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Accounting for assay performance when
estimating the temporal dynamics in SARS-
CoV-2 seroprevalence in the U.S.

Bernardo García-Carreras 1,2 , Matt D. T. Hitchings 3,
Michael A. Johansson 4, Matthew Biggerstaff4, Rachel B. Slayton4,
Jessica M. Healy4, Justin Lessler5,6, Talia Quandelacy7, Henrik Salje 8,
Angkana T. Huang 8 & Derek A. T. Cummings 1,2

Reconstructing the incidence of SARS-CoV-2 infection is central to under-
standing the state of the pandemic. Seroprevalence studies are often used to
assess cumulative infections as they can identify asymptomatic infection.
Since July 2020, commercial laboratories have conducted nationwide ser-
osurveys for the U.S. CDC. They employed three assays, with different sensi-
tivities and specificities, potentially introducing biases in seroprevalence
estimates. Usingmodels, we show that accounting for assays explains some of
the observed state-to-state variation in seroprevalence, and when integrating
case and death surveillance data, we show that when using the Abbott assay,
estimates of proportions infected can differ substantially from seroprevalence
estimates. We also found that states with higher proportions infected (before
or after vaccination) had lower vaccination coverages, a pattern corroborated
using a separate dataset. Finally, to understand vaccination rates relative to the
increase in cases,we estimated theproportionsof thepopulation that received
a vaccine prior to infection.

Estimating the cumulative proportion of the population infected with
SARS-CoV-2 is central to understanding the current state of the pan-
demic, assessing the susceptibility of the population, and to planning
and targeting public health responses. Epidemiological models and
other statistical approaches can be used to estimate cumulative
infections using reported positive SARS-CoV-2 PCR tests, COVID-19
deaths, and other surveillance data1–7. Such studies revealed large
underreporting of cases detected through case surveillance due to
asymptomatic infections and limited laboratory testing. Ser-
oprevalence studies based on a random sample of the populationmay
be the gold standard for assessing the proportion infected but are
expensive and logistically complicated to perform.

Since July 2020, commercial laboratories have conducted regular
nationwide serosurveys for the CDC8,9. These surveys and other con-
venience and representative seroprevalence studies (refs. 8,10–21; also
see https://covid19serohub.nih.gov) have provided estimates of the
cumulative proportion of the population with a history of at least one
infectionwith SARS-CoV-2 in theUnited States at the national and local
level. Modeling approaches have also used seroprevalence studies to
improve estimates of critical parameters (e.g., the infection fatality
rate) or to compare to model outputs3,4,22.

However, serosurveys can produce biased estimates of the pro-
portion infectedbasedon the samples andmethodsused.Convenience
samples, samples collected from individuals in the provision of
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healthcare for testing unrelated to SARS-CoV-2, may not be repre-
sentative of the general population. Seroprevalence studies focusing
on individuals seeking care for reasons unrelated to COVID-19, such as
those conducted by the CDC, can underestimate the extent of mild
infections due to tests being evaluated and calibrated mostly on
patients with symptoms23,24. Moreover, waning of antibodies to unde-
tectable levels following infection has been observed25,26. Estimated
waning varies substantially between assays due to differences in their
formats (e.g., whether the assays use direct or indirect detection
formats27) and resulting variation in their sensitivities and
specificities28–32. For example, when usingmanufacturer-recommended
cutoff points to determine seropositivity, Peluso et al.28 and Stone
et al.32 found lower sensitivities using ARCHITECT SARS-CoV-2 IgG
immunoassay targeting the nucleocapsid protein (“Abbott”) than with
Ortho-Clinical Diagnostics VITROS SARS-CoV-2 Total Ig and IgG (the
latter only in Peluso et al.) immunoassay targeting the spike protein
(“Ortho”) or Roche Elecsys Anti-SARS-CoV-2 pan-immunoglobulin
immunoassay that targets the nucleocapsid protein (“Roche”). How-
ever, sensitivities to recent infections in Peluso et al.28 were similar
across all three assays. Both studies also estimated systematically faster
waning using the Abbott assay while they found no evidence of waning
for the Roche assay. As a result, all else remaining equal, antibody
waning means that seroprevalence estimates will constitute an under-
estimate of the proportion infected. That the Abbott assay exhibited
faster waning may also imply that the assay immunoglobulin type (IgG
in the Abbott, pan-Ig in the Roche) is also important.

In this study, we use CDC’s commercial laboratory nationwide
serosurvey data and multiple other data sources to explain the
observed spatio-temporal patterns in seroprevalence in the United
States, with a particular focus on the role played by the different assays
used, waning of antibodies, and the implications for estimating the
proportion infected.Weexplore the impact ofwaning antibodies using
a simple model, where we adjust seroprevalence to reconstruct the
proportion infected across the United States. Finally, to gain insight
into the composition of sources of immunity, we compare the spatial
patterns in estimated proportion infected with vaccination coverage
across states over time.

Results
We used data from the CDC’s nationwide antibody serosurveys from
commercial laboratories, which measures infection-induced ser-
oprevalence. This study included both anti-nucleocapsid (anti-N) and
anti-spike (anti-S) antibody assays prior to widespread vaccination
campaigns, after which it included only anti-N assays. Anti-N assay
seropositivity is reflective of prior infection with SARS-CoV-2 and not
of vaccination with vaccines available in the United States, which
contain only the spike protein; seroprevalence is also not a quantita-
tive measure of current immunity status. We will henceforth refer to
infection-induced seroprevalence as “seroprevalence”. Serosurveys
started in July 2020 (round 1), and as of January 2022 (round 29),
seroprevalence ranged from 18% in Vermont to 56% in Wiscon-
sin (Supplementary Fig. 1). By then, the proportions of state popula-
tions reported as confirmedCOVID-19 cases ranged from10% inHawaii
to 25% in Rhode Island, and the proportions for confirmed deaths
ranged from 0.1% in Vermont to 0.4% in Mississippi, with marked
heterogeneity across states by round. Rank order of states by ser-
oprevalence at a point in time differed quite markedly from that by
proportion of the population reported as a case (Fig. 1). To explain
spatio-temporal variation in seroprevalence across states, we fit two
sets of logistic regression models. The first model (“referencemodel”)
includes cumulative proportions of populations reported as cases and
deaths as explanatory variables while accounting for a range of other
factors including the assays used in each survey. The second set of
models (“waning models”) explicitly incorporates the temporal effect
of different waning rates (depending on the assay being used) on

seroprevalence estimates (see “Methods”). Comparison of the waning
models with the referencemodel enables assessment of the proposed
model of waning in measured antibodies and its relative ability to
explain observed patterns.

Variation in infection-induced seroprevalence associated with
the use of different assays
Seroprevalence varied systematically as a function of the specific
assays used in the surveys (Abbott, Ortho, or Roche). In the reference
model, higher proportions of use of the Abbott assay were associated
with lower seroprevalencewhile use of the Roche assay was associated
with higher seroprevalence (Supplementary Table 1 and Supplemen-
tary Fig. 2; the Ortho assay was included in the model as the compar-
ison group). As a result, some of the spatial variation observed in the
nationwide serosurveys was attributable to the spatially hetero-
geneous use of assays (Supplementary Figs. 3–6). Using the reference
model, we estimated the seroprevalence that would have resulted had
all states exclusively used one of the three assays alone. We estimated
that if the serosurveys had exclusively used the Roche assay (highest
seroprevalence), estimated seroprevalence country-wide could have
been 20 percentage points higher in January 2022 than if only the
Abbott assay (lowest seroprevalence) was to have been used (Sup-
plementary Fig. 7). There was substantial state-to-state variation in the
change in expected seroprevalence had the Roche assay been exclu-
sive used; for example, seroprevalence would have been over 27 per-
centage points higher in Iowa in May 2021 (round 21) had they
exclusively used the Roche assay, relative to the actual survey esti-
mates (Supplementary Fig. 7).
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Fig. 1 | States ranked by different metrics. Ranked (a) cumulative percentage of
the population reported as a COVID-19 case, b seroprevalence from the CDC
nationwide serosurveys, c cumulative percentage of the population reported as a
COVID-19 death, andd vaccination (with a full series) coverage, for July 2021 (round
24, the last round before the Roche assay started being used exclusively). Gray
shading in (a) and (b) show serosurveys that at that point in time exclusively used
the Abbott assay.
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Accounting for waning helps explain variation in infection-
induced seroprevalence
Accounting for waning detection of antibodies over time improved
model fit over the reference model across various metrics (Fig. 2,
Supplementary Fig. 8 andTable 1). Results support a faster waning rate
for theAbbott assay, while therewasno clear evidence ofwaning in the
Roche assay (the best five percentile models by every metric included
themaximum97weeks considered here; Fig. 2, Supplementary Fig. 8).
Because the Ortho assay was only used up to January 2021 (except in
Puerto Rico, not included in this study), we could only explore up to a
maximumof 49 weeks of time to seroreversion. Time to seroreversion
(the time for antibodies to fall below a detection threshold) in the
Ortho assay depended on the metric used (no evidence of waning up
to 49 weeks by Akaike information criterion (AIC) and root-mean-
square error (RMSE), but only 10 weeks for LOOmedian RMSE), but its
use was limited (Supplementary Fig. 1). The best fitting models by
RMSE and median leave-one-out (LOO) RMSE had RMSEs and median

LOO RMSEs ~0.91 and 0.90 times that of the reference model
without waning, respectively. The best model by LOO median RMSE
had a mean time of seroreversion of 19 weeks for the Abbott assay,
10 weeks for the Ortho assay, and 91 weeks for the Roche assay
(although here, there was no statistical evidence of seroreversion over
the timeperiod studied of 97weeks), with cases seroconverting 1 week
prior to being reported as a case (−1 week detection delay; Table 1).
Note, however, that there was uncertainty around these parameter
estimates (Fig. 2). The best models by AIC and RMSE were similar, with
estimated Abbott assay time to seroreversion of 31weeks, and no clear
evidence of waning in the Ortho assay (with a time to seroreversion
≥49 weeks; Table 1). After accounting for waning, the negative
and positive associations between proportion of Abbott and Roche
assays with seroprevalence remained, albeit with smaller effect
sizes (Supplementary Table 1), potentially implying lower sensitivity of
the Abbott assay for detecting recent infections relative to the
other two.
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Fig. 2 | Rationale behind the models, and comparison of waning models with
the reference model across two metrics. Inclusion of waning helps explain pat-
terns in seroprevalence better. Left panels (a, b) explain how we mechanistically
incorporate waning into the models. In (a), a case is expected to test positive in a
survey for a limited amount of time before seroreverting, leading to (b) different
waning patterns that depend on the time to seroreversion (see Supplementary
Fig. 15). In our models we use three different times to seroreversion, one for each
assay.Within each tile panel (c, d), each pixel corresponds to a singlemodel, where
cases have been adjusted assuming three different times to seroreversion, one for
each assay. The best models had a case seroconvert 1 week before being reported
(Table 1). Tile plots assume the best model’s time to seroreversion for the Ortho

assay (49 weeks by AIC, 10 weeks by LOO median RMSE), and show model per-
formance for the remaining two variables, the times to seroreversion for Roche
(x-axes) and Abbott (y-axes) assays. c, d show results for two different model
metrics: AIC, and LOO median RMSE. Metrics are expressed relative to the metric
for the reference model (that does not account for waning); blues (respectively
reds) indicate waning models that are better (respectively worse), per that metric,
relative to the model without waning. Green points in c, d indicate the best model
by each metric, and contour lines enclose the best five percentile models as per
each metric. See Table 1 for the corresponding best waning model by each metric,
and Supplementary Fig. 8 for more complete results.

Table 1 | Best waning models across three metrics, compared to the reference model

Best fitting waning model, by each metric Reference model

AIC RMSE LOO median RMSE

Detection lead or lag (weeks) −1 −1 −1 –

Abbott time to seroreversion (weeks) 31 31 19 –

Ortho time to seroreversion (weeks) 49a 49a 10 –

Roche time to seroreversion (weeks) 67 96 91 –

ΔAIC 0 42 553 634

RMSE 0.0201 0.0200 0.0210 0.0221

LOO median RMSE 0.0209 0.0213 0.0205 0.0227

Observations 1398 1398 1398 1398

Residual degrees of freedom 1285 1285 1285 1285

Metrics for the best models by Akaike information criterion (AIC), root-mean-square error (RMSE), and leave-one-out (LOO) median RMSE, compared to metrics for the reference model (with no
waning). For example, the column “AIC” indicates the best waning model chosen by AIC (see Fig. 2). AIC values for waning models account for the added parameters being selected (times to
seroreversion and detection lead or lag). ΔAIC values in the table are relative to the lowest AIC in the models shown (the best fitting waning model by AIC).
aThese are lower bounds because they are themaximum number of weeks for which these assays could be evaluated. The Ortho assay was only used, to a limited extent, in the first 13 rounds of the
nationwide serosurveys (until January 2021), while the Abbott assay was used in the first 24 rounds (until July 2021; see “Methods” and Supplementary Figs. 1 and 3).
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Next, we used the best waning model to estimate the proportion
infected by correcting the seroprevalence for assay use and serorever-
sion (see Methods) and compared it to reported seroprevalence. The
difference between estimated proportions infected and seroprevalence
is greatest in states and time points in which the Abbott assay was
predominantly used (e.g., Fig. 3 and Supplementary Figs. 4–6). The
estimated proportion infected was at least 10 percentage points higher
than the seroprevalence in six states in January 2021, and in 17 states in
July 2021, although when averaged across the country (using state
populations as weights), the difference was at most five percentage
points (Fig. 3). Our results also show that the decreasing seroprevalence
over time observed in some stateswas at least in part attributable to the
assays used and corresponding waning rates (e.g., most of the states
shown in Fig. 3). The resultant time series of proportion infected dif-
fered not only quantitatively but in some cases also qualitatively from
the seroprevalence estimates (Fig. 3 and Supplementary Fig. 9).

To highlight the influence of choice of assays on seroprevalence
estimates, we compare the seroprevalence estimated in New York and
New Jersey. Both states experienced qualitatively similar outbreak
dynamics according to reported cases and deaths, yet the surveys
produced very different seroprevalence estimates (both in their
absolute values, and in particular their evolution over time; see Fig. 3).
The maximum difference in their seroprevalence was 19 percentage
points (13% in New York, 32% in New Jersey in May 2021). Ser-
oprevalence in New York exhibited a conspicuous drop between
October and November, a drop that was not observed in neighboring
New Jersey. Our results show that the drop in New York can at least in
part be explained by a switch from using the Roche assay to a mix of
the Ortho and Abbott assays in October 2020 to exclusively using the
Abbott assay by January 2021 to produce the NewYork seroprevalence
estimates. However, sampling for the study was also changed in
November 2020 to include a larger proportion of specimens from
outside the New York City metropolitan area, which had experienced
the largest spike in early cases. Estimates for New Jersey were obtained
exclusively using the Roche assay. Accounting for this difference
produces estimates of proportion infected that are more similar in

magnitude and in trend across the two states. For instance, the max-
imumdifference between the two states after adjusting for assay use is
less than six percentage points, in line with the maximum difference
reported in seroprevalence after July 2021 (when both used the Roche
assay) of just under four percentage points.

Spatial heterogeneity in infection-induced seroprevalence,
estimated proportion infected, and vaccination coverage
Some of the observed spatial heterogeneity in seroprevalence (Fig. 4a)
was a result of the use of different assays and their associated waning
rates (Supplementary Figs. 3–6). For example, by July 2021 (round 24,
the last round prior to the Roche assay being used exclusively), the
standard deviation in percentage seroprevalence across states was 10%
(Fig. 4a), while after correcting for assay use andwaning (Fig. 4b), it was
7.2% (also see Supplementary Fig. 10). We also found that as vaccine
distribution increased in 2021, states with higher vaccine coverage were
associated with lower estimates of the proportion infected (Fig. 4e). We
combined the estimates of the proportion infected from our best
waning model with the vaccination coverage (thus including ser-
opositives from both natural infection and/or vaccination, which we
henceforth refer to as the estimated proportion infected and/or vacci-
nated, or EPIV), by assuming that the probabilities of being infected and
vaccinated with a complete series are independent. The differences
between states were further reduced when considering EPIV; in July
2021, the standard deviation in the EPIV was 5.6% (Fig. 4, comparing
maps b and d; Supplementary Fig. 10). A comparison of time series in
individual states (Fig. 4f) illustrates the relationship between vaccine
coverage and the estimated proportion infected over time. Of note,
Washington, a state with low estimated proportion infected pre-
vaccination and higher vaccination coverage maintained a low propor-
tion infected post-vaccination, while Alabama had high estimated pro-
portion infected pre-vaccination and achieved lower vaccine coverage.

Pre-infection vaccine coverage
The greatest public health benefit of vaccines is likely achieved when
administered to individuals prior to infection. Maximizing the vaccine
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Fig. 3 | Time series of survey seroprevalence and estimated proportions
infected for seven example states and U.S.-wide. Example time series of survey
seroprevalence, fitted seroprevalence and estimated proportion infected for (a)
Idaho, (b) Nebraska, (c) New Jersey, (d) New York, (e) Oklahoma, (f) Louisiana, (g)
Georgia, and (h) the United States. For all of these states, seroprevalence was
estimated primarily using the Abbott assay prior to September 2021 (see Supple-
mentary Figs. 1 and 3), except for (c) New Jersey, for which the Roche assay was
exclusively used. The proportion infected was estimated using the best waning
logistic regression by LOO median RMSE (Fig. 2 and Table 1). U.S.-wide estimates

were obtained by takingmean values per roundweighted by state populations, and
each round was plotted taking the mean week for that round across all states.
Uncertainty envelopes around fits and estimated proportions infected include
model uncertainty and uncertainty around the selection of times to seroreversion
and lead or lag between seroprevalence and reported cases (see Methods). The
U.S.-wide ribbon does not includemodel uncertainty. Vertical dotted lines indicate
the start of the vaccination campaigns. See Supplementary Fig. 9 for time series for
all states included in the model.
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coverage of individuals pre-infection would have required both limit-
ing, to the extent possible, transmission (e.g., by implementing non-
pharmaceutical interventions), and an effective vaccination campaign.
Our reconstructions of the proportion infected show that the degree
to which transmission was constrained in the United States varied
across states and over time (Fig. 3 and Supplementary Fig. 9), by more
accurately showing when the cumulative proportion infected
remained flat. Furthermore, although vaccination campaigns started
almost simultaneously across the country, differences across states in
vaccination rates and coverage quickly emerged (Supplementary
Figs. 5 and 6). To give insight on the coverage and speed of the vac-
cination campaign relative to the speed at which cases increased, we
estimated the proportion of the total population that was vaccinated
with a complete series of doses before being infected, assuming that
vaccinations were distributed independently of prior infection status.
The proportion of the whole population who were vaccinated and not
previously infected ranged from 6% in Utah to 15% in Alaska in mid-
March 2021, before widespread availability of vaccination to indivi-
duals over ages 65 years, and from 21% in Idaho to 42% in Vermont by
mid-January 2022 (Supplementary Fig. 11).

Comparison with an independent dataset
Finally, we compared estimates produced by our models with an inde-
pendent dataset, the nationwide blood donor serosurvey19. Infection-

induced seroprevalence estimates from the two sets of surveys are
clearly correlated (Pearson and Spearman correlations of 0.85), albeit
with substantial variation (Supplementary Fig. 12), while our estimated
proportion infected was also highly correlated to the blood donor ser-
osurvey estimates (Pearson and Spearman correlations of 0.94 and
0.93, respectively), although our estimates tended to be higher.

The blood donor surveys included both anti-N and anti-S assays,
allowing estimates of seropositivity from both natural infection and
vaccination, respectively19. Our EPIV values were substantially lower
than the anti-S seroprevalence estimated in the blood donor survey
(Fig. 5), especially after vaccinations started. Including individualswith
at least one vaccine dose in the EPIV brought our values closer to the
blood donor survey estimates. When assuming a perfect negative
correlation between having one ormore doses of a vaccine and having
ever tested positive due to an infection (adding the two proportions,
thus constituting an upper limit), our EPIV were comparable to those
of the blood donor surveys. It is, however, also important to note that
differences between our EPIV estimates and the blood donor surveys
could also be attributable in part to the uncertainty around the time to
seroreversion of, particularly, the Roche assay (Figs. 2 and 5).

Discussion
Our results show that heterogeneous spatio-temporal patterns in ser-
oprevalence are in part explained by which assays were used in the
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show the uncertainty envelopes due to the uncertainty in the model fit and in the
selection of times to seroreversion and lead or lag between seroprevalence and
reported cases), and proportion of the population vaccinated with a full series (red
lines) for two states. a–d show maps for July 2021 (round 24); its point in time is
shown in (f) as vertical gray dashed lines. In (e), a negative correlation means that
states with a higher vaccination coverage tended to be thosewith lower proportion
infected. See Supplementary Fig. 9 for time series like those in (f) for all states.
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surveys: seroprevalence was lower in states that made greater use of
the Abbott assay, underlining variation in the ability to detect infection
andwaning rates across assays, and possibly indicative of the different
detection thresholds that define seropositivity used by each assay. The
times to seroreversion were found to be likely distinctly lower in the
Abbott assay than in the Ortho or Roche assays; differences supported
by other literature (e.g. ref. 28) and likely related to characteristics of
the assay target. Accounting for the assays used reduces differences
across states in seroprevalence and suggests a more homogeneous
impact of the pandemic across the United States thanwould otherwise
be surmised based on the surveys alone. The estimated proportions
infected were negatively correlated with vaccination rates across
states.

Longitudinal studies quantifying within-individual antibody
kinetics have also previously shown (albeit with relatively small sample
sizes) how antibody levels and waning rates can markedly vary
depending on the assay used and on disease severity (refs. 28, 32, but
also see ref. 33). Peluso et al.28 found similar mean times to seror-
eversion for the Abbott assay (23 and 33 weeks for non-hospitalized
and hospitalized individuals, respectively), compared to 19 weeks in
our best waning model, and 39 and 79 weeks for the Ortho assay
compared to 10 weeks in our results (although by AIC and RMSE there
was no evidence of waning; note that the Ortho assay was phased out
by January 2021), while they found no evidence of waning for the

Roche assay, and neither did we (although our point estimate was
91 weeks), albeit with significant uncertainty around our estimate.
Stone et al.32 also reported distinctly faster waning rates in the Abbott
assay. Moreover, even after accounting for differential waning
between assays, Abbott assay use was associated with lower ser-
oprevalence, possibly suggesting lower sensitivity to recent infections,
although this findingwas not consistent with Peluso et al.28, who found
similar sensitivities to recent infections across all three assays.

Previous studies have also leveraged individual-level immune
dynamics to produce corrected seroprevalence estimates. For
instance, using time series of reported cases, deaths, or hospitaliza-
tions, Takahashi et al.31 used time-varying assay sensitivities (and their
variation with disease severity, estimated in individual-level data) to
produce adjusted estimates of seroprevalence across five locations.
Where they incorporated individual-level data into theirmethodology,
we recovered individual-level patterns across a large population.

The spatial heterogeneity observed in the nationwide serosurveys
was to an extent attributable to assays used and waning; variation
across states in the estimated proportion infectedwas distinctly lower.
Nevertheless, the vaccination campaign started at a point in timewhen
the estimated proportion infected still differed by >36 percentage
points across states, and this maximum range grew to >39 percentage
points by January 2022. Thismeans that vaccination campaigns started
on a relatively heterogeneous landscape of immunity and that
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Fig. 5 | Comparison of our estimates of proportions infected and/or vaccinated
with the blood donors anti-S seroprevalence estimates. Comparing estimated
proportions infected and/or vaccinated (EPIV) using the best waning logistic
regression (Table 1) with estimated anti-S seroprevalence from blood donor sam-
ples. The seroprevalence from the blooddonor samples includes both infected and
vaccinated individuals, and our EPIV combines estimated proportion infected
(adjusting for assay use andwaning) with the proportion vaccinated. Thick lines are
LOESS fits to the data points shown, and thin vertical lines showuncertainty in EPIV
values. That uncertainty comes from our estimated proportions infected, due to

the uncertainty in the model fit and in the selection of times to seroreversion and
lead or lag between seroprevalence and reported cases (see “Methods”). The blue
line and points (a) assume that the probability of infection and being vaccinated
(with two doses) are independent (Eq. (1)), red lines and points (b) use the pro-
portion vaccinated with at least one dose (Eq. (1)), while the green line and points
use theproportion vaccinatedwith at least onedose, and assumeaperfect negative
correlation between vaccination coverage and estimated proportion infected (c;
Eq. (2)). d compares the LOESS fits for (a–c). See Supplementary Fig. 13 for com-
parisons of time series of these quantities per state.
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heterogeneity increased with vaccinations and subsequent infections.
Uptake of vaccines also varied across states, with the proportions of
the population vaccinated differing across states by as much as 30
percentage points by January 2022. Vaccination coverage was nega-
tively correlated with the estimated proportion infected, a finding
corroborated in a comparison with an independent dataset, the
nationwide blood donor serosurvey. This negative correlation implies
that differences among states in the proportions of state populations
that have experienced an immune response (whether by infection or
vaccination) is lower than expected based on vaccination coverage or
the proportion infected alone. However, the negative correlation also
suggests that the composition of the source of immunity (from either
infection or vaccination) is likely heterogeneous across states. Con-
sequently, were immune protection from infections and vaccines
found to differ systematically (and there are indications that this may
indeed be the case, e.g. refs. 34, 35), the result of future waves of the
pandemicmayalso beexpected tobe spatially heterogeneous.We also
presented ametricmeant to capture the rates atwhich states delivered
vaccines in relation to the rate at which cases accrued. Reconstruction
of the dynamics of cumulative infections allows for greater investiga-
tion of heterogeneity between locales that might be used to guide
future public health responses.

The differences in our estimates of the proportion infected and
estimated proportion infected and/or vaccinated (estimates without
and with vaccination, while accounting for assay use and waning) with
the blood donors surveys could in part be attributed to likely differ-
ences in the biases in the sampling inherent to the two surveys. The
nationwide serosurveys that form the basis of our estimates use sam-
ples from individuals seeking medical care for reasons unrelated to
COVID-19. On the other hand, people who donate blood may differ
from the overall population in important ways; for instance, blood
donors are more likely to be healthy, non-pregnant adults, certain
groups (e.g., younger age categories) may be systematically under-
represented, and for example, their vaccination uptake might be sys-
tematically higher (e.g. ref. 36). The assays usedwere also not the same
across the two sets of serosurveys. Nonetheless, the comparison sup-
ports the negative correlation between proportion infected and vac-
cination coverage.

A number of caveats should be taken into consideration when
interpreting our results. As noted above, our results are based on
serosurveys using a convenience sample of individuals that sought
health care for reasons other thanCOVID-19; this sample could deviate
from the wider population in important ways and not be representa-
tive. For example, this group may have experienced different rates of
severe illness upon infection with SARS-CoV-2, an important determi-
nant of immune response, than the general population24,28,31 and may
have systematically different healthcare seeking behavior. Further-
more, biases in the sampling could also vary over time and across
states, for instance as a function of the numbers of cases and under-
lying demographics. Rates of seroconversion and reversionmight also
be different pre- and post-vaccination (e.g. refs. 34, 35, 37). We use
numbers of tests that were positive and negative in the models,
meaning that we do not make explicit adjustments for race, ethnicity,
age, or sex, although these factors are, to an extent, captured in the
model with state-specific intercepts. Finally, to calculate the estimated
proportion infected and/or vaccinated, we assumed that the prob-
abilities of being infected and vaccinated were independent. However,
vaccinationmaybe associatedwith prior infection and the comparison
to blood donor seroprevalence suggests that vaccination may be
negatively correlated with the probability of prior infection.

The lags between seroconversion and a case being reported were,
a priori, an important parameter to consider in accounting for
potential systematic shifts in the time series of seroprevalence and
reporting of cases and deaths. However, this parameter should be
interpreted with caution. Serosurveys were conducted roughly every

2–4 weeks, and they reported time windows (that can be 2–4 weeks
long) over which the surveys were performed; we here use the mid-
points of the windows. Reporting delays might also be expected to
vary over time. Nevertheless, our results do not provide strong evi-
dence for a specific lead or lag, and this is reflected in the uncertainty
estimates we provide.

Our model assumes a constant relationship between infections
and reported cases over time. This assumption will be increasingly
challenged as the pandemic progresses, particularly beyond the time-
frame considered here. The rising probability of reinfections and
breakthrough cases, as well as the increasing reliance on at-home
testing, would likely introduce biases into our estimates of numbers of
infections. For example, if increasing numbers of cases reported were
to be reinfections, then our approach would overestimate the esti-
mated numbers of infections. Conversely, if fewer cases were to be
reported due to at-home testing, then our model would produce
underestimates. Furthermore, waning rates, which in our model are
assumed to be constant over time, might vary as a result of prior
infections and/or vaccinations. All these factors act concurrently, and
understanding what the overall bias introduced would be and disen-
tangling their effect on our estimates is a challenge that would require
a change to our approach.

Serosurveys will continue to be critical tools to understand
determinants and predictors of infection, reinfection, duration of
protection, antigen-specific protection to SARS-CoV-2 variants, and
the underlying determinants of burden (e.g., the infection fatality
ratio). Given the changing relationship between reported cases and
infections due to reinfections and breakthrough cases and the
increasing availability of at-home testing, statistical and mechanistic
approaches to analyzing serosurvey data will becomemore important.
Our results identifying signals of waning and the correlation between
vaccination and prior infection suggest that large scale, aggregate
datasets like the U.S. serosurveys may yield useful inferences on the
relationships between serological responses, protection, and reinfec-
tion. However, further work will be needed to interpret serology as
seropositivity saturates in the population and more individuals
experience multiple immunizing events (i.e., re-infection, vaccine
boosts).

Methods
In this study we aimed to explain spatio-temporal variation in ser-
oprevalence using logistic regressions. We included as covariates the
variable use of different assays across time and space and assessed the
evidence to support differential waning of seropositivity across assays.
The correlations between the covariates used in themodels are shown
in Supplementary Fig. 14.

Data
The serosurveys, conducted by the CDC and commercial laboratories,
included samples obtained for reasons unrelated to COVID-19.
Nationwide seroprevalence studies using available serum specimens
(henceforth referred to as “nationwide serosurveys”) were conducted
from July 2020, with the aim of estimating seroprevalence from
infection per state approximately every 2–4 weeks8. The surveys are
ongoing, but we here analyze surveys up to January 2022 (round 29).
Three immunoassays were used: the Roche Elecsys Anti-SARS-CoV-2
pan-immunoglobulin immunoassay that targets the nucleocapsid
protein (henceforth referred to as “Roche”), the Abbott ARCHITECT
SARS-CoV-2 IgG immunoassay targeting the nucleocapsid protein
(henceforth referred to as “Abbott”, and theOrtho-Clinical Diagnostics
VITROS SARS-CoV-2 IgG immunoassay targeting the spike protein
(henceforth referred to as “Ortho”). Further details about the labora-
tory methods, including the sensitivity, specificity, can be found in
section “Laboratory methods” in SI. As all vaccines available in the
United States generate antibodies to the spike protein only (anti-S),
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serosurveys conducted following the widespread availability of vac-
cines used exclusively anti-N assays. The Ortho assay measured anti-S
antibodies, but their use was phased out in the states analyzed here by
the end of January 2021, prior to the start of widespread vaccination
campaigns. The nationwide serosurvey data were downloaded from
the CDC (https://data.cdc.gov/Laboratory-Surveillance/Nationwide-
Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv). We assumed
the surveys for each round took place on the middle date of the range
given. We then used the number of positive and negative tests pro-
duced in each survey as our outcome variable. Because there were few
completed survey rounds for North Dakota, it was excluded from
analyses.

County-level daily laboratory-confirmed COVID-19 cases and
deaths in the counties of the United States were downloaded from
USAFacts (https://usafacts.org/visualizations/coronavirus-covid-19-
spread-map/) on March 2, 2022. After aggregating the numbers of
cases and deaths per state, and differencing the cumulative curves to
obtain numbers of cases and deaths per day, we found negative values
of both reported deaths and cases. If the negative value was immedi-
ately followed by the same (positive) value, those counts were can-
celed out. Otherwise, the negative total was discounted from previous
days’ totals. We then aggregated numbers by week, recalculated
cumulative numbers, and divided them by the respective state popu-
lations to produce cumulative percentages of the population that were
reported as COVID-19 cases and deaths, for each nationwide ser-
osurvey round. These data did not include Puerto Rico, so Puerto Rico
is not included in our analyses.

Excess deaths data for each state were downloaded from the CDC
(https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm). We
kept the weighted data only (which attempts to correct for reporting
delays). To estimate the number of (excess) deaths not attributable to
COVID-19, we took the difference between excess deaths and reported
deaths. We then calculated this number as a percentage of the state
population.

Laboratory testing (PCR) time series per state were downloaded
from HealthData.gov (https://healthdata.gov/dataset/COVID-19-
Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb), and from
thesewe estimated the cumulative number of tests performed relative
to each state’s population up to each serosurvey round.

Weuseddata on thedistributionof assays used ineach serosurvey
round38. The information provided included the number of tests, for
each survey round, that were performed with each of three different
assays (Abbott ARCHITECT IgG anti-N, Ortho VITROS IgG anti-S, and
Roche Elecsys Total Ig anti-N). From September 2021 (round 25)
onwards, states switched to exclusively using the Roche Elecsys assay.

COVID-19 vaccination data were downloaded from the CDC
(https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-
United-States-Jurisdi/unsk-b7fc). We produced percentages of the
populations that had been vaccinated with at least one dose of a vac-
cine, orwith a complete series of the vaccine (individualswith a second
dose of a two-dose vaccine or one dose of a single-dose vaccine) at
each point in time per state. For a couple of states (e.g., Kentucky and
West Virginia), vaccination coverage is not a monotonically increasing
function of time. However, it is unclear from the data documentation
what the reason for this pattern may be.

We downloaded data on COVID-19 hospitalizations from Health-
Data.gov (https://healthdata.gov/Hospital/COVID-19-Reported-Patient-
Impact-and-Hospital-Capa/g62h-syeh). We calculated the cumulative
total number of confirmed adult hospital admissions, and then
obtained the percentage of the cumulative number of cases that had
been hospitalized, per state.

The proportion of COVID-19 cases reported in different age cate-
gories was estimated using the CDC restricted access case surveillance
line-list data (https://data.cdc.gov/Case-Surveillance/COVID-19-Case-
Surveillance-Restricted-Access-Detai/mbd7-r32t). The reporting times

in the CDC line list data are not expected to match those from USA-
Facts.gov. We assumed that the proportions of total cases being
reported in each of the age categories was unlikely to undergo very
rapid changes over time, so we estimated these proportions based on
5-week rollingmeans of the cumulative number of total cases and cases
reported in each age category.

We compared our estimates of proportions infected with a
separate serosurvey conducted by the CDC: the nationwide
blood donor serosurvey (https://covid.cdc.gov/covid-data-tracker/#
nationwide-blood-donor-seroprevalence). The survey estimates the
proportion of the population with antibodies against SARS-CoV-2
(both anti-N and anti-S Ig), for which they used the Roche Elecsys Total
Ig andOrtho VITROS Total Ig assays. Multiple estimates were provided
for different parts of some states; we took the mean seroprevalence
weighted by the number of tests to get a single estimate by state.
Surveys were not necessarily performed in the same weeks as the
nationwide serosurveys. To maximize the data used when comparing
the two datasets, if surveys in the two datasets were performed 1 week
before or after the other, the two values were still matched.

We square-root-transformed the cumulative percentages of the
populations reported as cases and deaths, and the percentages of the
populations hospitalized, because their distributions were heavily
skewed and are expected to be the result of a multiplicative process.
For similar reasons, we natural-log-transformed the percentage of
state populations that were PCR tested. Models with these transfor-
mations performedbetter acrossmodelmetricsused in this study than
models without transformations.

Models
We fit logistic regressions using function “svyglm” in package “sur-
vey” v4.1.1. In all models, the number of positives out of the total
number of tests were the response variable. The “reference model”
included an interaction between week and state (which aimed to
capture changes in the percentages of COVID-19 infections reported
as cases over time and across states); the square-root-transformed
cumulative percentages of the state populations reported as a case
and as a death, the percentage of the population reported as
excess (unaccounted for) deaths, natural-log-transformed percen-
tage of the population that had been tested (PCR), the cumulative
percentage of the population that had been vaccinated, the square-
root-transformed cumulative percentage of cases that had
been hospitalized, the percentage of survey tests that utilized the
Abbott and Roche assays (as two separate variables; we did not
include a covariate for Ortho use because its inclusion would have
been redundant, given percentages across the three assays always
equal 100), and the percentage of cases being reported for different
age categories (we did not include ages >70 years category as the
inclusion would have been redundant given percentages across
age categories add to 100). Of a priori primary concern were the
cumulative numbers of reported cases and deaths (as they would
likely play an important part in explaining patterns in ser-
oprevalence), but we added the other variables as we assumed they
might be important to control for.Weweighted themodel to account
for thedifferent proportionsof the state populations thatwere tested
in the nationwide serosurveys by using the inverse of the sampling
proportion.

While accounting for the seroprevalence associated with the use
of different assays, the reference model above does not explicitly
account for thewaning in antibodies over time as quantified by eachof
the assays. As a point of comparison, we separately fit a suite of logistic
regressions (henceforth, “waning models”) based on the reference
model above, but which assumed a range of different antibody waning
rates per assay. We proceed with the following strategy. The time
series of the numbers of cases in a location is a (monotonically)
increasing function of time, while the time series for seroprevalence
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need not be (if, for instance, antibodies did wane below detectability).
We therefore “adjust” the reported cases to incorporate waning fol-
lowing a series of assumptions.

To adjust cases, wemultiply each reported case by a step function
produced using two parameters: (1) a lead or lag between a case ser-
oconverting and it being reported; and (2) a limited time during which
that case would test positive before seroreverting (Fig. 2 and Supple-
mentary Fig. 15). This produces an alternative “adjusted” time series of
reported cases. Furthermore, we could hypothesize that different
assays have potentially different times to seroreversion, and thus use
multiple step functions to produce these adjusted time series of cases,
one for each assay. We produce adjusted numbers of reported cases
based on the proportions of each assay used to produce each ser-
oprevalence estimate. We then fit different logistic regressions for all
combinations of the three step functions (or waning rates). An
improvement inmodel fit over the referencemodel provides evidence
for the input waning rates. In this way, the impact assays have on
seroprevalence is split into two components: the temporal waning
rate, and the average seroprevalence associated with each assay, after
accounting for waning, which could be interpreted as a proxy for assay
sensitivity for recent infections. Note that while the Roche assay has
been used through all survey rounds, the Abbott assay was used until
July 2021 (round 24), and the Ortho assay was used until January 2021
(round 13). This means the maximum times to seroreversion we can
explore for the Abbott and Ortho assays are 70 and 49 weeks,
respectively, relative to the start of the pandemic.

We evaluated models using the Akaike Information Criterion
(AIC), root-mean-squared-error (RMSE), and a leave-one-out (LOO)
median RMSE. RMSE values were estimated by comparing model
predictions on the response scale with nationwide serosurvey esti-
mates. For the LOO RMSE, each round of the surveys was left out in
turn, the model fit to the remaining rounds and used to predict the
round left out. We then estimated the median RMSE from the pre-
dictions of the rounds left out. We estimate the proportion infected by
taking the best waning model, and replacing the adjusted numbers of
cases (with which the model was originally fit) with the original
cumulative numbers of cases, and assuming only the Roche Elecsys
assay (associated with the highest seroprevalence estimates) is used.

Uncertainty around our estimated proportions infected can come
from both the individual model fit, and from the search for times to
seroreversion and lead or lag between seroprevalence and reported
cases. To characterize the uncertainty, we used an ad-hoc approach in
which we took the best (bottom) five percentile LOO median RMSEs
across parameter combinations (times to seroreversion and lead or
lag), estimated the proportion infected for the corresponding subset
of models to include the 95% uncertainty intervals (UIs) around each
model fit, and extracted the range of estimates for each point in time
and state (including the 95% UIs). U.S.-wide uncertainty estimates do
not include model uncertainty (which in any case was significantly
smaller than that from selection of times to seroreversion and lead or
lag), and were estimated by producing a mean seroprevalence and
estimated proportion infectedweighted by state populations, for each
of the models in the best five percentile models, and then taking the
range of values at each point in time.

We combine the estimated proportion infected with vaccination
coverage (what we refer to in the text as the “estimated proportion
infected and/or vaccinated”, or EPIV) by making assumptions on the
correlation between the two. We show results assuming an indepen-
dent probability, such that the probability of being vaccinated has no
bearing on the probability of having been infected, i.e.:

PðvaccÞ+PðinfÞ � PðvaccÞ×PðinfÞ, ð1Þ

where “vacc” can either represent individuals with at least a single dose
of a vaccine, or individuals with a complete series of the vaccine. We

also show results assuming a perfect negative correlation, i.e.:

PðvaccÞ+PðinfÞ: ð2Þ

To understand variation in the extent to which naive (not yet
infected or vaccinated) individuals had been prioritized by vaccination
campaigns, we defined the following metric:

XT

t

ðvðtÞ � vðt � 1ÞÞð1� sðtÞÞ, ð3Þ

where s(t) is the EPIV (combined proportion infected and vaccination;
see above) at time t, and v(t) is the vaccination coverage at time t. This
metric estimates the proportion of the population that was vaccinated
before being infected, assuming vaccinations were distributed inde-
pendently of prior infection status.

We also repeated analyses allowing covariates to have non-
parametrically non-linear relationships with seroprevalence by using
splines. Predicted seroprevalence values from the logistic regressions
using splines were very similar to those predicted without the splines
(see section “Accounting for non-linear relationships” in SI).

R v4.239 was used in all analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used to fit the logistic regressions and estimates of proportions of
state populations infected by week are available online40. Estimates are
produced using the best waning model by leave-one-out median RMSE
(see Table 1 and Fig. 2 and Supplementary Fig. 8). See section “Models”
in “Methods” in the main text for how the lower and upper bounds we
provide for these estimates are calculated. Data were obtained from
various sources and subsequently merged to fit the models. The
nationwide serosurvey data were downloaded from the CDC (https://
data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Labor
atory-Seroprevalence-Su/d2tw-32xv). County-level daily laboratory-
confirmed COVID-19 cases and deaths in the counties of the United
States were downloaded from USAFacts (https://usafacts.org/
visualizations/coronavirus-covid-19-spread-map/). Excess deaths data
for each state were downloaded from the CDC (https://www.cdc.gov/
nchs/nvss/vsrr/covid19/excess_deaths.htm). Laboratory testing (PCR)
time series per state were downloaded from HealthData.gov (https://
healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-
Testing/j8mb-icvb). Data on the distribution of assays used in each
serosurvey round were taken from Wiegand et al.38. COVID-19 vaccina-
tion data were downloaded from the CDC (https://data.cdc.gov/
Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-
b7fc). We downloaded data on COVID-19 hospitalizations from
HealthData.gov (https://healthdata.gov/Hospital/COVID-19-Reported-
Patient-Impact-and-Hospital-Capa/g62h-syeh). The proportion of
COVID-19 cases reported in different age categories was estimated
using the CDC restricted access case surveillance line-list data (https://
data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-
Restricted-Access-Detai/mbd7-r32t). The nationwide blood donor ser-
osurvey dataset was downloaded from the CDC (https://covid.cdc.gov/
covid-data-tracker/#nationwide-blood-donor-seroprevalence).

Code availability

The code used to run the models and produce the figures in the main
text and the Supplementary Information, and the list of R packages
used and their versions are available online40.
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https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence
https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence
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