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Integrating genetics and transcriptomics to study major
depressive disorder: a conceptual framework, bioinformatic
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Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental
influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key
phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature
and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic
transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from
numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review,
we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and
illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data
and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual
framework.
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INTRODUCTION
MDD is a debilitating disorder and the second leading contributor
to chronic disease burden globally [1, 2]. From large genomics
studies and postmortem brain transcriptomics studies, MDD is
thought to emerge from a complex interplay of genetic and
environmental factors [3–5] and can be characterized by
dysregulation of the brain transcriptome [6, 7]. Compared to
diseases of peripheral tissues, the study of depression is
complicated by our limited access to pathological brain tissue.
Thus, functional genomic studies, animal models of chronic stress,
and induced pluripotent stem cells present complementary
avenues for exploring the transcriptional signatures of depression
at different points of pathogenesis. There is surprisingly little
cross-talk between these fields [8], perhaps due to challenges in
interpreting results in relation to each other. Integration of
findings from these different perspectives will produce a more
comprehensive understanding of the transcriptional dynamics of
depression and, within a greater multiscale framework, facilitate
the discovery of effective therapies.
Depression research is further challenged by an inadequate

diagnostic definition, which captures a spectrum of different
symptom profiles [9, 10], longitudinal courses [11, 12], and
comorbidities [13] that likely represent several distinct biological
etiologies [14] (reviewed in [15–19]). Extensive discussion of MDD

heterogeneity and subtyping efforts is beyond the scope of this
review; however, these key concepts represent a crucial orthogo-
nal perspective complementary to the framework presented here.
In this review, we discuss a conceptual framework that outlines

approaches for exploring the transcriptomic dynamics of MDD
from predisposition to onset to illness. We next highlight
bioinformatic approaches for the interpretation of high-
dimensional genomic and transcriptomic data and their integra-
tion. Last, we summarize recent findings of MDD transcriptomics
using this conceptual framework.

TRANSCRIPTIONAL DYNAMICS OF DEPRESSION
From a molecular perspective, depression is a multi-gene
syndrome; disease pathology arises from very large numbers of
small changes compounding across the genome, affecting the
expression of hundreds of genes, and these processes are
influenced heavily by a lifetime of adverse experiences
[3, 4, 6, 7, 20–22]. As such, the onset of depression at the
transcriptomic level is thought to be the result of an accumulation
of genetic risk and molecular responses to environmental
exposures that converge on specific functional gene networks
leading to persistent transcriptome-wide dysregulation. We
propose a conceptual framework that describes brain gene
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expression dynamics throughout the progression of MDD from
predisposition to onset to illness to remission to relapse due to
dynamic, fluctuating contributions of genetic risk, stress exposure,
neural circuit dysfunction [23], and treatment [24] and is further
modulated by age, sex, tissue type, brain region, and cell type,
among other contexts (Fig. 1). Through the study and integration
of the full range of transcriptional dynamics of MDD, we can
develop a clearer picture of the molecular pathophysiology of
MDD and efficiently identify therapeutic targets.

Predisposition
Individual variation in transcription regulated by genomic variants
may increase liability for developing MDD. Though depression is
only moderately (~35%) heritable [25], over 150 common single
nucleotide polymorphisms (SNPs) have been identified in
association with MDD in large genome-wide association studies
(GWAS), including more than 1 million individuals (n= 1,154,267;
340,591 cases). Historically, GWAS findings have also been limited
by a lack of interpretability from SNP to function; however,
functional genomics methods have propelled the mapping of
genetic risk variants to systems and multi-omic outcomes
(reviewed in [26]). SNPs associated with biological phenotypes,
called quantitative trait loci (QTLs), make up the backbone of
these analytic genomics methods. Cis-expression QTLs (SNPs
associated with expression of a nearby gene; eQTL) are used to
statistically map putative functional outcomes of carrying depres-
sion risk alleles [27]. It is worth noting that recent studies have
detected increasing genetic mosaicism in postmitotic neurons
[28], which may complicate the interpretation of GWAS findings
normally collected from peripheral tissues.
Transcriptomic imputation (TI) methods jointly model eQTLs to

impute genetically regulated gene expression (GREx) from
genotype information [29]. In other words, these models impute
an unperturbed and tissue-specific baseline transcriptional signa-
ture on an individual-level or using GWAS summary data to
identify genes associated with genetic risk variants. Compared to
postmortem brain samples, genetic studies have the advantage of
increased statistical power due to very large sample sizes, as well
as a base level of causal directionality since the genome is largely
static through the lifespan.
The effect of genetic predisposition for MDD on cellular

phenotypes and their development may be captured using
human-induced pluripotent stem cell (hiPSC) methods, which
conserve donor genetic backgrounds across a wide variety of

MDD-relevant cell types, including hiPSC-derived serotonergic
[30], glutamatergic [31], and GABAergic [32] neurons, microglia
[33], and astrocytes [34]. Notably, reprogramming to the hiPSC
state removes epigenetic markers of age [35] and is therefore
presumed to likewise erase epigenetic signatures associated with
environmental exposure and disorder pathology (e.g., stress,
disease progression, medication use, etc. [36]). Moreover, hiPSC-
derived neurons are widely accepted to most resemble their fetal
counterparts [37–42]. Consequently, transcriptional differences
observed in hiPSC-derived cells characterize the consequence of
donor genetic risk alone and cannot account for those risk factors
for depression that are not heritable. It is hypothesized that the
conservation of epigenetic markers may be achieved through
direct reprogramming strategies [43] if donor-specific epigenetic
profiles, such as with aging [44, 45], are of interest. While
experimentally powerful, hiPSC models cannot yet reliably model
the cell–cell and circuit-level interactions of an intact brain,
though innovations in organoid tissue culture techniques are
closing this gap [46, 47].
CRISPR engineering of isogenic hiPSC lines will be useful for the

direct perturbation of SNPs and genes implicated in MDD. For
noncoding variants with known eQTL associations, CRISPR-
activation [48] and CRISPR-repression [49] technology may be
used to perturb genes in their direction of effect [50]. Multiplexing
of these strategies allows for the parallel engineering of multiple
perturbations simultaneously [51]. Such strategies have success-
fully been used to resolve the effects of common variants in
schizophrenia [52] and are likely to resolve cell type-specific and
context-dependent small effect sizes of individual genetic
predispositions in depression.

Onset
A high genetic risk for depression does not guarantee the onset of
the disorder. Similarly, while psychosocial stressors increase the
risk of developing depression, stress alone is not pathogenic
[53, 54]. Indeed, many (perhaps even most) people experience
stressful life events without developing psychopathology. Depres-
sion, along with other stress-related disorders, is thought to
manifest when coping strategies following stress exposure are
insufficient or dysregulated [8]. At the molecular level, MDD onset
occurs through complex interactions of genes and environment,
which can be studied using cross-sectional human genetic data
[55–57], human stem cell-based models [58–60], and animal
models of stress [61–63].

Fig. 1 Conceptual framework for exploring transcriptional dynamics of MDD in the brain. Transcription dysregulation associated with
depression is dynamic from predisposition to onset to illness; it is influenced by environmental exposures, contexts, and genetics, and can be
studied from a variety of experimental approaches. GWAS genome-wide association study, TI transcriptomic imputation, iPSC induced
pluripotent stem cells. Created with BioRender.com.
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Transcriptomic responses to stress can be genetically regulated
[64] and can be studied with large-scale genomics data. eQTLs
vary by environmental context, and have been differentially
detected [65, 66]across tissues, cell type- [67], and perturbation-
specific [68–70] contexts (reviewed in [26]). Joint genetic and
environmental regulation of expression (GxE-REx) may be inferred
from the context in which eQTLs are detected (e.g., stress), thus
capturing GxE regulatory mechanisms underlying that context.
These QTLs can be used to create TI models [29] to predict
context-specific transcriptomic responses from genotypic data.
Such approaches have been previously applied to detect tissue-
specific mediators of schizophrenia [71, 72], PTSD [73], bipolar
disorder [74], and anorexia nervosa [75], and can be used to detect
transcriptomic profiles that confer susceptibility to MDD with
exposure to stress.
Cellular mechanisms of stress response can be assessed across

diverse cell types and donor-specific genetic backgrounds in vitro
using hiPSC methods [58]. Organoid-based approaches add an
additional layer of complexity by modeling cell–cell interactions
that better replicate the cellular environment in vivo [58]. When
combined with CRISPR engineering to facilitate isogenic compar-
isons [76], phenotypic assessment of subtle gene–environment
interactions between variants/genes and pertinent stressors,
across cell types of interest, are testable at scale [51]. For instance,
recent advances in pooled-hiPSC screening techniques such as
census-seq are capable of population-scale screening of ~100
donors in a single dish [77]. As noted above, hiPSC-derived
neurons are developmentally immature and most resemble their
fetal counterparts [37–42], and so particularly useful platforms for
screening fetal impacts of maternal exposures or early childhood
exposures [78] (e.g., maternal immune activation, reviewed in [79];
adverse childhood events [80]).
It is debated whether and to what degree animal models

recapitulate depression, and many criteria have been proposed to
assess their validity, such as face, construct, and pharmacological
validity (reviewed in [81]). However, animal models need not (and
cannot) recapitulate the entire human condition, but instead are
most useful in establishing the underlying biology of relevant
aspects of a disorder to the degree that is impossible in humans
[82]. Thus, in depression research, rodent models are best fit for
characterizing brain transcriptional responses to stress and
investigating mechanisms of gene–environment interactions to
identify mechanistically informed therapeutic targets. Interest-
ingly, chronic variable stress, social isolation, and chronic social
defeat stress paradigms each capture distinct aspects of
postmortem transcriptional signatures from the prefrontal cortex
and nucleus accumbens of depressed patients [21], which
establishes the utility of such models to study molecular features
of depression. Another crucial contribution of animal models,
which is very difficult to discern from human brain transcriptomic
data alone, is whether a given molecular change or set of changes
are pathological (i.e., they contribute to behavioral abnormalities)
or instead are adaptive (i.e., they contribute to homeostatic
responses to overcome the stress, that is, they underlie resilience).
Several rodent chronic stress models can differentiate genes
associated with stress susceptibility versus stress resilience and
thereby aid in the functional interpretations of transcriptomic data
[83]. Details on current approaches to model depression
endophenotypes and assess depressive behaviors are reviewed
elsewhere [84].

Illness
Lastly, and most clinically relevant, are human tissues, which can
be used to study the stable transcriptional changes that persist in
depression. Postmortem brain tissues have been used to study the
transcriptomes of depressed patients and illustrate the transcrip-
tomic dysregulation in depression generally using case-control
status. However, a few notable postmortem brain studies include

deeper patient phenotyping than case-control status and have
identified molecular associations with additional dimensions, such
as exposure to antidepressant exposure [85, 86] and childhood
trauma [87]. Further, postmortem samples represent ‘end stage’
disease that may not recapitulate gene expression patterns during
illness; moreover, postmortem gene expression may differ
substantially from living.
One major goal of transcriptomic studies, aside from biomarker

discovery, is to identify causal, pathological mechanisms that lead
to disorder; however, postmortem analyses are limited in their
ability to identify causal directionality. Though observed dysregu-
lated genes may unidirectionally contribute to the circuit
dysregulation and symptoms associated with MDD, it is likely
that other transcriptomic relationships are bidirectional: transcrip-
tomic dysregulation influences neuronal physiology and circuit
function, and in the opposite direction, circuit dysfunction and
altered neuronal activity influence transcriptional dysregulation
via activity-dependent molecular mechanisms (reviewed in [88]).
Despite their limitations, postmortem studies are important for
assessing the long-term transcriptional effects of depression and
antidepressants, and animal chronic stress models can be used to
validate these findings [21]. As sample sizes increase for this
important population, we will have greater power to identify
patterns within the heterogeneity of depression.
Peripheral tissues like blood plasma are a noninvasive, surrogate

source of transcriptomic data in living MDD patients, which can be
used to identify clinical biomarkers. There is the expectation that
blood gene expression is mostly not reflective of brain gene
expression, with cross-tissue correlation in gene expression levels
ranging from 0.25 to 0.64 [89]. Thus, blood transcriptomes are less
likely to provide etiological insight into depression biology so long
as the brain is considered the primary source of pathology.
However, mechanisms of brain–immune interactions suggest that
peripheral immune gene expression bidirectionally affects brain
transcription and may contribute to neuropsychopathology
[83, 90, 91]. As researchers identify transcriptional dynamics
between blood and brain, blood transcriptional profiles remain
most useful as a surrogate for biomarkers of depression and
treatment response [92].

BIOINFORMATIC APPROACHES AND DATA INTEGRATION
As sequencing technologies have become more affordable, large
hypothesis-free transcriptomic studies have gained popularity and
allowed for the investigation of large-scale transcriptional
patterns. With these large datasets come increasingly complex
tools to derive biological meaning and integrate these data to
identify key patterns of dysregulation and, ultimately, prioritize
novel therapeutic targets. In this section, we will highlight
methods for analyzing these large genetic and transcriptomic
datasets and discuss approaches for integrating findings from
these various perspectives (Fig. 2). Table 1 summarizes the use of
these analytical methods in the context of our conceptual
framework and provides examples of studies for which these
methods are employed.

Variant to gene
While GWAS has uncovered hundreds of common variants
associated with depression, we have yet to understand how most
of these variants contribute to disorder risk. Functional genomics
methods, such as Mendelian randomization, colocalization, and TI,
aim to bridge this functional gap by mapping SNPs to gene-level
associations using reference eQTL data. Young et al. review the
breadth of functional genomics tools for mapping genetic variants
to gene-level and beyond to systems-level outcomes [26].
Briefly, SNP-mapping algorithms can use a proximity or QTL-

based approach to translate SNPs to genes. Proximity-based
approaches (e.g., MAGMA) map SNPs to genes based on proximity
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to a gene body. QTL-based mapping approaches are a more
dependable tool for mapping because they use existing associa-
tions between genotype and gene expression from a reference
dataset (e.g., GTEx [65] or psychENCODE [93]). Colocalization
analysis asks whether a phenotype-associated risk SNP and an
eQTL for a gene originate from the same genomic locus. As a
complementary approach, Mendelian randomization (MR) uses
the SNP associations as instrumental variables in a mock
randomized control trial to infer causal directionality between
gene expression and a trait. While neither of these methods can

definitively parse pleiotropy from causal associations, genes at the
intersection of both methods make high-confidence targets
candidates for functional validation [94].
While these methods are useful for mapping single SNP

associations, a multi-SNP model for gene expression more closely
captures regulatory biology. Predictor models of gene expression
are built to enable the imputation of baseline genetically
regulated transcription (GREx) from genotype information (TI;
e.g., PrediXcan [29]). Though slightly different in implementation,
several TI models have been built to impute gene-level

Fig. 2 Multiscale bioinformatic approaches to study depression genomics and transcriptomics. Created with BioRender.com.
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associations with a trait using only GWAS summary statistics (i.e.,
S-PrediXcan, TWAS [95, 96]), which drastically improves biological
interpretability of GWAS associations in a tissue- and, soon, cell
type-specific manner.

Gene to pathways
Genes do not act in isolation to predispose, produce or perpetuate
complex disorders like MDD. An important step in understanding
the neurobiology of MDD is to study how individual ‘risk’ genes
identified from GWAS or differentially expressed genes identified
from postmortem brain data may converge on known biological
pathways. Approaches to interpret gene-level associations at the
pathway level include functional gene set enrichment and co-
expression networks. From a statistical standpoint, these pathway-
level analyses reduce the dimensionality of large gene-level
analyses by grouping dependent gene expression into functional
gene sets or co-expressed modules. Identification of pathways
involved in depression neurobiology allows for the translation of
long lists of genes into biologically interpretable results.

Gene set enrichment. Gene set enrichment analyses consider the
membership of individual genes in known functional pathways.
Using gene sets references such as GO [97] and KEGG [98],
hundreds of tools have been developed to test the enrichment of
target genes in known functional pathways or structures with
overrepresentation analyses or threshold-free gene class scoring
methods [99]. Most of these methods consider each gene in a
gene set with equal weight. Pathway topology-based methods,
however, attempt to quantify the importance of each gene to a
pathway to improve the accuracy of enrichment analyses [100].
Current gene set methods are also limited by a lack of specificity;
significant differential expression of a single gene can lead to a
reported enrichment of all overlapping and/or nested gene sets
that contain the gene. Several groups attempt to address this
challenge using a gene set network approach [101] or by down-
weighting genes with high levels of overlap [102]. Despite
limitations, gene set enrichment analysis is a powerful and
accessible tool for interpreting large gene lists and identifying
patterns of pathway-level dysregulation.

Co-expression networks. Another approach to transition from a
gene- to systems-level understanding of MDD transcriptomic
associations is to interpret transcript-level findings in the context
of co-expression networks. A co-expression network is a
representation of gene expression similarity across samples,
visualized by nodes (genes) and edges (molecular interactions or
statistical associations) [103]. Co-expressed transcripts in a net-
work are thought to represent biological relationships, known as
the ‘guilt by association’ principle [104], and are often enriched for
cell type-specific markers that can be used to annotate networks’
particular cell types. In addition to biological co-regulation, co-
expression relationships can be the result of other biological or
technical influences, which require careful quality control
[105–107]. Networks also show limited reproducibility across
network detection methods [108–110], suggesting either (1)
different co-expression network methods capture complementary
gene relationships of differing resolution, or (2) network results are
sensitive to transcriptional noise [111]. A final consideration is that
in the absence of a gold standard “known” human biological co-
expression network, it is difficult to determine the effectiveness of
a novel network approach. Where possible, it is encouraged that
gene–gene relationships be additionally validated through
comparison to independent datasets of molecular interactions
or functional validation. Despite the limitations, co-expression
network analysis is a powerful tool to organize individual gene
results at the level of interpretable biological pathways and
identify putative drivers of transcriptional organization patterns.

Epigenomics/multi-omics. Because of its role in integrating
environmental and genetic factors, epigenetic regulation has
been investigated as a key molecular player in the pathogenesis of
depression [112, 113]. Studies integrating epigenetic changes
such as histone modifications and chromatin landscape in other
brain disorders have revealed mechanisms of dysregulation at
multiple interconnected -omic levels [114–116] (reviewed in
[117]). Incorporating other -omics data, such as proteomics and
epigenomics, and -omics on a broader scale, such as gut
microbiome, neuroimaging data, and data on lifetime environ-
mental exposures (i.e., the exposome) [118], when brought

Table 1. Summary of analytical methods in the context of the conceptual framework (predisposition, onset, illness) with examples of data sources
and studies for which these methods are employed.

Perspective Data source Analytical method Examples

Predisposition Human genotype GWAS [3, 4]

Human GWAS summary data and postmortem-brain-
derived QTLs

Colocalization [158]

Mendelian randomization [3]

Transcriptomic imputation [20, 158, 164, 218]

Drug repurposing analyses [3, 20, 162]

hiPSC-derived brain cell transcriptomic data Gene set enrichment [59, 60, 169]

Onset Mouse genotype and brain transcriptomic data Context-specific QTL analysis [178]

Human genotype and transcriptomic data Context-specific QTL analysis [64, 179, 180]

hiPSC-derived cells + glucocorticoids Context-specific QTL analysis [58]

Gene set enrichment [58, 181, 182]

Mouse brain transcriptomic data + stress Gene set enrichment [61, 62, 183, 184]

Co-expression networks [61, 183]

Illness Human postmortem brain single cell/nuclei RNA-seq Gene set enrichment [207]

Co-expression networks [207]

Cell type deconvolution [207]

Human postmortem brain transcriptome Gene set enrichment [6, 7, 208]

Co-expression networks [6, 7]

Cell type deconvolution [208]
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together, can illustrate a more comprehensive view of disorder
mechanisms paralleling the complexity of depression compared
to transcriptomics alone.
Studies integrating genomics and neuroimaging have been

particularly fruitful for identifying genetic–brain structural associa-
tions within MDD, including dimensions of sex specificity,
antidepressant and trauma exposures, and will aid in translating
genomic findings to the context of brain structure and function
and in disentangling MDD heterogeneity [43, 119, 120]. Specific
methods for data integration across multimodal data are reviewed
elsewhere [121, 122].

Gene to context
Gene expression is specific to various contexts such as tissues, cell
types, developmental stage, and sex [123], as well as environ-
mental contexts such as exposure to stress [22] or drugs.
Discerning transcriptional dynamics in various contexts allows
for clearer translation of gene targets to mechanistic studies.

Single cell analyses. Recent advances in single cell type genomic
studies have made it possible to identify the specific cells that give
rise to transcriptomic changes in a particular disorder [124, 125].
This is perhaps most relevant in studying neuropsychiatric
disorders as the brain contains myriad cell types with individual,
specific, and spatial functions. Analysis constitutes clustering
single-cell transcriptomic profiles and annotating their identities
based on the expression of canonical cell type markers. Within
these cell type clusters, differential expression analysis can be
conducted by cell identifying both differentially expressed
transcripts between cases and controls within a cell type-specific
context. Additionally, pseudotime trajectories can be mapped to
characterize transcriptional transitions (e.g., microglial activation)
[126] across age.
One caveat to single cell type studies is a lack of transcript

coverage: typically employed nuclei isolation techniques only
capture 7000–9000 transcripts per cell compared to bulk tissue
RNA-seq technologies that capture more than double that
number. Technical difficulties isolating whole cells from post-
mortem tissue have made single-nuclei isolation necessary for
these studies and it is becoming increasingly popular to use nuclei
in parallel animal studies as well [127, 128]. While there is a high
degree of concordance between nuclear and cytoplasmic RNA
complement [129, 130], it is unavoidable that we are missing
critical information particularly from the processes of cells where
the local translation is likely disrupted [131]. On the other hand,
the nuclear transcriptome better captures classes of noncoding
RNAs that serve important regulatory functions [63, 132, 133]. The
best practice for future studies will be a combination of bulk tissue
coupled with single-cell RNA sequencing, which would allow for
the identification of missing or lowly expressed transcripts.

Cell type deconvolution. Recently developed algorithms aim to
infer cell type proportions [134] and even cell type-specific
expression [135] from bulk tissue gene expression data using
reference single-cell datasets (reviewed in [136, 137]). Estimating
cell type proportions from gene expression data allows for testing
associations of cell type proportions affected by a given trait and
possibly correcting for cell type proportion alterations that may
confound gene expression analyses. Inference of cell type-specific
gene expression [135, 138] enables analysis of bulk tissue
expression datasets with some cell type specificity, although not
as reliably as directly measured single-cell data, and the reanalysis
of existing bulk tissue expression data in a novel context.
Deconvolved bulk datasets also provide validation of single-cell
data to bridge the trade-offs in the limitations of each approach.

Drug repurposing. Strategies to identify new applications of
existing drugs are being modeled in silico using structural and

transcriptional signatures of drugs and target disorder transcrip-
tional signatures (reviewed in [139]). These tools aim to accelerate
the identification of novel pharmaceutical interventions for
depression and other psychiatric disorders which lack high-
confidence, etiologically informed therapies, and to potentially do
so with patient-specific precision. Drug repurposing methods have
been applied to transcriptomic data from a variety of neurologic
and psychiatric disorders [140–143], and to genetically regulate
expression profiles of MDD subtypes [20].

Systems to phenotypes
Pathway-level and context-dependent analyses of transcriptomics
highlight overall patterns of transcriptomic dysregulation in the
multiple systems (i.e., synaptic, endocrine, immune) associated
with depression. Tying these systems together is a continual
challenge of depression research.

PheWAS. One approach for exploring phenotypic links to tissue-
specific genomic contexts is the phenome-wide association study
(PheWAS [144, 145]). Using electronic health records and genomic
data from large-scale biobanks, we can begin to explore the
phenotypic consequences of genetic and transcriptomic variability
as predictors for hundreds of phenotypic outcome variables such
as insurance billing codes (ICD codes), their translation to
phenotypic groups called PheCodes [146, 147], lab results
(LabWAS), or prescribed medications, for example. PheWAS of
imputed expression of disorder-associated genes demonstrate
pleiotropic associations and potential functional mechanisms,
such as in a study of anorexia nervosa [148]. PheWAS are also
useful for screening potential adverse effects to anticipate in
pursuit of genes as therapeutic targets.

Integrating transcriptomic data from multiple studies and
approaches
In moving toward a comprehensive understanding of depression,
many datasets and data types will need to be interpreted
together. It may be useful to evaluate a degree of concordance
or discordance between two sets of gene expression profiles.
Rather than assigning an arbitrary cutoff and evaluating the
intersection of two lists of genes, rank-rank hypergeometric
overlap (RRHO) takes a threshold-free approach to visualize
significance levels of overlap at all possible cutoffs with a heatmap
[149]. This allows for a general overview evaluation of the degree
of concordance in up- or downregulated genes between two lists.
For a more rigorous evaluation of convergent signatures, there
exist several meta-analytic methods to increase power for
detection from similar studies, such as those based on effect size
combination, p-value combination, and nonparametric ranking
methods (reviewed in [150]). In some cases, groups of similarly
expressed genes are relevant only in certain conditions but not in
others. Bi-clustering algorithms take into account a second
dimension of condition (or phenotype) to identify clusters of
convergent gene expression observed in clusters of samples,
which is useful for identifying symptom subtype-specific expres-
sion profiles, for example [151].
There are several approaches by which transcriptional signa-

tures may be compared to genome-wide associations from
genetic studies. Partitioned heritability LD score regression
annotates all SNPs within a certain distance from any gene in a
provided gene set (e.g., postmortem brain DEGs) and calculates
whether a significant portion of SNP heritability for a trait is
explained by the annotated SNPs [152]. In a complementary
approach, risk SNPs can be mapped to genes and then tested for
enrichment in a gene set with an overrepresentation analysis.
MAGMA is a flexible tool for running such an analysis that
implements competitive gene set enrichment analyses and can
test for continuous gene properties such as gene expression levels
[153].
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We constructed a two-dimensional space within which to
compare genes associated with MDD through observed vs.
predicted expression studies. By definition, genes associated with
MDD in predicted gene expression analyses (e.g., TWAS,
PrediXcan) are identified due to germline differences in allele
frequency; as such, any differences necessarily pre-date disease
onset and are related to predisposition, rather than experience.
Observed gene expression differences, by contrast, may reflect
both predisposition to, and impact of, MDD. We directly compared
association statistics from these two types of studies (Fig. 3A) to
infer potential mechanisms of dysregulation.
Specifically, DLPFC GREx associations were imputed from MDD

GWAS [3] with S-PrediXcan [95] using CommonMind DLPFC eQTL

predictor model [71] to represent predisposition; and postmortem
DLPFC gene expression associations were obtained by inverse
variance weighted meta-analysis [154] of differential expression
summary statistics in DLPFC of MDD cases versus nonpsychiatric
controls [6, 7] to represent illness. Gene-level summary Z-scores
are then plotted on each axis (Fig. 3B). A handful of transcripts are
significantly regulated in both GREx and postmortem associations
based on a loose significance threshold (p < 0.05), capturing broad
patterns of regulation. Gene set enrichment [155] of these top
concordant and discordant genes reveal patterns of dysregulation
from predisposition to onset, implicating small molecule signaling,
synaptic signaling, and lipid metabolism and biology, among
other gene ontology terms (Fig. 3C). Interestingly, some larger

Fig. 3 Mapping gene-level associations for depression from predisposition to illness. A Conceptual representation of analysis and potential
interpretations for dynamic MDD gene expression associations. Predisposition: dorsolateral prefrontal cortex (DLPFC) genetically regulated
expression associations were predicted with S-PrediXcan using MDD GWAS [3] and CommonMind Consortium DLPFC eQTL predictor model
[71]. Illness: MDD vs healthy control differentially expressed genes [3, 4] were meta-analyzed using a fixed-effects inverse variance method.
B Z-scores for GREx (predisposition) and postmortem (illness) associations of MDD vs controls are plotted. C Gene set enrichment (g:Profiler
[155]) of top concordant and discordant genes (p < 0.05) from analysis in (B). GREx genetically regulated expression, PM postmortem. Created
with BioRender.com.
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gene sets show enrichment in both concordant and discordant
groups which may suggest nonspecific dysregulation among
these pathways (transport of small molecules, RORA transcription
factor binding) that lends itself to the complexity of transcriptional
dynamics (e.g., compensatory mechanisms).

RECENT FINDINGS
Predisposition
Despite a moderate heritability of MDD (twin-based h2= 38%;
SNP-based h2= 21–30 [25]%), depression GWAS are now
approaching sufficient power to discover novel associations that
contribute to depression risk. This is due in part to recent
inclusions of broader self-declared definitions of depression with
clinically diagnosed MDD, which are highly genetically correlated
(rG= 0.86, s.e.= 0.05) [156]—though perhaps at the cost of
specificity [157]. A recent meta-analysis led by the Psychiatric
Genomics Consortium (PGC) included data from PGC, 23andme,
UKBiobank, and FinnGen (n= 807,553; 246,363 cases [3]). These
analyses were later meta-analyzed with additional data from the
Million Veteran Program, producing the largest published GWAS
of depression to date [4]. This study includes over 1.2 million
individuals of European ancestry (n= 1,154,267; 340,591 cases)
and African ancestry (n= 59,600; 25,843 cases) [4] and identified
178 genomic loci associated with depression.
Depression risk SNPs are enriched in conserved, intronic, and

H3K4me1 enhancer regions of the genome, and nearby genes
specifically expressed in the frontal cortex or anterior cingulate
cortex and in neurons [3]. Gene-level mapping of depression risk
SNPs converges on genes enriched in brain tissues, pyramidal
neurons, neuronal processing, synaptic structure and processing,
as well as sex hormone receptor signaling [3, 4, 158, 159].
Interestingly, associations with the BTN family of immune
regulators have also been linked in a few studies to depression
predisposition [159, 160] as well as with the shared genetic risk for
depression and insomnia [161]. Drug–gene interaction studies
highlight antipsychotics, estrogen-related drugs, DRD2-targeting
drugs, calcium channel modulators, and serotonin receptor
antagonism as potential drugs to counteract transcriptional effects
of depression risk [3, 162]. Individual genes that commonly
emerge among these studies include those with existing links to
depression, such as DRD2 [4, 159, 162, 163] and FADS1
[4, 164, 165], as well as novel genes such as NEGR1
[4, 158, 162, 166] and RPL31P12 [160, 166] without existing links
to depression. These novel associations are promising targets for
functional validation as a point of therapeutic intervention.
Studies of depression predisposition also highlight the role of

risk SNPs in the context of development. Predicted DLPFC risk
genes are more highly expressed in prenatal stages than
postnatal stages suggesting risk genes may confer their predis-
posing effects during development [164]. Such findings warrant
investigation of the genetic predisposition for MDD on cellular
phenotypes and their development using hiPSC methods which
conserve donor backgrounds across a variety of MDD-relevant
cell types [167]. A handful of studies have investigated MDD-
specific hiPSC transcriptomes in the context of SSRI-resistant
depression [59, 60], likely due to the heterogeneous nature of
disorder phenotypes (reviewed in [168]). Vadodaria et al. derived
neurons from SSRI responder and nonresponder patients and
found a 5HT-dependent response difference between the groups
[60] and transcriptomic differences in PCDHA6 and PCDHA8 as
mediators of this effect [59]. In another study, patient-derived
cortical neurons were screened for bupropion response, finding
differences in synaptic morphology and transcription between
responders and nonresponders [169]. Together these studies
begin to describe the transcriptomic and neural consequences of
genetic risk and in utero stress exposures for developing
depression.

Onset
Large-scale gene–environment (GxE) interaction studies are
necessary to wholly capture MDD genetic etiology; SNP-based
heritability of MDD with reported trauma exposure (24%) is
greater than the heritability of MDD without reported trauma
exposure (12%). Interaction studies of childhood trauma [170],
stressful life events (SLEs [171]), systematic discrimination [172],
and personal traumas (e.g., sexual assault) [173–176] with MDD
genetic risk have identified specific SNP interactions pointing to
potential mechanisms of depression onset. Individuals with a
genetic predisposition to MDD who experience these traumatic
events have worsened MDD symptoms—up to twice as high as
individuals without trauma exposure [170]. Using Mount Sinai’s
BioMe biobank, the Huckins group tested the interaction between
MDD polygenic risk score (PRS) (derived from MDD PGC GWAS [3])
and 12 traumatic and stressful life events associated with MDD
(TSLEs) and discovered a significant interaction effect between
MDD-PRS and motor vehicle accidents (B= 159.12,
p= 4.20 × 10−4 [177]). These interactions highlight that genomic
and environmental factors cooperatively contribute to depression
and motivate investigations of GxE interactions at the
molecular level.
One approach is to identify eQTLs in the context of stress. In the

periphery, Arloth et al. identified glucocorticoid receptor (GR)-
responsive eQTLs enriched in GR binding sites and known
depression risk variants [64]. However, the challenge remains to
elucidate stress context-specific GREx in neural tissue. Emerging
works address this challenge by modeling eQTL effects experi-
mentally using massively parallel reporter assay (MPRA)
approaches, and are uncovering glucocorticoid-, retinoid- and
sex-specific eQTLs in neural cells in vitro and in mouse models
[58, 178–180]. Such analyses integrating genetic variation hold
promise for identifying mechanisms explaining individual differ-
ences in the onset of psychiatric disorders following stress.
Furthermore, regulatory logic from these studies may be used to
derive context-specific transcriptomic imputation models as a
novel means to address GxE interactions in silico to apply to large
genomic datasets.
Though the transcriptional effects of stress exposure in the

brain cannot yet be measured directly in living human brains, they
have been characterized in vitro using hiPSC-derived cells and
in vivo in mice exposed to chronic stress. Physiological stress
exposure, as mediated through the hypothalamic-pituitary-
adrenal axis, can be modeled with glucocorticoids. In hiPSC-
derived astrocytes, chronic glucocorticoid exposure is associated
with an MDD-specific transcriptional profile enriching in GPCR
signaling and synaptic processes [181]. Transcriptional signatures
of glucocorticoid activation in hiPSC-derived brain organoids
demonstrate lasting cell type-specific effects on neural develop-
ment, specifically promoting proliferation and decreasing differ-
entiation via dysregulation of neuronal specifying genes (e.g.,
TCF4, AUTS2, PAX6, RELN, OTX2 [58]). Stress-related exposures of
hiPSC-derived neurons have also been explored under different
disorder paradigms, such as in PTSD, where acute glucocorticoid
exposure elicits a PTSD diagnosis-dependent transcriptomic
response [182]. Together, these findings demonstrate the promise
of hiPSC-derived cell types combined with environmental
perturbations to investigate the gene–environment interactions
underlying MDD.
In mice, Bagot et al. observed key circuit-wide differences in

transcriptional patterns between resilient and susceptible male
mice following chronic social defeat stress [183]. Several networks
of gene co-expression enriched in neuronal and synaptic
transmission genes emerged in susceptible animals that are not
observed in control or resilient animals across several limbic brain
regions [183]. Conversely, a follow-up study identified gene
networks associated specifically with resilient animals [61].
Together, these results suggest that dysregulation induced by
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chronic stress may be mediated by the reorganization of neuronal
regulatory networks controlling synaptic transmission in several
brain regions. The timing of exposure to stressful events,
especially during critical periods of plasticity such as in childhood,
increases the risk of developing MDD and has also been studied in
mouse models. Early life stress (ELS) in rodents produces latent
transcriptional changes in the ventral tegmental area, PFC and
NAc that are later altered with exposure to adult stress [62, 184].
Interestingly, rather than exaggerating the transcriptomic
response to ELS, adult stress produces a modified transcriptional
response enriched in cholinergic signaling genes that also differs
from transcriptional responses to adult stress alone [62]. This
suggests that transcriptomic changes from ELS may reflect a
different regulatory landscape compared to adult stress-induced
depression alone and may require alternative therapeutic
strategies, which coincide with known associations between
childhood trauma and treatment-resistant depression [185–187].

Illness
Extensive efforts have been made over the past decade to
characterize the human MDD transcriptome within discrete brain
regions and cell types using postmortem tissue. Most postmortem
brain studies of depression have focused on the prefrontal cortex,
amygdala, and hippocampus, regions implicated in the behavioral
deficits of depression with known cellular, structural, and
molecular alterations [188–194]. Numerous studies have used
microarrays to profile brain gene expression [195–199] (up to 2010
reviewed in [200]). The first genome-wide studies identified
significant increases in DUSP1, which plays a major role in neural
plasticity in the hippocampus [201]. Initial studies of the prefrontal
cortex of MDD subjects identified significant decreases in
transcripts involved in synaptic transmission that also correlated
with observed decreases in synaptic number and loss of dendritic
spines and dendrites in donor-matched histological sections of
the PFC [194, 202]. These studies identified deficits in neurons but
lacked the resolution to identify the subtypes involved in MDD
pathophysiology.
Several studies have identified deficits in somatostatin (SST)

transcript levels in the subgenual anterior cingulate cortex and the
amygdala of MDD patients [203–205], implicating inhibitory
neurons. Based on these findings, it is hypothesized that MDD
deficits in SST transcript could be a result of cellular vulnerability
and that levels of SST are directly involved in cellular processes
(such as protein translation [206]) that affect the synaptic output
of interneurons within their circuit. Alternatively, these deficits
may also be compensatory to maintain excitation/inhibition
balance due to altered function of the excitatory and pyramidal
neurons. Interestingly, a recent single-cell transcriptomic profiling
of depressed postmortem DLPFC found that a majority of their
DEG signal came from excitatory neurons (10 cell type clusters)
and oligodendrocyte precursor cells (nearly half of the DEGs
identified), with only modest contribution from interneurons
(three clusters from SST and PV cells and three from non-SST/non-
PV interneurons) and non-neuronal cells [207]. These findings
suggest that we are missing critical information about the cell
types contributing to the molecular pathology and highlight the
need for region- and cell type-specific profiling in future
postmortem studies.
Recent evidence points to sex-specific genomic differences in

MDD patients. A landmark paper by the Nestler group identified
largely nonoverlapping signatures in the differentially expressed
transcripts of males and females with MDD across six brain regions
[6]. Gene co-expression analysis also revealed differences in the
transcriptomic organization of males and females with depression.
Remarkably, exogenous downregulation of the female-specific
MDD hub gene Dusp6 resulted in stress susceptibility in female
but not male mice and mimicked many of the transcriptomic
changes observed in postmortem brains of donors with MDD.

Several studies have since confirmed these findings [7, 208]. Taken
together, these studies highlight the importance of sexual
dimorphism in functional genomic studies [208, 209].

FUTURE DIRECTIONS
Depression is a multiscale disorder influenced by genetics,
environment, and complex interactions. We propose a conceptual
framework for interpreting various approaches we have available
to study the brain transcriptome in depression. While access to
brain tissue remains scarce, other avenues for studying the human
brain are emergent. For example, the Living Brain Project is an
exciting new research program taking advantage of advances in
neurosurgery for novel sources of living human brain tissues for
molecular profiling, though tissue would be limited to disease/
disorder cases. For depression specifically, the BeCOME study will
produce deeply phenotyped and multilevel data for subtyping
affective disorders and developing precision therapies [210].
Integrating transcriptomic data, as reviewed here, with

multiscale data, will be fruitful for depression research. Circuit-
aware transcriptomic profiling [183], single-cell approaches
[211], and spatial transcriptomics [212] will be useful for further
contextualizing gene expression alterations within relevant
circuits and cell types. Genetic imputation models, like
BrainXcan, linking genetic variants to systems-level outcomes
such as brain structural and connectivity phenotypes [213] and
incorporating context and environmental factors [214] will
propel the translation of depression risk variants to biologically
relevant phenotypes with increasing complexity. Finally, large
multiscale and multi-omic analyses (e.g., [215, 216],) integrating
clinical phenotypes, neuroimaging and molecular phenotypes as
well as peripheral phenotypes (e.g., microbiome, exposome
[217]) will be invaluable for identifying systems-wide mechan-
isms of depression etiology.
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