in Table 1.
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To simulate model misspecification, we allowed minor 
degrees of misspecification in terms of unmodeled dimen-
sions. The data generating model is a 2-dimensional model 
with independent cluster factor pattern, but the fitted model 
is unidimensional. For the generating model, the first 15 
items load on the first dimension and the remainder load on 
the second factor. The latent correlation between the two 
dimensions is .8, which is a high value but it does not imply 
that the dimensions are the same. Note that we consider such 
a factor structure to investigate whether TLIRT is capable of 
detecting the misspecification, which is routinely needed in 
operational and research settings.

To home in on the viability of conventional TLI cutoff 
values, a more realistic data generating condition was also 
investigated. Specifically, the Tucker et al. (1969) procedure 
was applied to introduce model error. Tucker et al. (1969) 
described three types of latent variables in a factor analytic 
framework: major domain factors, minor factors, and unique 
factors. They explicitly postulated that minor factors may 
influence more than one observed variables and introduce 
extra correlations among the observed variables that cannot 
be parsimoniously accounted for by the inclusion of major 
domain factors alone.

The TKL procedure has been used in settings such as 
common factor analysis (e.g., MacCallum & Tucker, 1991) 
and multidimensional IRT (e.g., Cai & Hansen, 2013). 
Using the relationship between categorical factor analysis 
model and item response model (Wirth & Edwards, 2007), 
the procedure begins with the transformation of the gen-
erating slope parameters to factor loadings. In the current 
implementation of the TKL procedure, the factor load-
ings for the minor factors are generated randomly with 

a mean of 0 but has progressively decreasing variability 
such that successive columns for the minor factor load-
ing matrix have standard deviations equal to 80% of the 
preceding columns. It is followed by a scaling procedure 
so that each item’s variance becomes unity. The minor 
factor loadings generated in this manner introduce a more 
pervasive kind of model error due to unmodeled dimen-
sionality that cannot be parsimoniously represented by 
any conventional IRT model. After the TKL procedure is 
performed, the factor loadings for major and minor factors 
are transformed back to the corresponding slope param-
eters. Here, we specified 2 major domain factors (i.e., a 
2-dimensional model) with 50 minor factors. Thus a total 
of 52 slope parameters were generated for each item. The 
degree of contribution from the minor factors to the total 
variance was set to 10%, reflecting a moderate degree of 
model error that can be found with real data.

To summarize, we have three data generating models 
in the simulation study: 1) the Null condition, where the 
generating model is unidimensional, 2) Misspecification 
I, where the generating model is a substantially (.80) cor-
related 2-dimensional model, and 3) Misspecification II, 
where the generating model has 2 major domain factors 
and 50 minor factors introduced by the TKL procedure. 
The fitted model remains unidimensional throughout. The 
total number of replications in each condition was set to 
500. We used the R software (R Core Team, 2017) for data 
generation and flexMIRT® (Cai, 2015) for model fitting. 
The M2 statistic values were collected from the software 
package flexMIRT® (Cai, 2015) output. We tabulated 
the TLI values and their confidence intervals. We also 
obtained RMSEA values to serve as a point of reference.

Table 1   Generating Parameter 
Values

K = 2 K = 5

Items �
i

b
i1

d
1

d
2

d
3

d
4

b
i1

b
i2

b
i3

b
i4

1, 16 1.0 -1.0 1.2 0.4 -0.4 -1.2 -2.2 -1.4 -0.6 0.2
2, 17 1.5 -1.0 1.2 0.4 -0.4 -1.2 -2.2 -1.4 -0.6 0.2
3, 18 2.0 -1.0 1.2 0.4 -0.4 -1.2 -2.2 -1.4 -0.6 0.2
4, 19 1.0 -0.5 1.2 0.4 -0.4 -1.2 -1.7 -0.9 -0.1 0.7
5, 20 1.5 -0.5 1.2 0.4 -0.4 -1.2 -1.7 -0.9 -0.1 0.7
6, 21 2.0 -0.5 1.2 0.4 -0.4 -1.2 -1.7 -0.9 -0.1 0.7
7, 22 1.0 0.0 1.2 0.4 -0.4 -1.2 -1.2 -0.4 0.4 1.2
8, 23 1.5 0.0 1.2 0.4 -0.4 -1.2 -1.2 -0.4 0.4 1.2
9, 24 2.0 0.0 1.2 0.4 -0.4 -1.2 -1.2 -0.4 0.4 1.2
10, 25 1.0 0.5 1.2 0.4 -0.4 -1.2 -0.7 0.1 0.9 1.7
11, 26 1.5 0.5 1.2 0.4 -0.4 -1.2 -0.7 0.1 0.9 1.7
12, 27 2.0 0.5 1.2 0.4 -0.4 -1.2 -0.7 0.1 0.9 1.7
13, 28 1.0 1.0 1.2 0.4 -0.4 -1.2 -0.2 0.6 1.4 2.2
14, 29 1.5 1.0 1.2 0.4 -0.4 -1.2 -0.2 0.6 1.4 2.2
15, 30 2.0 1.0 1.2 0.4 -0.4 -1.2 -0.2 0.6 1.4 2.2
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Results Under the Null Condition

Table 2 presents the means, variances, empirical rejection 
rates at .01, .05 and .10 alpha levels of, as well as the means 
and empirical 90% confidence intervals of RMSEA and 
TLIRT, under the null condition for M2 . Under our simula-
tion design, M2 seems to be well behaved. It approximately 
follow the purported chi-square distribution, and the empiri-
cal rejection rates closely match the nominal levels. In addi-
tion, there appears to be no appreciable difference across the 
number of categories and sample size. For all conditions, 
the mean RMSEA values are small, ranging from .000 to 
.005, and the mean TLIRT value is consistently equal to 
1.000. This is as expected. RMSEA indicates that the popu-
lation non-centrality is at or close to zero, and the TLIRT 
indicates the the model is at or close to ideal fit. One should 
only interpret this as a confirmation of our statistical theory 
and implementation because the empirical data are never 
this clean.

Results Under Misspecification

Next, we present in Tables 3 and 4 the results under model 
misspecification using a similar format as Table 2. Recall 

that Misspecification I and II both represent dimensionality 
misspecifications. The latter condition has an extra layer of 
model error introduced with the TKL procedure.

The results of Misspecification I and Misspecification II 
are comparable. The empirical rejections rates are 1.0 across 
all conditions, which suggests that M2 is very powerful in 
detecting even mild dimensionality misspecification. This 
is consistent with findings from the literature. The TLIRT 
values range from .961 to .977 under Misspecification I and 
.962 to .973 under Misspecification II. We will shortly fur-
ther examine whether this affects the choice of TLIRT cutoff 
values.

Our major concern is the performance of TLIRT, par-
ticularly in comparison to RMSEA. As expected from prior 
research (e.g., Cai & Hansen, 2013; Maydeu-Olivares & 
Joe, 2014; Monroe & Cai, 2015), RMSEA values vary with 
the number of categories in both misspecification conditions. 
Specifically, the mean RMSEA values is significantly lower 
for K = 5 than for K = 2 . The values range from .012 to .020 
for K = 5 and from .036 to .040 for K = 2 . The noncentral-
ity parameter, key to the computation of RMSEA, appears 
to increase more slowly with the increase in the number of 
categories. Turning to TLIRT, it appears that under Mis-
specification I, the number of categories made barely if 

Table 2   Simulation Results: 
The Null Condition

K: number of categories; N: sample size; When K = 2 , degrees-of-freedom is 405. When K = 5 , degrees-
of-freedom is 6930

M
2

Rejection Rates RMSEA TLIRT

K N Mean Var .01 .05 .1 Mean 90% CI Mean 90% CI

2 500 405.9 865.77 .012 .072 .114 .005 (.000, .020) 1.000 (1.00, 1.00)
1000 406.4 804.299 .020 .052 .092 .004 (.000, .010) 1.000 (1.00, 1.00)
2500 403.5 765.629 .006 .032 .074 .002 (.000, .010) 1.000 (1.00, 1.00)
5000 404.5 807.042 .012 .048 .102 .000 (.000, .000) 1.000 (1.00, 1.00)

5 500 6942.1 15307.4 .024 .068 .132 .003 (.000, .010) 1.000 (.99, 1.01)
1000 6936.9 13418.9 .014 .056 .090 .001 (.000, .010) 1.000 (.99, 1.00)
2500 6930.3 13116.9 .012 .036 .090 .000 (.000, .000) 1.000 (1.00, 1.00)
5000 6928.2 15711.0 .010 .054 .114 .000 (.000, .000) 1.000 (1.00, 1.00)

Table 3   Simulation Results: 
Model Misspecification I

K: number of categories; N: sample size

M
2

Rejection Rates RMSEA TLIRT

K N df Mean 0.01 0.05 0.1 Mean 90% CI Mean 90% CI

2 500 405 699.1 1.00 1.00 1.00 .038 (.030, .040) .968 (.96, .98)
1000 405 926.0 1.00 1.00 1.00 .036 (.030, .040) .977 (.97, .98)
2500 405 1732.3 1.00 1.00 1.00 .038 (.030, .040) .975 (.97, .98)
5000 405 3024.7 1.00 1.00 1.00 .038 (.030, .040) .974 (.97, .98)

5 500 6930 7779.8 1.00 1.00 1.00 .017 (.010, .020) .961 (.95, .97)
1000 6930 8356.7 1.00 1.00 1.00 .013 (.010, .020) .973 (.97, .98)
2500 6930 10609 1.00 1.00 1.00 .012 (.010, .020) .970 (.97, .97)
5000 6930 14334 1.00 1.00 1.00 .012 (.010, .010) .970 (.97, .97)
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any difference. For Misspecification II, the overall value of 
TLIRT decreased only slightly (in the second decimal), with 
largely comparable confidence intervals whether K is 2 or 5.

Finally, we calculated the rejection rates for the two 
misspecified models at different levels of TLI cutoff val-
ues. Table 5 displays the rejection rates under TLIRT=.96, 
.97, .98 and .99 for Misspecification I and Misspecifiaiton 
II. With a cutoff value of .96, the misspecified models 
were rarely rejected, ranging from 0% to 19.4% but mostly 
0%. With a cutoff value of .97, TLIRT rejected 27.6% and 
69.8% misspecified model I for K = 2 and K = 5 , respec-
tively when N = 500 . With the same cutoff value, TLIRT 
rejected 40.6% to 78.2% misspecified model II for K = 5 . 
With a cutoff value of .98, TLIRT rejected 34.6% to 85.4% 

and 65.8% to 100% of the misspecified model I for K = 2 
and K = 5 , respectively, and 67.2% to 98.8% and 91.8% to 
100% of the misspecified model II for K = 2 and K = 5 , 
respectively. Clearly, higher rejection rates were observed 
for K = 5 . With a cutoff value of .99, we observe that both 
misspecified models were rejected at about 100%.

The simulation study finds that the proposed TLIRT 
index tends to be somewhat higher than what is typically 
observed for standard linear covariance structure mode-
ling. Consequently, reasonable cutoff values may be well 
above the conventional cutoff point employed in the fac-
tor analysis literature (Hu & Bentler, 1999). Overall, we 
conjecture that a reasonable cutoff should be above .97, 
but more research is clearly needed.

Table 4   Simulation Results: 
Model Misspecification II

K: number of categories; N: sample size

M
2

Rejection Rates RMSEA TLIRT

K N df Mean 0.01 0.05 0.1 Mean 90% CI Mean 90% CI

2 500 405 695.4 1.00 1.00 1.00 .038 (.030, .040) .972 (.97, .98)
1000 405 1012.3 1.00 1.00 1.00 .039 (.030, .040) .973 (.97, .98)
2500 405 1934.5 1.00 1.00 1.00 .040 (.040, .040) .970 (.97, .97)
5000 405 3490.2 1.00 1.00 1.00 .040 (.040, .040) .970 (.97, .97)

5 500 6930 7751.2 1.00 1.00 1.00 .016 (.010, .020) .966 (.96, .98)
1000 6930 8613.9 1.00 1.00 1.00 .017 (.010, .020) .965 (.96, .97)
2500 6930 11012.6 1.00 1.00 1.00 .018 (.010, .020) .965 (.96, .97)
5000 6930 15815.2 1.00 1.00 1.00 .020 (.020, .020) .962 (.96, .97)

Table 5   Simulation Results: 
Rejection Rates (%) at Cutoff 
Values

K: number of categories; N: sample size

Cutoff value

K N .96 .97 .98 .99

Misspecification I 2 500 3.6 27.6 85.4 99.4
1000 0.0 0.0 34.6 99.6
2500 0.0 0.0 47.6 100.0
5000 0.0 0.0 61.4 100.0

5 500 19.4 69.8 96.2 100.0
1000 0.0 2.0 65.8 100.0
2500 0.0 1.8 99.2 100.0
5000 0.0 0.8 100.0 100.0

Misspecification II 2 500 0.2 11.4 67.2 99.2
1000 0.0 2.6 70.8 100.0
2500 0.0 1.2 96.0 100.0
5000 0.0 0.0 98.8 100.0

5 500 4.2 42.8 91.8 100.0
1000 1.0 48.6 99.6 100.0
2500 0.0 40.6 100.0 100.0
5000 0.0 78.2 100.0 100.0
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Empirical Example

In this section, we compare the proposed TLIRT index 
based on the M2 statistic from FIML estimation, and the 
much more familiar TLI based on robust test statistics 
from more conventional limited-information estimation 
procedurs, i.e., diagonally weighted least square (DWLS) 
and unweighted least square (ULS) implemented in struc-
tural equation modeling. Specifically, the test statistics 
with first- and second-order corrections using a scale-shift 
approach (Asparouhov & Muthem, 2010) were used. Note 
that TLI or RMSEA values using the limited-information 
method are easily obtained from existing SEM soft-
ware packages. We used the lavaan package in (R Core 
Team, 2017) to fit the model and compute the fit indices 
using limited-information methods.

This empirical data came from the Patient-Reported 
Outcomes Measurement Information System (PROMIS). 
Specifically, we utilized data from the PROMIS Smoking 
Initiative (Edelen et al., 2012), a measurement develop-
ment and validation project in the context of smoking ces-
sation research. A total of 277 smoking items were admin-
istered to a sample of daily and non-daily smokers. Before 
one can begin to provide scores on constructs measured by 
these items or use the item bank for computerized adap-
tive tests, exploration and confirmation of the underlying 
dimensionality of the item pool is necessary. To minimize 
respondent burden, blocks of items were constructed so 
that each respondent was administered two blocks ran-
domly (see Edelen et al., 2012; Hansen et al., 2014). This 
creates a planned missing completely at random design. 
The item ratings were on a 5-point ordinal scale (e.g., not 
at all, a little bit, somewhat, quite a bit, very much). Based 
on statistical analysis and content review, researchers 
concluded that six major domains were present: nicotine 
dependence, coping expectancies, emotional and sensory 
expectancies, health expectancies, psychosocial expec-
tancies, and social motivations. Example items for each 
domain are presented in Table 6.

Here we only used data from daily smokers ( N = 4, 201 ) 
and randomly selected 5 items from the 6 domains, yield-
ing 30 items in total. We down-sampled items because 

we would not want to overburden the limited-information 
methods. As Wirth and Edwards (2007) noted, limited-
information methods tend to work well when the number 
of items is not large. The data set comes with a substantial 
amount of missing data due to design. The fitted model 
is a bifactor/testlet multidimensional IRT model having 
one general factor and 6 domain-specific factors. Within-
item proportionality constraints representing testlets were 
specified. We obtained M2 from flexMIRT ® (Cai, 2015), 
which is 5544.30 ( df = 6924, p < 0.001 ), and the RMSEA 
based on M2 is .00 with a 90% confidence interval of [0, 
.003] and the TLIRT value is 1.00. The RMSEA and 
TLIRT values suggest the model fits the data well. We are 
not surprised by this finding because it confirms a sub-
stantial amount of results and analyses reported earlier 
(see, e.g., Hansen et al., 2014) about the dimensionality 
structure of this instrument.

However, the corresponding indices using the limited-
information method could not be obtained from the lavaan 
package with the default setting (listwise deletion). This is 
because we are left with no observations, if limited-information 
estimation coupled with listwise deletion is employed, due to 
the presence of missing values in every variable due to the 
planned missing data design. When pairwise deletion was 
used, TDWLS = 8137.86 ( df = 405, p < .001 ), and the RMSEA 
is .072 with a 90% confidence interval of [.071, .073] while 
the reported TLI value is .707. In addition, TULS = 6816.11 
( df = 405, p < 0.001 ), and the RMSEA is .061 with a 90% 
confidence interval of [.060, .063], with a corresponding 
TLI value of .602. Note that TDWLS and TULS are the robust 
test statistics with the first- and second-order corrections 
computed from DWLS and ULS estimates, respectively. The 
result may be surprising because it seems to be inconsistent 
with the IRT-based results reported earlier. Here, we should 
remind ourselves of Enders and Bandalos (2001) comments 
on potentially erroneous statistical inference from pairwise 
deletion under missing data.

In case one wonders about the unique nature of planned 
missing data. We now use a subset of data from the same 
study that do not contain any missing values. This enables 
the comparison of TLI values from an analogous categori-
cal factor analysis using the limited information method to 

Table 6   Examples Items for 
PROMIS Smoking Initiative

Construct Example Items

Nicotine Dependence My desire to smoke seems overpowering.
Coping Expectancies I rely on smoking to deal with stress.
Emotional and Sensory Expectancies I enjoy the steps I take to light up a cigarette.
Health Expectancies Smoking is taking years off my life.
Psychosocial Expectancies I feel embarrassed when I smoke.
Social Motivations I enjoy the social aspect of smoking with other smokers.
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TLIRT. There are 12 items in the PROMIS smoking study 
that attempt to measure positive consequences of nicotine 
(PCN; see Table 7). The total sample size is N = 2, 717 for 
this subset.

Items 1-3 and 10-12 represent an arousal aspect of smok-
ing, and items 4-9 imply a calming aspect of smoking, and 
hence a two-factor structure may be plausible. Accordingly, 
we fitted a GRM with 2 correlated factors to the data. The 
test statistics and their RMSEA and TLIRT values from 
flexMIRT and the lavaan package are presented in Table 8.

Similar TLIRT values were observed, with the values 
from M2 , TDWLS and TULS being .92, .94, and .91, respec-
tively. Interestingly, the value from M2 lies between values 
from the two limited-information methods. Using the cut-
off suggested in our simulation study, all values are below 
.97, and hence the model does not provide a good fit to the 
data. The qualitative conclusions based on TLI do not differ 
regardless of whether full or limited-information methods 
were employed.

On the other hand, the RMSEA computed from M2 differs 
considerably from those based on TDWLS or TULS . RMSEA 
derived from M2 is .05 with a 90% confidence interval of 
[.049, .051], and those from TDWLS and TULS are .16 with a 
90% confidence interval of [.154, .163] and .15 with a 90% 
confidence interval of [.147, .155], respectively. If we follow 
the standard guidelines for interpreting RMSEA in factor 
analysis or SEM (Browne & Cudeck, 1993), we come to the 

conclusion of either “close fit,” if we use the RMSEA based 
on M2 , or “unacceptable fit,” if we use RMSEA based on 
TDWLS and TULS . Of course, existing literature on IRT-based 
RMSEA with categorical data (e.g., Maydeu-Olivares & 
Joe, 2014) already indicates that a potentially different (and 
likely more stringent) cutoff value may be warranted, so the 
qualitative conclusions about the lack of model fit might be 
similar in this case. The difference in RMSEA magnitude 
across FIML and limited-information estimation methods, 
however, is noticeable.

Up to this point, M2 , and its derived RMSEA provide the 
main indices for gauging IRT model fit under FIML estima-
tion. The proposed TLIRT and our preliminary investiga-
tions indicate that TLIRT offers added information about 
an important aspect of model fit. With this new knowledge, 
we conclude that the two-factor GRM does not fit the data 
adequately.

Discussions

We introduced a new comparative model fit index for IRT 
modeling, the TLIRT. The proposed index is based on FIML 
estimation, followed by limited-information goodness-of-fit 
testing. Both approaches have become routine in the IRT 
literature. FIML is often more desirable, especially with 
the complexities of real research design in educational 
and psychological measurement, such as when planned 
missing data are present or more sophisticated item models 
may be required. When both limited-information and full-
information methods may be applicable, our newly proposed 
TLIRT index appear to perform similarly as statistics from 
limited-information methods.

Our simulations showed that a more stringent cutoff cri-
terion than the conventional TLI cutoff in linear mean and 
covariance structure modeling should be applied for categor-
ical data. We generated minor but noticeable and substan-
tively meaningful model misspecifications. We noted that a 
TLIRT value of around .97 to .98 seems to be a reasonable 
range insofar as general guidance on cutoff values may be 
needed. It should be noted, however, we strongly recom-
mend against using the suggested cutoff criterion as a one-
size-fits-all rule. It is only useful to the extent that the type of 
misspecification is consistent with the assumption made in 
the simulation, i.e., mild dimensionality misspecification. To 

Table 7   Item Stems for PCN Items

Item Stem

1. Smoking helps me concentrate.
2. Smoking helps me think more clearly.
3. Smoking helps me stay focused.
4. Smoking makes me feel better in social situations.
5. Smoking makes me feel more self-confident with others.
6. Smoking helps me feel more relaxed when I’m with other 

people.
7. Smoking helps me deal with anxiety.
8. Smoking calms me down.
9. If I’m feeling irritable, a cigarette will help me relax.
10. Smoking a cigarette energizes me.
11. Smoking makes me feel less tired.
12. Smoking perks me up.

Table 8   TLI for PCN items 
from various statistics

Statistic RMSEA TLIRT

Test statistic Value df p Value 90% CI Value

M
2

7800.17 1031 < .001 .05 (.049, .051) .92
T
DWLS

3665.30 53 < .001 .16 (.154, .163) .94
T
ULS

3328.79 53 < .001 .15 (.147, .155) .91
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understand and interpreting the TLIRT well, more research 
is needed. For instance, confidence interval for TLIRT could 
be derived and it may provide additional information to 
researchers.

In addition to the type of misspecification, we see that the 
number of categories and the type of statistics may require 
further examination. Our speculation is that the TLIRT 
does not depend so heavily on the number of categories and 
model size (largely driven by test length) as the RMSEA 
because it avoids the complicated interactions between non-
centrality and degrees of freedom. This positive aspect of 
the TLIRT should be further investigated in future research. 
The sensitivity to the choice of limited-information model 
fit statistics such as Cai and Hansen (2013) and Monroe and 
Cai (2015) is another possibly avenue of future research. 
We also recommend a “two-index presentation strategy” as 
noted by Hu and Bentler (1999) and among others.

Another commonly used model fit index in the context of 
factor analysis and SEM is the comparative fit index (CFI; 
Bentler, 1990). Its adaptation to IRT modeling is certainly 
possible. However, we opted for TLI since it was formulated 
with a strong correction for model complexity stemming 
from its “mean-square” approach. On the other hand, CFI 
does little correction or adjustment for model complexity 
because it is based on a “sums-of-squares” metric. It is 
speculated that the interpretation of the IRT version of CFI 
would not be the same as the CFI in SEM, akin to TLIRT. 
Nevertheless, its exact behavior needs to be studied further 
as the theory behind the two indices are different.

In sum, initial evidence leads us to believe that TLIRT is 
a promising index to aid the evaluation of IRT models. As 
a final remark, Widaman and Thompson’s (2003) general 
concern about the choice of the null model in incremental fit 
indices are still valid in future discussions of TLIRT. Much 
is still incumbent on the researcher to articulate what rep-
resents a plausible worst-case model in any given measure-
ment situation. Some interesting special cases may have to 
be developed for multiple-group IRT models widely used in 
scale alignment and differential item functioning research. 
The research reported here may be one small step toward 
better IRT model appraisal in prevention science.
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