
Article https://doi.org/10.1038/s41467-023-37980-1

Complex computation from developmental
priors

Dániel L. Barabási 1 , Taliesin Beynon2, ÁdámKatona3 &Nicolas Perez-Nieves4

Machine learning (ML) models have long overlooked innateness: how strong
pressures for survival lead to the encoding of complex behaviors in the nas-
cent wiring of a brain. Here, we derive a neurodevelopmental encoding of
artificial neural networks that considers the weight matrix of a neural network
to be emergent fromwell-studied rules of neuronal compatibility. Rather than
updating the network’s weights directly, we improve task fitness by updating
the neurons’ wiring rules, thereby mirroring evolutionary selection on brain
development. We find that our model (1) provides sufficient representational
power for high accuracy onMLbenchmarkswhile also compressing parameter
count, and (2) can act as a regularizer, selecting simple circuits that provide
stable and adaptive performance on metalearning tasks. In summary, by
introducing neurodevelopmental considerations into ML frameworks, we not
only model the emergence of innate behaviors, but also define a discovery
process for structures that promote complex computations.

The diversity and specificity of animal behaviors, as well as their neural
correlates, has received attention from diverse areas of study1.
Recently, machine learning has provided key insights into the
mechanics of solving complex behaviors2,3. However, AI frameworks
do not capture the emergence of innate behaviors, as conventional
models require extensive update rules and training examples to
achieve desired fitness on a task4,5. Nevertheless, a number of complex
tasks seem to be hard-coded into the development of the nervous
system, such as mice responding to looming stimuli6, hatched turtles
heading out to sea, or humans recognizing face-like objects in the
womb7,8. In cases where evolutionary pressures for survival outweigh
learning, wiring embeddings evolve in order to encode crucial beha-
viors into the nascent connectome4. The brain’s innate solutions have
long inspired AI techniques9, from convolutional neural networks to
reinforcement learning, yet neuroevolutionary innovation has not
been successfully recapitulated for the systematic discovery of pow-
erful architectures.

In order to reproduce the selection process behind innate beha-
viors, we must first confront the mystery of the “genomic bottleneck”:
development’s uncanny ability to unpack a genome in order to pro-
duce specific, task-relevant neural circuits4,10. The genomic bottleneck
has been tangentially explored through networks with learned

architectures but random weights11, and by the artificial life commu-
nity, such as through compositional pattern-producing networks
(CPPNs), which model mechanisms in early development and mor-
phogenesis to encode neuronal networks12–16. However, these
approaches tend to focus on general mechanisms of development,
rather than considering mechanisms specific to the genetic wiring of
neuronal circuits17. Here, we utilize the Genetic Connectome Model
(GCM), which provides a network formalization for how interactions
between expressed proteins seed synapse formation18,19, to incorpo-
rate neurodevelopmental priors into machine learning architectures.
The Genetic Connectome Model has previously predicted the wiring
rules that code for the C. elegans gap junction connectome19, and
similar formulations have been used to infer synaptic interaction rules
in C. elegans20 and Drosophila21, providing mechanistic support to the
GCM’s quantitative formulation. Additionally, the GCM has been
shown to promote structured connectivity, including feed-forward
and scale-free networks, illustrating the constructive potential of the
encoding22.

In this manuscript, we explore whether neural recognition rules
provide sufficient representational power to encode circuits capable
of complex computations. We begin by considering neural network
weights to be emergent from the well documented neuronal

Received: 4 November 2022

Accepted: 7 April 2023

Check for updates

1Biophysics Program, Harvard University, Cambridge, MA, USA. 2Wolfram Physics Project, Cape Town, South Africa. 3Electrical and Electronic Engineering,
Imperial College London, London, UK. 4Department of Computer Science, University of York, York, UK. e-mail: danielbarabasi@gmail.com

Nature Communications | (2023) 14:2226 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6015-7534
http://orcid.org/0000-0001-6015-7534
http://orcid.org/0000-0001-6015-7534
http://orcid.org/0000-0001-6015-7534
http://orcid.org/0000-0001-6015-7534
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37980-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37980-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37980-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37980-1&domain=pdf
mailto:danielbarabasi@gmail.com

recognition rules formalized in the Genetic Connectome Model18,19.
Rather than refining weights directly, we improve fitness on our
“behaviors” of standardmachine learning tasks by updating the wiring
rules that generate the Artificial Neural Networks’ (ANN) weights,
thereby modeling selection on evolutionary timescales10. In this for-
mulation, the resulting neuronal wiring rules can generate an ANN
capable of “innately” performing that behavior, without any additional
direct weight updates. Thus, by mapping the genetic material passed
on in evolution to individualfitness on a task, we provide amechanistic
model for the evolution of innate behaviors. When we test this model
on categorization benchmarks, we find that our developmentally-
inspired priors allow for representations robust enough for bothmeta-
and transfer learning tasks, a hallmark of complex computation.

Results
Genetic neuroevolution formalism
The processing capabilities of neural systems arise from a mixture of
neuronal partner selection, learning, and random noise. Of these,
neuronal partner selection, consisting of axonal targeting and synaptic
compatibility, can provide sufficient specificity for hardcoded circuits
capable of supporting innate behaviors23,24. The cellular identity of
neurons, as represented by their genetic profile, plays a crucial role in
their preferred projections and synaptic partners. This mapping from

genes to connectivity is formalized in the Genetic ConnectomeModel
(GCM)18,19, which defines the wiring of the brain (W) as a function of
neuronal identity (X) and interactions between genetic factors (O). The
GCM aims to capture a time in a neuron’s development when major
components of cell differentiation, migration and targeting have
already unfolded, and aneuron is in the processof decidingwhichcells
to connect to, on which part of their neurite, and with what strength,
defining a crucial level of specificity for hardwired behaviors. Specifi-
cally, the connectivity of N neurons is described by the adjacency
matrix W of size N ×N, with Wij= 1 if a connection is present between
neurons, and 0 otherwise. Individual neurons are identified by their
expression of G genes, defining a cell-identity matrix X of size N ×G,
where Xia = 1 if neuron i expresses gene a (Fig. 1a, blue to orange links).
Interactions between expressed genes determine the wiring of the
connectome, represented as the G ×G matrix O (Fig. 1a, orange to
orange links). Thus, the developmentally produced connectome can
be formulated as

W=H XOXT
� �

: ð1Þ

where H represents the Heaviside function that produces a binary
connectivity matrix. Previous work used binary values for W, X and O
to provide interpretable results for connectivity, genetic interactions
and expression patterns18,19. In reality, genes (X) have continuous
expression, interactions (O)maybe probabilistic, and connections (W)
vary in size and number. This prompts a relaxation ofW,X, andO toR,
allowing for the three matrices to be continuous and differentiable, a
modification important for calculating gradients in backpropagation.

Based on this extended framework, we propose a Genetic neu-
roEvolution Model (GEM) that utilizes the generative process of
W =XOXT tomove flexibly between a wiring diagram and its encoding
in neural identities (Fig. 1b). We start by taking an architecture known
to be effective on a task, then define the weights of the network using
W = XiOX

T
o (Fig. 1b, downward blue arrows). Here, W corresponds to

the weights of a layer,Xi stands for the genetic expression of the input
neurons, and Xo represents the output neurons’ gene expression. We
begin with untrained Xs and O chosen from a fitting random dis-
tribution.With each training batch,webackpropagate the loss through
the weights (Fig. 1b, red leftward arrow), updating the Xs and O using
gradients calculated by PyTorch’s autograd (Fig. 1b, red upward
arrows). In theory, this results in a newdevelopmental ruleset in theXs
and O, which produces a more fit W in the next task initialization. We
consider this formulation as amodel of the neuroevolutionary process
that underlies the emergence of innate behaviors, where generational
pressures change the neurodevelopmental rules that produce the
nascent wiring of an individual’s neural system until sufficient task
performance is reached at “birth.”

We first aim to test the capacity of the GEM for encoding func-
tional weight matrices. For this experiment, we turn to the MNIST
hand-drawn digit classification task (Fig. 1c), which has well-studied
accuracies for a number of architectures25. We aim to use the GEM to
learn “developmentally initialized”networkweights that havehigh task
performance, without further direct weight updates (“learning”) after
initialization. Additionally, we aim to examine the parameter-accuracy
tradeoff of the GEM encoding, as neurodevelopment works from a
compressed representation of neuronal connectivity, read out from
the genome (i.e. the genomic bottleneck)4,10,18,19. To minimize the
number of free variables (i.e. size and number of hidden layers), we
start by encoding a single-layer perceptron (SLP, a linear classifier)
(Fig. 1d), consisting of 28 × 28 + 10 = 794 nodes (neurons) with 7840
learnable weights (synapses). A single layer neural network with
weights initialized by kaiming uniform26 performs at an accuracy of
10% without any training (“naive”, equivalent to random choice), and
with training it can achieve 93% accuracy (“learned”, dashed line in
Fig. 1c). We aim to encode the weights of this SLP using our GEM

b)

c)

a)

1

2

3

4

5
6

7 8 9

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

parameters

ac
cu
ra
cy

GEM SLP d)

Ni

G G

No

Ni

G G G

G No

Fig. 1 | The genetic neuroEvolution model. a Visualization of the Genetic Con-
nectome Model18,19. Matrices Xi and Xo represent the gene expression of input and
output neurons, respectively. TheOmatrix corresponds to the genetic interactions
that underlie neuronal partner selection. b Traditionally, AI techniques define an
architecture (W), which can receive data as inputs (handwritten digits, left of W),
and produce predictions (digital numbers, right of W). The weights (W) of the
architecture can be updated (leftward red arrow) based on the distance of the
predictions from known values, thereby producing a more accurate system with
training. In the Genetic neuroEvolution Model (GEM), the architecture (W) is pro-
duced froma small set of wiring rules defined byXs andO (downward blue arrows).
At each training step, the data is passed through to make predictions (rightward
blue arrows). However, rather than altering the architecture weights directly, gra-
dients are computed to update Xs and O (upward red arrows). At the next training
step the revised wiring rules generate a revisedW (downward blue arrows). cMean
performance of the GEM on the MNIST task. The accuracy of a single-layer linear
classifier (784 by 10 nodes) is shown, either with learned weights (dashed line) or
weights encoded by theGEM’s wiring rules (blue line, with number of genes labeled
below each marker). Parameters are expressed as a percentage of a learned SLP’s
weights. d Visualization of a learned SLP and an SLP encoded by the GEM in Fig. 1c.
We do not learn Xo, as we find it adds parameters without increasing task
performance.

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 2

approach. Whereas direct training has a constant Ni×No parameters,
where Ni and No are the number of input and output neurons,
respectively, a GEM-encoded SLP’s parameters scale as a function of
the number of genes, G. Specifically, the input and output layer
encodings (Xi and Xo) utilize Ni and No ×G parameters, while the
interaction matrixO has G×G parameters (Fig. 1b, top). This results in
a parameter scaling of P =Ni × G +G ×G+G ×No, or P =G(Ni + No +G),
offering a compression of the weight matrix when few genes are used.
In the case whereXo is a fixed randommatrix, the parameterization of
W =XiOX

T
o resembles a PCAwhere the firstG basis vectors are kept, an

observation that illustrates the representational power of this biolo-
gically inspired encoding (a topic discussed further in the SI)27.

We find that an SLP encoded by the GEM can achieve nearly 25%
accuracy “atbirth”whenneurons “express”only 1 gene (corresponding
to under 10% of the parameters of the full single-layer classifier). The
accuracy increases to above80% forG = 5, corresponding to 50%of the
parameters of a linear classifier. The GEM achieves full 93% accuracy
with 9 genes, or 90% of the baseline parameters. Thus, we find that a
developmentally-motivated model of neuronal wiring provides suffi-
cient representational power formatching the taskperformance of the
classically trained network with fewer parameters, as well as for
achieving high accuracy with a fraction of the original parameters.

Spatial priors on neuroevolution
Thus far, we have used a biologically-motivated model of neuronal
recognition rules to derive an ML model for the emergence of innate
behaviors. Next, we examine how spatial considerations for cell iden-
tity can impact neuroevolutionary search. Although constraining the

system could destabilize learning, we aim to show that complex
computations can be primed by incorporating additional neurodeve-
lopmental inspirations.

Connectivity-defining cell identity (X matrix) has well studied
distributions in space and time17,28–32. Tomodel these observations, we
define a spatial GEM (S-GEM) by placing N neurons on a grid (28 × 28
for an MNIST input layer), and determine a neuron’s gene expression
profile (Xmatrix) by its distance fromG 2-D gaussians with given σ and
µ (Fig. 2a, see Methods and Supplementary Methods for more details
on implementation and modeling assumptions). As training pro-
gresses, we fix the locations of neurons and update the gene dis-
tributions’ σ and µ, thereby learning a spatially constrained X (Fig. 2b).
This leads to a highly compressed encoding, with 3G parameters per
layer (a µx, µy and single σ for each gene), and an interaction matrix O
with G ×G parameters. Thus, an S-GEM encoded SLP has a parameter
scaling of P =G ×G + 3G + 3G, or P =G(G + 6), which presents a sig-
nificant compression compared to P =G(Ni +No +G) for GEM or
P =Ni ×No for standardweight updates. It is interesting to note that the
parameter count does not depend on the number of neurons in the
architecture, as cell identities are emergent from the local gene
expression gradients.

When we use the S-GEM (Fig. 2c right) to encode the SLP from
Fig. 1c, we achieve over 80% accuracy with less than 2% of the total
parameters (Fig. 2c, left). The S-GEM converges towards 93% accuracy
with 10% of total parameters, a point at which the nonspatial GEMonly
performs at 25% accuracy. To better contextualize the performance of
the S-GEM, we turn to the established baseline of a random basis
encoding (RB, Fig. 2c left), which is a measure for the number of free

a) c)

d) b)

A

B

C

A:

B:

C:

0.001% 0.005% 0.010% 0.050% 0.100%
0.0

0.2

0.4

0.6

0.8

1.0

0.1% 1% 10% 100%
0.0

0.2

0.4

0.6

0.8

1.0
GEM S- GEM RB

S- GEM RB

ac
cu

ra
cy

ac
cu

ra
cy

parameters

parameters

Fig. 2 | SpatialGEM. a In the spatial GEM, cell identities are determined by neurons’
distance from 2-D gene expression gaussians. Given two spatial gene distributions,
green and yellow, we have: neuron A with high expression of green and low
expression of yellow, neuron B withmedium expression of both genes, and neuron
C with low expression of green but high expression of yellow. b As learning pro-
gresses, the location (µ) and dispersion (σ) of the gene expression distributions
change from start (green) to finish (red). c Left: Parameter-accuracy tradeoff for
encoding a single layer linear classifier that solves MNIST, where parameters are

expressed as a % of an uncompressed SLP and reported accuracy is a mean over 10
runs. The spatial GEM (S-GEM) model significantly outperforms the GEM frame-
work from Fig. 1c, as well as a random basis (RB) encoding. Right: Visualization of
the RB and S-GEM weight encodings. d Left: Parameter-accuracy tradeoff for
encoding an MLP that solves MNIST, where parameters are expressed as a % of an
uncompressed MLP and reported accuracy is a mean over 10 runs. The multi-layer
S-GEM perform comparatively to a random basis encoding. Right: Visualization of
the MLP and ML-SGEM encoding.

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 3

parameters needed to solve a task to a given accuracy33. Specifically,
the RB model can be expressed as W =RP, where W is the weights of
sizeNi ×No,R is a randommatrix of sizeNi ×B, andP is a learnedmatrix
of size B ×No. Here, B is the number of basis vectors, and thus defines
the representational power and parameter count of the RB encoding.
Such an encoding can be thought of a PCA with a random basis set,
hence the nameof themodel.Wefind that the S-GEMnot onlymatches
the parameter-accuracy tradeoff of the random basis model, but out-
performs it at low parameter counts.

In order to confirm the robustness of the S-GEM encoding, we
extend our validation to multilayer perceptrons (Fig. 2d, right). Doing
so requires refining our model’s assumptions. Given that gene inter-
actions are determined by biophysical rules, and therefore are not
specific to a set of neurons, we choose to learn a singleOmatrix that is
shared by all encoded layers. Further, we assume that neurons have a
single cell identity that determines both their input and output con-
nectivity profiles, thus we learn a single Xmatrix for each hidden unit,
using it to define its pre- and post-synaptic weights. Although neurons
can express different genes in axons and dendrites, we found that
learning separate input and output X matrices for each hidden unit
only increases the number of parameters,without increasing accuracy.
Thus, the total parameters of this spatial GEM scales as P =G ×G + L ×
3G =G(G + 3 L), as we have a single O matrix with G ×G parameters,
and each encoded layer (L) has a learned µx,µy and σ for each gene. As
with the SLP encoding, the MLP parameter count does not scale with
the number of neurons in the architecture, and offers a significant
compression of the P = ΣL

l = 1ðNi ×NoÞl parameters it takes to represent
the emergent multi-layer neural network. Although we currently
restrict neurons to a grid, future work could explore an S-GEM
encodingwhere the locations of neurons are learned, or sampled from
a learned distribution, thereby naturally accommodating the addition
or subtractions of neurons from a layer.

Given this definition of a multi-layer spatial GEM (ML-S-GEM,
Fig. 2d right)weaim toencode anMLPof size 784 × 784 × 10,where the
input and hidden neurons are placed on 28 × 28 grids.We find that the
parameter-accuracy tradeoff continues to match the benchmark of a
random basis encoding, achieving above 90% accuracy with less than
0.1% of the non-encoded MLP’s parameters. To provide another
benchmark for comparison we turned to a less biological “genomic
bottleneck” model10, which utilizes an approach resembling
hypernetworks34 to encode the weight matrix, achieved 79% accuracy
with 1038-fold parameter compression on this architecture, while the
ML-S-GEM achieves above 80% accuracy with roughly 0.025% of the
original MLP parameters, amounting to a 4000-fold compression.
Even for this larger network, ML-GEM trains on average in 97 s, cor-
responding to only a minor computational burden compared to a
standard MLP wall-time of 89 s.

With these successes on SLPs and MLPs, we aimed to encode the
more complex LeNet-5 architecture. To do so, we derived an S-GEM
parameterization of CNNs that has neurons connecting to local pat-
ches (see Methods). Our encoding approach avoids weight sharing,
which is considered non-biological, thus we learn a separate kernel for
each neuron in a convolutional layer, an approach that balloons LeNet-
5’s parameters from61,706 to over 400,000. In this context, we aim to
achieve the performance of a standard LeNet-5 while compressing the
423,038 parameters back to the realm of the original 61,706. We find
that a standard LeNet-5 utilizes 61,706 parameters to achieve
98.95 ± 0.07% (mean ± std) accuracy on MNIST, while at a 2 × com-
pression (29,457 parameters) our S-GEM encoded model performs at
96.7 ± 0.2% accuracy. Despite under-performing on MNIST, we find
that on CIFAR-10 our S-GEM LeNet-5 (52.5 ± 0.6% accuracy) outper-
forms the unencoded version (50.6 ± 0.5% accuracy) when using an
equivalent number of parameters, hinting at the potential that the
S-GEM has for more complex tasks. Note that utilizing an equivalent
number of parameters to the standard LeNet-5 still represents a 7 ×

compression of the non-weight-shared parameters (over 400,000
down to 61,706). In summary, we find that introducing biologically
motivated constraints on cell identity not only retains the repre-
sentational power of neuronal wiring rules, but also provides extreme
compression of the hard-coded circuit.

Having seen GEM and S-GEM perform well on compressing
working solutions to visual tasks, we aimed to understand the unique
representational capacity that the approach provides. We first turned
to observations from past studies which indicated that, during train-
ing, an ANN’s modularity increases initially, plateaus in the middle of
training, then lowers during fine-tuning35. We found these modularity
dynamics in the GEM as well, however for the S-GEM modularity did
not change significantly with training, indicating that the encodings
achieve task performance by refining a set of wiring rules without
significantly changing the underlying architecture (See Supplemental
Methods, Fig. S6) In order to dig deeper, we examined how themodels
represented the characters they aimed to distinguish. Again, we found
similar dynamics in the GEM and direct encodings: both within and
between class distance increases at the start of training, after which
within distance is reduced during finetuning (Fig. S7). In contrast, for
the S-GEM between and within distance increases later, but the
reduction of within distances is less drastic, if present at all, perhaps
indicating that a search for a stable basis is preferred (Fig. S7). This
implication is supported by a number of observations. First, we see
that from the starting point (green circle) the spatial gradients make
large movements early in training, but within a few training steps a
good basis is found, and the Gaussian gene expression centroids only
fine-tune locally (Fig. 2b). The gene gradients end up tiling the space,
especially focusing on central, and informationrich, regions when G is
low (as in Fig. 2b). Next, we visually examined the weights of our
encoding approaches, and found that the standard MLP over-trains,
learning the outlines of specific characters, a shortcoming also
apparent in the random basis encoding and the standard GEM
(Fig. S3–5). However, the spatial constraints of ML-S-GEM lead to a
more general solution, reminiscent of the “approximate” convolu-
tional network architectures observed by others36, which we found
promotes transfer learning (Fig. S2, Supplemental Methods). In sum-
mary, we find that the S-GEM encoding not only presents an extreme
compression of networkweights, but also provides an embedding that
allows for the robust representation of relevant task features, even
past what would be trivially expected from spatial information on a
visual task.

Developmental priming of learning
Thus far we have focused on modeling evolutionary hard-coded
behaviors, where an individual has high fitness at birth. In addition to
the prevalence of hard-coded traits, animals also exhibit devel-
opmentally primed behaviors, where the nascent connectome pro-
motes the acquisition of a complex task. For instance, humans are not
born with the ability to speak, nor are infants’ brains predisposed to
learn only their parents’ native tongue. Rather, during a critical period
children can rapidly acquire languages they are exposed to. This sug-
gests that development has poised the wiring of language areas to
rapidly analyze and distill sound patterns, with local wiring recon-
touring to encode language in the process. In this section, we show
that the GEM can evolve condensed wiring rules whose rolled-out nets
can flexibly, and rapidly, acquire relevant skills.

We begin by considering the meta-learning topic of few-shot
classification37,38 as a model of developmental priming of learning.
Here, rather than reinforcing high fitness on a task at birth, we aim to
select for embeddings that perform well within a few training steps.
Developing fit embeddings in this manner can be considered as a
nested optimization process: an outer “evolution” loop generates a
primed W from X and O while an inner “learning” loop adapts the
wiring to the task at hand (Fig. 3a).

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 4

Specifically, we turn to the 5-way, 1-shot Omniglot benchmark,
which consists of categorizing a library of over 1000 unique characters
from multiple alphabets39. We use the MAML algorithm37,40 to train
linear, feedforwardmodelswith twohidden layers of size 784 (see SI H:
Meta-Learning on Omniglot). We find that the GEM compression can
not only match the performance of a standard MLP (89.5 ± 0.2% best
accuracy over 10 runs, Fig. 3b “Direct”) with a 25× compression
(89.3 ± 0.3%, Fig. 3b “25×”), but can outperform it under a 10× para-
meter compression (90.5 ± 0.4%). We can achieve even higher com-
pression with the S-GEM, however it comes at a slight cost to
performance, with a 500× compression achieving 86.1 ± 0.3%, and a
1000× compression achieving 83.2 ± 0.4% accuracy. In addition to this
competitive accuracy, the GEM and S-GEM encodings do not overfit to
the training data, a major drawback of the standard MLP paradigm
(Fig. 3c). In summary, we find that developmentally primed encodings
can provide accuracy and stability improvements over traditional ML
methods for meta-learning tasks.

Discussion
In this paper we explored a neurodevelopmental encoding for the
evolution of innate behaviors. We began from a model of neuronal
recognition rules, and proposed the Genetic neuroEvolution Model
(GEM) in order to “evolve” a neural network that has high task per-
formance “at birth.” Next, we examined how a spatially constrained
model of cell identity, reminiscent of the distributions of genes
observed at the outcome of cell differentiation, can promote struc-
tured connectivity. When applied to MNIST tasks, we found that
incorporating spatial priors into the GEM led to a more compact
encoding, all while allowing development to prime topographic maps
capable of transfer learning. Finally, we showed how utilizing the GEM

for Omniglot leads to better, and more stable performance when
compared to standard MLPs of equivalent size.

Our work focused on showcasing how simple, but well docu-
mented, developmental phenomena can provide computational ben-
efit. By further integrating neurodevelopmental principles, we expect
that neuroevolutionary models can provide continued insight for
machine learning, just as the visual and cognitive neurosciences have
inspired the revolutionary advances of CNNs and Transformers9,41. For
instance, the current GEM approach does not consider the complex
dynamics of cell identity formation42, which could be captured
through using cellular automata to model the spatial distributions of
genes in the S-GEM43. Another relevant direction lies in non-structured
topologies: while deep neural networks utilize the simplifying
assumption of layers, complex computations in the brain can arise
from more intricate wiring solutions44,45. The computational power of
non-structured neural network architectures have previously been
explored46–49, however the S-GEMcan innovate on existingmethods by
defining a differentiable approach for neural architecture search.

Benefits may also be found by focusing in on the interplay
between the genetic and activity-dependent fine-tuning of neural cir-
cuits. For instance, although the topographic mapping from retina to
superior colliculus (SC) is initially established through the graded
expression of receptors and ligands50,51, the process is aided by inter-
axon competition52 and is refined by spontaneous activity before eye-
opening50,51. Spontaneous activity is also crucial for the alignment of
the topographic maps formed from retina to SC and from SC to V153.
Yet, spontaneous activity may play only a guiding role in circuit for-
mation: experiments in ferrets have shown orientation selectivity
emerges prior to eye-opening, a result which persist even under the
silencing of spontaneous activity54, and ex-vivo preparations, which
lack spontaneous activity, still develop proper subcellular projection
patterns24. These studies suggest that genetic mechanisms play a sig-
nificant role in thematuration of computational circuits. Nevertheless,
wemay take inspiration fromhowanimals growand rewire throughout
their lifetime, both in stereotyped and learning-dependent ways55,
perhaps providing insight on how ANNs can adapt continuously to
changing environments and task loads. In this way, further innovations
at the boundary of neurodevelopment andmachine learning promises
the flexible discovery of powerful inductive biases, such as CNNs and
Transformers, while also demonstrating the representational power of
neuroevolutionary encodings.

Methods
Learning on MNIST
We implemented MNIST training through the PyTorch deep learning
environment. We utilized ADAM with cross entropy loss to train net-
works for a maximum of 30,000 batches of size 64. We tested the
accuracy every 1000 batches, and included early stopping if the
accuracy did not improve by more than 0.005. The accuracy was tes-
ted on a hold-out set of 10,000 digits that were not used for training.
The accuracy numbers reported in the figures and text are the highest
hold-out accuracy that was measured during the training run. Where
multiple training runs were involved in producing a single accuracy
figure, the mean was taken.

The single layer perceptron (SLP) of Fig. 1cwas a single linear layer
with 784 input and 10 output nodes. We trained all MLPs, encoded or
not, with a single 784 hidden layer with ReLU, thereby easily compar-
ing to concurrent models of the genomic bottleneck10. The only
exceptionswere theweights in Fig. S2a, b andFig. S1, forwhichweused
a hidden layer of size 8 × 8 = 64 to allow for easier visualizations.

When training the GEM, we beginwith randomly initializedXi,X0,
and O matrices. For each training batch, we generate the weights of a
layer usingW = XiOX0.We evaluate the cross-entropy loss for the batch
using these weights, with which we evaluate the gradients for the Xs
and O. We discard the current weight matrix, update Xs and O, then

a) b)

c)

Fig. 3 | Meta-Learning with GEM. a Visualization of the Omniglot meta-learning
pipeline. In the outer loop (top) the GEMgenerates an initial network, which is used
for all tasks in the inner loop (“metalearning,” bottom). For each classification task
(Greek, Latin and Hebrew alphabets) a small number of training steps leads to
diverging updates (blue, green and orange weights, respectively). The MAML
algorithm allows for a meta-gradient (red arrows) to be passed back to X and O in
the outer loop, thereby generating a network better suited to all tasks in the next
iteration. b Violin plots of the best test accuracy for variousmodels (n = 10 runs per
model, showing median and quartile range). In order of performance, a 10x GEM
achieves 90.5 ± 0.4% accuracy, a standard MLP (Direct) achieves 89.5 ± 0.2%, a 25x
GEM achieves 89.3 ± 0.3%, a 500x S-GEM achieves 86.1 ± 0.3%, and a 1000x S-GEM
achieves 83.2 ± 0.4% accuracy. c Average accuracy of the models over 50,000
training batches (n = 10 runs, bands show 95% confidence interval). Although the
standard MLP achieves peak performance in fewer batches, it overfits the training
data, decaying in accuracy with further batches. In contrast, both the GEM (10x,
25x) and the S-GEM (500x, 1000x) compressions achieve peak performance later,
but do not suffer overfitting.

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 5

generate a new weight matrix for the next batch. This is a key differ-
ence from the approach of10, which updates theweightmatrix through
multiple batches, then learns by deriving rules that approximate the
updated weights. In addition, while10 alter their parameter count by
changing the size of their “g-network”neural network architecture, our
parameter count is determined by the number of genes expressed by
each neuron. In this way, our parameter count for GEM scales as
P =Ni ×G +G ×G +G ×No =G(Ni +No +G), where Ni and No are the
number of input and output neurons, respectively, and G is the num-
ber of genes expressed by a neuron. This means that when G= 3, each
neuron is described by a vector of length 3, and an SLP canbe encoded
by a total of 2391 parameters, or roughly 30% of the parameters of an
unencoded SLP. At this time we do not include sparsity requirements
for Xs or O, although this could provide relevant for further
investigations.

Learning with S-GEM proceeds similarly to GEM, with weight
generation and developmental rule update in each batch. However,
the identities of neurons are no longer a G-length vector learned
directly by backprop. Rather, we space the input and hidden neurons
evenly on separate 2D grids of size 28 × 28. Then, we initialize G gene
expression gaussians with parameters σ, µx and µy. The gene
expression of a neuron j is calculated as Xj = e−(d/σ)2, where d is the
distance of neuron j from µx and µy. We introduce two regularizations
into this process. First, we add a tanh on the µs, which ensures that we
never have gene expressions that are centered outside of the grid of
neurons. Second, we apply exp to the variances to ensure that the
standard deviations are positive numbers. In each batch we generate
the spatial Xs, which we use to form the W matrix, and based on the
loss update the σs, µs and O, thereby learning a biologically con-
strainedX (Fig. 2b). The total parameters of this spatial GEM scales as
P =G ×G + L × 3G =G(G + 3 L), as we have a single Omatrix with G ×G
parameters, and each encoded layer (L) has a learned µx,µy and σ for
each gene. In all S-GEM instances for MNIST and F-MNIST we do not
use a spatial encoding for the output layer, as there is no meaningful
way to place 10 nodes on a spatial grid, thus we learn an X0 of size 10
directly as inGEM. In the case of Fig. 2, we simply freeze the randomly
generated X0 matrix, as we found learning it only adds additional
parameters without increasing accuracy.

For additional implementation details, we refer the reader to the
GitHub repository linked in the Data and Code Availability section.

Developmental Convolutional Layer
Classical convolutional layers distribute neurons in a 3-dimensional
grid where neurons at the same depth are said to belong to the same
mapanddetect the same feature atdifferent locations. This is achieved
by weight-sharing across all neurons at a given map.

In our developmental convolutional layer, weights are no longer
shared but constructed according to the input and output neurons’
genomic expressions. Each neuron expresses a genomic identity
g(x)∈RG where each component describes the expression level of a
gene over a 3-dimensional parametrization of space x∈R3. For each
gene we have gi(x)/ giðxÞ / 1=ððx � μiÞTσiÞ

2
where µi,σi∈R3 determine

the location and expression intensity of genes i = 1,2,…,G. We also have
a gene interaction matrix O∈RG×G.

To construct the weights for each output neuron we extract the
neural identity of its receptive field which is identical to that of a
classical convolutional layer. That is, it consists of a k × k ×Cin window
where k is the window height and width Cin is the depth of the input
layer. Thus we are left with a matrix Xr∈RG×k2Cin, r = 1,…,R with R being
the total number of receptive fields.

Let Yr∈RCout×G,r = 1,…,R be the neural identities of the output neu-
rons that share the same receptive field (i.e. output neurons at the
same height and width but different depth). Then we can compute the
weights for all output neurons with the same receptive field as
Wr = YrOXr∈ RCout×k2Cin. This operation can be performed efficiently for

all receptive fields by using batched matrix multiplication to finally
obtain the weights W∈RR×Cout×k2Cin.

Note how in a classical convolutional layer the weights would be
shared by all neurons irrespective of their receptive field but here,
neurons on the same map but different locations may have different
weights. Finally, after obtaining the weights, we can compute the
output activations as in a classical convolutional layer but now using a
different weight matrix for each output neuron.

Average pooling layer
The pooling layer is a lot simpler than the Developmental Convolu-
tional Layer. Since we need to propagate activations and neural iden-
tities to the next convolutional layer, each average pooling layer
consists of two parallel pooling layers, the first one pooling the acti-
vations and the second one pooling the neural identities of the
previous layer.

Training LeNet-5
We implemented MNIST training through the PyTorch deep learning
environment. We utilized ADAM with cross entropy loss to train net-
works for a maximum of 200 epochs broken into batches of 128 ima-
ges.We tested the accuracy every epoch. Wheremultiple training runs
were involved in producing a single accuracy figure, the mean was
taken. For the 2 × compressed S-GEM LeNet-5, we utilized 150 genes
per convolutional layer and 30 genes for the linear layer encodings.

Similarly, CIFAR-10 was trained over 200 epochs with 128 images
in a batch. For the S-GEM LeNet-5, we utilized 229 genes per con-
volutional layer and 30 genes for the linear layer encodings. No addi-
tional regularizations or data augmentations were utilized in both
MNIST and CIFAR-10.

Meta-learning on omniglot
We implemented Omniglot training through the PyTorch deep learn-
ing environment. The Omniglot dataset consists of 1623 character
classes total from 50 alphabets, of which 1200 classes were used for
training, and the rest were reserved for testing37. We performed 5-way,
1-shot Omniglot with 2 inner update steps. We utilized ADAM with
cross entropy loss and learning rate of 10−3 to train networks for a
maximum of 50,000 batches of size 32. We learned a unique learning
rate for each named parameter, allowing for more specific fine-tuning
as training progressed40. We tested the accuracy on a hold-out set
every 250 batches, averaging over 10 batches of size 64. The accuracy
numbers reported in the figures and text were taken as the mean and
accuracy of the highest hold-out accuracy measured in 10 individual
training runs.

All trained architectures consisted of a 784 node input layer, two
hidden layers of size 784, and an output layer of size 5, with ReLUs
interspersed. For the GEM and S-GEM,we learned a singleOmatrix for
all layers, but a unique X for each layer. The 10 ×GEM compression
corresponded to 50 genes per node, and the 25 ×GEM used 20 genes
per node for the X matrices. The 500 × and 1000 × S-GEM encodings
had 43 and 28 spatial genes per layer, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new datasets were generated for this manuscript. Running the
central train function in the provided code automatically downloads
all required datasets.

Code availability
A GitHub repository for the Genetic neuroEvolution Model (GEM) is
available at https://doi.org/10.5281/zenodo.7689897. The analyses of

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 6

https://doi.org/10.5281/zenodo.7689897

the study utilized a number of publicly available software packages
and datasets which could not be provided in the repository, but can be
found through in-text citations.

References
1. Musall, S., Urai, A. E., Sussillo, D. & Churchland, A. K. Harnessing

behavioral diversity to understand neural computations for cogni-
tion. Curr. Opin. Neurobiol. 58, 229 (2019).

2. Richards, B. A. et al. A deep learning framework for neuroscience.
Nat. Neurosci. 22, 1761 (2019).

3. Srinivasan, S., Greenspan, R. J., Stevens, C. F. &Grover, D. Deep (er)
learning. J. Neurosci. 38, 7365 (2018).

4. Zador, A. M. A critique of pure learning and what artificial neural
networks can learn from animal brains. Nat. Commun. 10, 1
(2019).

5. Lillicrap, T. P. & Kording, K. P. What does it mean to understand a
neural network? arXiv Prepr. arXiv 1907, 06374 (2019).

6. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice
to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

7. Reid, V. M. et al. The human fetus preferentially engages with face-
like visual stimuli. Curr. Biol. 27, 1825–1828.e3 (2017).

8. Reissland, N., Wood, R., Einbeck, J. & Lane, A. Effects of maternal
mental health on fetal visual preference for face-like compared to
non-face like light stimulation. Early Hum. Dev. 151, 105227
(2020).

9. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M.
Neuroscience-inspired artificial intelligence.Neuron95, 245 (2017).

10. Koulakov, A., Shuvaev, S., & Zador, A. Encoding innate ability
through a genomic bottleneck. bioRxiv (2021).

11. Gaier, A. & Ha, D. Weight agnostic neural networks https://doi.org/
10.48550/ARXIV.1906.04358 (2019).

12. Stanley, K. O., D’Ambrosio, D. B. & Gauci, J. A hypercube-based
encoding for evolving large-scale neural networks. Artif. Life 15,
185 (2009).

13. Stanley, K. O., Clune, J., Lehman, J. & Miikkulainen, R. Designing
neural networks through neuroevolution. Nat. Mach. Intell. 1,
24 (2019).

14. Hintze, A., Hiesinger, P. R. & Schossau, J. Developmental neuronal
networks as models to study the evolution of biological intelli-
gence. (2020).

15. Sheneman, L. & Hintze, A. Evolving autonomous learning in cogni-
tive networks. Sci. Rep. 7, 16712 (2017).

16. Miller, J. F. &Wilson, D. G. A developmental artificial neural network
model for solvingmultiple problems, in Proceedings of the Genetic
and Evolutionary Computation Conference Companion pp.
69–70 (2017).

17. Luo, L. Architectures of neuronal circuits. Science 373,
eabg7285 (2021).

18. Barabási, D. L. & Barabási, A.-L. A geneticmodel of the connectome.
Neuron 105, 435 (2020).

19. Kovács, I. A., Barabási, D. L. & Barabási, A.-L. Uncovering the genetic
blueprint of the c. elegans nervous system. Proc. Natl Acad. Sci. 117,
33570 (2020).

20. Taylor, S. R. et al. Molecular topography of an entire nervous sys-
tem. Cell 184, 4329 (2021).

21. Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. &
Zipursky, S. L. Transcriptional programs of circuit assembly in the
drosophila visual system. Neuron 108, 1045 (2020).

22. Barabási, D. L. & Czégel, D. Constructing graphs from genetic
encodings. Sci. Rep. 11, 13270 (2021).

23. Barabási, D. L., Schuhknecht, G. F. P. & Engert, F. Nature over Nur-
ture: Functional neuronal circuits emerge in the absence of devel-
opmental activity. bioRxiv https://doi.org/10.1101/2022.10.24.
513526 (2022).

24. Di Cristo, G. et al. Subcellular domain-restricted gabaergic inner-
vation in primary visual cortex in the absence of sensory and tha-
lamic inputs. Nat. Neurosci. 7, 1184-1186 (2004).

25. LeCun, Y. et al. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278 (1998).

26. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers:
surpassing human-level performance on imagenet classification, in
Proceedings of the IEEE international conference on computer vision
(2015) pp. 1026–1034.

27. Zhou, J., Qi, H., Chen, Y. & Wang, H. Progressive principle compo-
nent analysis for compressing deep convolutional neural networks.
Neurocomputing 440, 197–206 (2021).

28. Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, pro-
tocadherins, and neural circuit assembly. Cell 143, 343 (2010).

29. Su¨dhof, T. C. Towards an understanding of synapse formation.
Neuron 100, 276 (2018).

30. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition
molecules, and assembly of neural circuits. Cell 181, 536
(2020).

31. Fishell, G. & Kepecs, A. Interneuron types as attractors and con-
trollers. Annu. Rev. Neurosci. 43, 1–30 (2019).

32. Bates, A. S., Janssens, J., Jefferis, G. S. & Aerts, S. Neuronal cell
types in the fly: single-cell anatomy meets single-cell genomics.
Curr. Opin. Neurobiol. 56, 125 (2019).

33. Li, C., Farkhoor, H., Liu, R. & Yosinski, J. Measuring the intrinsic
dimension of objective landscapes. arXiv Prepr. arXiv 1804,
08838 (2018).

34. Ha, D., Dai, A. & Le, Q. V. Hypernetworks. arXiv Prepr. arXiv 1609,
09106 (2016).

35. Shine, J. M., Li, M., Koyejo, O., Fulcher, B. & Lizier, J. T. Nonlinear
reconfiguration of network edges, topology and information con-
tent during an artificial learning task. Brain Inform. 8, 1 (2021).

36. Fernando, C. et al. Convolution by evolution: differentiable pattern
producing networks. Proc. Genet. Evolut. Comput. Conf. 2016,
109–116 (2016).

37. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for
fast adaptation of deep networks. Proc. 34th Int. Conf. Mach. Learn.
70, 1126–1135 (2017).

38. Nichol, A., Achiam, J. & Schulman, J. On first-order meta-learning
algorithms. arXiv Prepr. arXiv 1803, 02999 (2018).

39. Lake, B., Salakhutdinov, R., Gross, J. & Tenenbaum, J. One shot
learning of simple visual concepts, in Proceedings of the annual
meeting of the cognitive science society, 33 (2011).

40. Antoniou, A., Edwards, H. & Storkey, A. How to train your MAML,
arXiv Preprint arXiv:1810.09502 (2018).

41. Vaswani, A. et al. Attention is all you need, In Advances in neural
information processing systems pp. 5998–6008. (2017).

42. Ye, Z. & Sarkar, C. A. Towards a quantitative understanding of cell
identity. Trends Cell Biol. 28, 1030–1048 (2018).

43. Mordvintsev, A., Randazzo, E., Niklasson, E. & Levin, M. Growing
neural cellular automata. Distill 5, e23 (2020).

44. Turner-Evans, D. B. et al. The neuroanatomical ultrastructure and
function of a biological ring attractor. Neuron 109, 1582
(2021).

45. Bahl, A. & Engert, F. Neural circuits for evidence accumulation and
decision making in larval zebrafish. Nat. Neurosci. 23, 94 (2020).

46. Shinozaki, T. & Watanabe, S. Structure discovery of deep neural
network based on evolutionary algorithms, in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
(IEEE, 2015) pp. 4979–4983 (2015).

47. Xie, S., Kirillov, A., Girshick, R. & He, K. Exploring randomly wired
neural networks for image recognition, In Proceedings of the IEEE/
CVF International Conference on Computer Vision pp.
1284–1293 (2019).

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 7

https://doi.org/10.48550/ARXIV.1906.04358
https://doi.org/10.48550/ARXIV.1906.04358
https://doi.org/10.1101/2022.10.24.513526
https://doi.org/10.1101/2022.10.24.513526

48. Liu, H., Simonyan, K., Vinyals, O., Fernando, C. & Kavukcuoglu, K.
Hierarchical representations for efficient architecture search. arXiv
Prepr. arXiv 1711, 00436 (2017).

49. Liu, H., Simonyan, K. & Yang, Y. Darts: differentiable architecture
search. arXiv Prepr. arXiv 1806, 09055 (2018).

50. Tsigankov, D. & Koulakov, A. A. Sperry versus hebb: topographic
mapping in isl2/epha3 mutant mice. BMC Neurosci. 11, 1
(2010).

51. Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms under-
lying development of visual maps and receptive fields. Annu. Rev.
Neurosci. 31, 479 (2008).

52. Triplett, J. W. et al. Competition is a driving force in topographic
mapping. Proc. Natl Acad. Sci. 108, 19060 (2011).

53. Triplett, J. W. et al. Retinal input instructs alignment of visual
topographic maps. Cell 139, 175 (2009).

54. Chapman, B. & Stryker, M. P. Development of orientation selectivity
in ferret visual cortex and effects of deprivation. J. Neurosci. 13,
5251 (1993).

55. Witvliet, D. et al. Connectomes across development reveal princi-
ples of brain maturation. Nature 596, 257 (2021).

Acknowledgements
We wish to thank Gabriel Kreiman, Adam Marblestone, D´aniel Cz´egel,
and the IBROSimons Computational Neuroscience Imbizo for fruitful
discussions. D.L.B. was supported by NIH NIGMS T32 GM008313 and a
Mind Brain and Behavior Graduate Award.

Author contributions
All authors contributed to the design of the project and figures. D.L.B.
wrote the manuscript. T.B., N.P.-N., and A.K. developed the code.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37980-1.

Correspondence and requests for materials should be addressed to
Dániel L. Barabási.

Peer review information Nature Communications thanks Ben Fulcher
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-37980-1

Nature Communications | (2023) 14:2226 8

https://doi.org/10.1038/s41467-023-37980-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Complex computation from developmental priors
	Results
	Genetic neuroevolution formalism
	Spatial priors on neuroevolution
	Developmental priming of learning

	Discussion
	Methods
	Learning on MNIST
	Developmental Convolutional Layer
	Average pooling layer
	Training LeNet-5
	Meta-learning on omniglot
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

