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Abstract
Leucocyte immunoglobulin‐like receptors (LILRs) are closely related to tumourigenesis,
but their clinical value in early‐stage pancreatic ductal adenocarcinoma (PDAC) after
pancreaticoduodenectomy remains unknown. Kaplan–Meier and Cox proportional haz-
ards regression models is used to investigate the association between LILR expression and
prognosis in tumour biopsies and peripheral blood mononuclear cells. Risk score was
calculated for each patient based on the prognostic model. DAVID, STRING, GeneMA-
NIA, and GSEAwere used to conduct pathway and functional analyses. The CIBERSORT
algorithm is used to analyse tumour‐infiltrating immune cells. Survival analysis showed that
high levels of LILRA4 (p= 0.006) and LILRB4 (p= 0.04) were significantly associated with
better overall survival. High levels of LILRA2 (p = 0.008) and LILRB4 (p = 0.038) were
significantly associated with better relapse‐free survival. JAK‐STAT signalling pathway,
regulation of T cell activation, regulation of the immune effector process, and tumour
necrosis factor superfamily cytokine production were involved in molecular mechanisms
that affected poor prognoses in the high‐risk group in GSEA. CIBERSORT demonstrated
that the high‐risk group had significantly higher infiltrating fraction of memory‐activated
CD4 T cells and activated NK cells and lower fraction of resting dendritic cells and neu-
trophils. LILRB4 plays crucial roles in affecting the clinical outcomes of early‐stage PDAC.
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1 | BACKGROUND

According to global cancer statistics, in 2018, about 458,918
new cases of pancreatic cancer occurred, and the number of
deaths was about 432,242 worldwide, indicating similar
morbidity and mortality rates [1]. Pancreatic ductal adenocar-
cinoma (PDAC) is the main pathological type of pancreatic
cancer. It has the characteristics of high malignancy and rapid

progression, resulting in poor clinical prognosis [2]. In recent
years, with the improvement of PDAC treatment strategies and
the emergence of new treatment methods, such as immuno-
therapy and neoadjuvant chemotherapy, the clinical outcomes
of PDAC have improved to some extent, but the challenge is
that the 5‐year overall survival (OS) rate is still less than 10% in
all stages of PDAC and it still has the worst prognosis among
all cancers [3, 4]. Although the 5‐year OS of patients with
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pancreatic cancer has risen from 2.5% in 1970 to 9% in 2019,
there is still a large gap in the improvement of the clinical
outcomes of other tumour types, such as breast and colorectal
cancers [3–5]. Lack of biological indicators for early effective
screening strategies and novel therapies in PDAC are the main
reasons for this discrepancy [6, 7]. Current studies have shown
that tumour markers, such as various commonly used carci-
noembryonic antigens and carbohydrate antigen 199, are not
effective in diagnosing early PDAC due to their low sensitivity
[7]. However, early detection strategies involving endoscopic
ultrasound and magnetic resonance imaging have not been
validated in randomised trials in high‐risk PDAC patients [4].
Therefore, identifying effective screening indicators and
treatment‐related targets is crucial to improve the prognosis of
pancreatic cancer.

PDAC is similar to most adenocarcinomas, with a
massive fibrotic stroma, which plays an important role in the
local inflammatory microenvironment of tumours [8–10]. The
microenvironment of PDAC consists of abundant deposition
of the extracellular matrix, low vessel density, cancer‐
associated fibroblasts, and immune/inflammatory cells,
which are closely related to tumour growth and progression
and the infiltration of immune cells, similar to other tumours
[2, 11–15]. Immune cells may be found in solid tumours, and
different types of immune cells have different effects on the
clinical prognosis of tumours [16, 17]. In particular, increased
number of dendritic cells (DCs) is associated with improved
prognosis in various types of human cancers. DC maturation
is a prognostic indicator; moreover, chronic inflammation and
presence of M2 macrophages facilitate tumour growth and
spread [18, 19].

Leucocyte immunoglobulin‐like receptors (LILRs) are a
family of receptors with extracellular immunoglobulin do-
mains; the gene coding region is located on the chromosome
region 19q13.4, also known as CD85, ILT, and LIR, which
have immunomodulatory effects on a variety of immune cells
[20, 21]. LILRs include subfamily A and subfamily B
(LILRA1–6 and LIRB1–5, respectively). The LILR receptor in
the A subfamily is an activation receptor that contains tyrosine‐
based immune receptor activation motifs (ITAMs), while the
LIR receptor in the B subfamily contains multiple tyrosine‐
based cytoplasmic immune receptor inhibition motifs
(ITIMs) [22, 23]. LILRs are related to the human killer cell
inhibitory receptor (KIR) family. Both have similar Ig‐like
structures and cytoplasmic signal domains. Although the
expression of KIR is limited to natural killer (NK) cells, LILRs
are found in a variety of cells, including NK, T lymphocytes, B
lymphocytes, and myeloid cells (monocytes, macrophages,
dendritic cells, and granulocytes [24]). The transmembrane
domain of the LILRA receptor contains a charged arginine or
lysine residue associated with the FcR ligand containing
(ITAXI/Lx 6–12 YxxI/L) ITAM [25]). ITAM activation re-
cruits Syk/ZAP70 family kinases to drive downstream activa-
tion pathways, which are important for immunity [26]. By
contrast, the LILRB receptor contains the cytoplasmic (S/I/
V/LxYxxI/V/L) ITIM domain, which recruits the phospha-
tase SHP1/SHP2/SHIP containing the Src homology 2

domains, thereby inhibiting the immune signalling cascade.
SHP/SHIP phosphatase activity is essential to maintain im-
mune homoeostasis [27].

LILRAs and LILRBs belong to the LILRs group, and the
main function of LILRAs involves immune activation, while
the role of LILRBs is immune suppression [28–30]. A study on
oestrogen receptor‐positive breast cancer reported that after
receiving neoadjuvant endocrine therapy, compared with pa-
tients with low expression of the LILRA2 gene in the tumour
biopsies, patients with high LILRA2 expression showed sig-
nificant tumour shrinkage, which was beneficial to breast‐
conserving surgery [31]. Lu et al. found that the
Semaphorin‐4A gene stimulated the CD4+ T cells and regu-
lated Th2 T cell differentiation by binding to LILRA2, thereby
initiating an immune response [32]. A previous study reported
that LILRA4 was also expressed in cancer cells, which was
associated with impairment of plasmacytoid dendritic cells
(pDCs) in the microenvironment of cancers [33]. A genome‐
wide analysis of copy number variations in ovarian cancer
has shown that duplicate mutations in LILRA6 were associated
with susceptibility to high‐grade serous ovarian cancer [34].

Human Leucocyte Antigen‐G (HLA‐G) positive expres-
sion in gastric cancer patients indicated a poor prognosis, and
its possible mechanism may be that HLA‐G combined with
LILRB1 inhibited NK cell proliferation and function [35]. A
series of studies have shown that in a variety of tumours,
such as colon cancer, non‐small cell lung cancer, and hepa-
tocellular carcinoma, overexpressed LILRB2 was associated
with a poor prognosis [36–41]. LILRB4, which is also an
immunosuppressive receptor, is similar to LILRB3, so it can
interact with HLA‐G to inhibit the activation of immune
cells, which mainly include NK and T cells [42, 43]. High
LILRB4 expression has also been reported to be associated
with tumour progression and poor prognosis. LILRB4 was
associated with impaired T cell responses in pancreatic can-
cer, and antagonistic LILRB4 was the key to successful
immunotherapy [44, 45]. In leukaemia, tumour cells disable
immune checkpoint blockade therapy through the LILRB4
signalling, and blocking LILRB4 can prevent the develop-
ment and metastasis of tumour cells. The potential mecha-
nism is that LILRB4 changes the tumour microenvironment,
resulting in immune suppression [46, 47]. In colorectal can-
cer, the LILRB4 gene was found to be highly expressed in
cancer tissue, and the expression level of the LILRB4 gene
was negatively correlated with the density of CD45RO + T
cells in the cancer tissue, and high LILRB4 gene expression
was a biomarker of poor clinical prognosis for colorectal
cancer [48]. Moreover, in gastric cancer, LILRB4 was
significantly related to the pathological grade [49]. Therefore,
we know that LILR family genes play an important role in
tumourigenesis, development, and clinical prognosis.

However, the effect of LILRs on clinical outcomes in
patients with PDAC remains unknown. This study aimed to
investigate the association between LILRs gene expression
and prognosis and reveal possible mechanisms in pathway
enrichment and tumour immune cell infiltration in early‐stage
PDAC.
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2 | MATERIALS AND METHODS

2.1 | Data mining and processing

The gene expression profiles and clinical information of PDAC
were obtained from The Cancer Genome Atlas (TCGA, data
release 21.0, December 10, 2019) and normalised by the
‘DESeq’ and ‘Limma’ package in R (version 3.6.1; www‐proj-
ect.org) [50]. The inclusion criteria for cases in this study were
as follows: (i) patients with pancreaticoduodenectomy and
pathologically confirmed as PDAC, (ii) according to the Sev-
enth American Joint Committee on Cancer, patients with
postoperative specimen pathological stage were stage I or II,
and pathology stages I and II were defined as early‐stage
PDAC, and (iii) patients with complete clinical prognosis
data. To further characterise the expression levels of LILRs
between PDAC patients and healthy control patients in the
peripheral blood mononuclear cells (PBMCs), GSE74629 and
GSE49641 were obtained from the gene expression
omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) database.
GSE55643 was used to verify differences in gene expression
levels. Data from the GEO database were normalised by the
‘normalizeBetweenArrays’ function of ‘Limma’ package in R.

2.2 | Bioinformatics and correlation analysis
of LILR genes

First, we analysed the differences in LILR gene expression
between pancreatic cancer and adjacent tissues and constructed
violin plots using the ‘wilcox.test’ function of ‘vioplot’ package
in R. We then used the ‘corrplot’ package in R to conduct
Pearson's correlation analyses between LILR genes and then
constructed corresponding correlation plots. We used the on-
line tool DAVID Bioinformatics Resources (version 6.8,
https://david.ncifcrf.gov) to conduct functional annotation of
gene ontology (GO) terms and enrichment of the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) for all LILR
genes. All 10 genes from the LILR gene family were included
in this analysis. [51, 52]. Finally, we analysed the in-
terrelationships of gene–gene and protein–protein interactions
between LILRs genes using online analysis tools: GeneMA-
NIA([53]) (http://genemania.org) and STRING (https://
string‐db.org) [54].

2.3 | Survival analysis and prognostic model
construction

Using the median expression of each LILR gene as the cut‐off
point, we defined the high‐ and low‐expression groups.
Kaplan–Meier analysis with the log‐rank test was used as a
univariate analysis to assess the association between clinical
factors, gene expression, and clinical outcomes, including OS
and relapse‐free survival (RFS). Clinical factors with p‐values
of the log‐rank test less than 0.05 were used as corrective
factors when constructing the Cox proportional hazards

regression model of each LILR gene. Then, the genes that were
significantly associated with clinical outcomes were recruited to
construct a prognostic model. The formula of risk scores was
as follows:

Risk score¼ expression of gene1 � β1 þ expression of gene2
� β2 þ… expression of genen � βn

where β is the regression coefficient from the multivariate Cox
proportional regression model of individual genes. We used
median risk scores as the cut‐off point and divided the patients
with PDAC into higher and lower risk groups. A receiver
operating characteristic (ROC) curve was used to evaluate the
predictive power of the prognostic model, which was con-
ducted using the ‘roc’ function of ‘ROC’ package in R [55].
Subsequently, we combined the risk score with clinical factors
of p‐values less than 0.05 for a nomogram analysis, which was
also completed using the ‘rms’ and ‘survival’ packages of R[56].
Afterwards, we analysed differences in expressions of
prognosis‐related genes between PDAC patients and healthy
control patients in the peripheral blood and PBMCs and
visualised the results using the ‘ggplot’ function and t‐test of
‘ggplot2’ package in R. ROC curves were constructed to show
the diagnostic efficiency of prognosis‐related genes in the
diagnosis of PDAC by using the ‘pROC’ package in R.

To verify the stability of the model, we used the k‐fold
method that was used for cross‐validation of the model,
‘caret’ package to create cross‐validation data set, and ‘survi-
valROC’ package to calculate AUC values.

2.4 | GSEA

After constructing the prognostic model, we found that
compared with the lower risk group, the higher risk group had
a worse clinical prognosis. To investigate the potential molec-
ular mechanism of adverse prognosis in the higher risk group,
we performed GSEA between both groups [57]. The Molec-
ular Signatures database (MSigDB) C2 and C5 gene sets were
used in the GSEA. The C2 gene set mainly included KEGG
and related signalling pathway analysis, while the C5 gene set
mainly included GO enrichment analysis. The selection criteria
for statistically significant gene sets were a false discovery rate
(FDR) less than 0.25 and a p‐value less than 0.05.

2.5 | Analysis of tumour‐infiltrating immune
cells

LILR genes were closely related to the regulation of immune
cells, so we performed a tumour‐infiltrating immune cell
(TIIC) analysis between the higher risk group and lower risk
group. The CIBERSORT algorithm was used to perform
tumour‐infiltrating immune cell analysis, which is a gene
expression‐based deconvolution algorithm, which can measure
22 types of characteristic immune cell compositions in RNA
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mixtures from many tissues, including solid tumours [58]. The
algorithm based on the mRNA expression sequence was
conducted using R, and the set parameter was 1000
permutations.

2.6 | Statistical analyses

All statistical analyses and plots were performed using SPSS
23.0 and R (version 3.6.1). A p‐value of less than 0.05 was
considered statistically significant. Association analyses be-
tween clinical factors and gene expression and clinical out-
comes were tested using Kaplan–Meier analysis and a Cox
proportional hazard regression model, and hazard ratios
(HRs) with 95% confidence intervals were used to describe
the relative risks. A two‐sided t‐test was used to evaluate the
differential expression analysis of LILR gene expression and
the percentage of tumour‐infiltrating cells between the two
groups. In GSEA, the Benjamini–Hochberg method was
used to adjust multiple tests, which defined the meaning of
FDR; in our study, FDR <0.25 was considered statistically
significant.

3 | RESULTS

3.1 | Data processing

After standardised processing, 112 patients with PDAC and
31,777 genes who met the inclusion criteria from TCGA were
enroled in our study. Clinical factors included age, sex, history
of chronic pancreatitis and alcohol, tumour size, pathological
stage, neoplasm histological grade, targeted molecular therapy,
radiation therapy, residual resection, and information of clinical
outcomes (Table S1). Overall survival data were available for all
samples in the 112 PDAC patients, but 19 cases were missing
in the relapse‐free survival data.

3.2 | Bioinformatics and correlation analysis
of LILR genes

We obtained 10 LILR gene expressions from the pancreatic
cancer expression profile of TCGA. These included LILRA1,
LILRA2, LILRA4, LILRA5, LILRA6, LILRB1, LILRB2,
LILRB3, LILRB4, and LILRB5 (Table S3). We performed a
differential expression analysis of those genes between
pancreatic cancer tissues and adjacent tissues. The results
showed that compared with adjacent tissues, LILRA1,
LILRA2, LILRA4, LILRA6, LILRB1, LILRB2, LILRB3, and
LILRB4 had a statistically significant lower expression in
cancer tissues (p < 0.05; Figure 1a). We then performed cor-
relation analyses on these 10 LILR genes and visualised the
results with correlation diagrams as shown in Figure 1b. The
results showed that they were all positive correlations, and
most of them were strong correlations (correlation coefficient
≥0.6). Some of them were very strong correlations (correlation

coefficient ≥0.8), such as LILRB1 and LILRB4, LILRB2, and
LILRB3.

Furthermore, we conducted functional annotation and
pathway enrichment for the LILR genes. As shown in the re-
sults of Figure 2a and Table S2, the LILR genes were mainly
involved in the adaptive immune response, the regulation of
immune response, the immune system process, leucocyte dif-
ferentiation, MHC class I protein binding, transmembrane
signalling receptor activity, and inhibitory MHC class I re-
ceptor activity. Notably, the Fc receptor‐mediated inhibitory
signalling pathway, immune response‐regulating cell surface
receptor signalling pathway, regulation of immune response,
regulation of immune system process, and immune response
were in the same regulatory network, which suggested that the
LILRs genes played an important role in the immune response
and regulation. The results of protein‐protein interaction (PPI)
analysis showed that LILR genes were closely associated with
each other, and they were related to the HLA family and
integrin family genes (Figure 2b). The results from GeneMA-
NIA were similar, showing a close relationship between LILR
genes (Figure 2c).

3.3 | Survival analysis and prognostic model
construction

In the analysis of the association between the above clinical
factors and clinical outcomes, we found that four variables
(neoplasm histological grade, targeted molecular therapy, ra-
diation therapy, and residual resection) were significantly
associated with OS, and two factors (neoplasm histological
grade and residual resection) were significantly associated with
RFS as shown in Table S1. Clinical factors of appeal were
included in the Cox proportional hazard regression model as
corrective factors. Other factors were not significantly associ-
ated with clinical outcomes.

The Kaplan–Meier analyses showed a significant associa-
tion between LILRA2, LILRA4, LILRA6, LILRB1, LILRB3,
LILRB4, and LILRB5 and OS in early‐stage PDAC patients
with pancreaticoduodenectomy (Figure 3; Figure S1A in Sup-
porting Information). Multivariate analysis results of Cox
proportional hazard regression models after received clinical
factor adjustment showed that the high expression of LILRA4
(p = 0.006, HR = 0.46, 95% CI: 0.27–0.80) and LILRB4
(p = 0.04, HR = 0.57, 95% CI: 0.33–097) were still significantly
associated with a better OS (Table 1 and Figure 3a,b). In a
univariate analysis of RFS of Kaplan–Meier analyses, we found
that LILRA2, LILRA4, and LILRB4 were significantly asso-
ciated with RFS (Figure S1B Supporting Information). In the
multivariate Cox proportional hazard regression model, there
were significant associations between the high expression of
LILRA2 (p = 0.008, HR = 0.35, 95% CI: 0.16–0.76) and
LILRB4 (p = 0.038, HR = 0.46, 95% CI: 0.22–0.96) with a
better RFS (Table 1 and Figure 3c,d).

We then conducted a joint analysis of genes that were
significantly associated with clinical outcomes based on gene
expressions. According to the level of LILRA4 and LILRB4
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F I GURE 1 (a) Violin diagram of differential expression analysis and (b) correlation graph of Pearson's correlation analysis of LILRs genes; blue denotes a
positive correlation, red denotes a negative correlation, and the shade of colour represents the size of the correlation coefficient. The (x) means that the results
were not statistically significant.
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expressions, we divided PDAC patients into three subgroups:
group A (both LILRA4 and LILRB4 had low expressions),
group B (a combination of high and low expressions),
and group C (both LILRA4 and LILRB4 had high

expressions). The results are shown in Table 2 and Figure 4a.
Compared with group A, Group C was significantly associated
with better OS (p = 0.007, HR = 0.42, 95% CI: 0.23–0.79). A
similar result was found in the combination of LILRA2 and

F I GURE 2 The analysis of the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO), and gene/protein interaction for
LILR genes. (a) Visualisation of the KEGG pathway and GO analysis results. (b) The protein–protein interaction networks of LILR genes, which were derived
from STRING. (c) The gene–gene interaction networks of LILR genes, which were derived from GeneMANIA.
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LILRB4: there was a significant association between group C
and better RFS (p = 0.012, HR = 0.35, 95%CI: 0.16–0.79)
(Table 3 and Figure 4b).

Subsequently, we constructed a prognostic model for OS
based on LILRA4 and LILRB4, and a prognostic model for
RFS was based on LILRA2 and LILRB4. In this study, the β
value of the Cox proportional hazard regression model was
negative; so to facilitate analysis and graph display, we per-
formed a logarithmic transformation of raw risk scores. The
specific formula of the prognostic model was as follows: risk

scores (OS) = ( −log10(LILRA4 expression � −0.673 +
LILRB4 � −0.26)))+ 4, risk scores (RFS) = (‐log10‐(LILRA2
expression � −0.123 + LILRB4 � −0.095)])) + 4. Here, the
constant 4 was used to make the final risk scores a positive
number. Based on median risk scores as the cut‐off point, pa-
tients were divided into higher risk and lower risk groups. From
the results of Table 4 and Figure 5a,b, we found that the higher
risk score group was significantly associated with poor OS
compared to the lower risk score group (p = 0.039, HR = 1.75,
95% CI: 1.03–3.00). In the prognostic model of RFS, the result

F I GURE 3 A Kaplan–Meier plot of the association between LILR gene expressions and clinical outcomes in early‐stage PDAC. OS for LILRA4 (a) and
LILRB4 (b); RFS for LILRA2 (c), and LILRB4 (d).
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showed that patients with PDAC after pancreaticoduodenec-
tomy with higher risk scores suggested a poor RFS (p = 0.007,
HR = 2.90, 95% CI: 1.33–6.15) (Table 5; Figure 6a,b). ROC
curve analysis was used to evaluate the predictive effectiveness
for both prognostic models. The area under the curve (AUC) of
the prognostic model of OS for 1‐year, 2‐year, and 3‐year were
0.670, 0.605, and 0.580, respectively (Figure 5c), and the AUC of
RFS was 0.672, 0.571, and 0.567, respectively (Figure 6c). After

5‐fold cross‐validation, the results showed that the mean AUCs
of 1‐year, 2‐year and 3‐year OS predicted by the model were
0.68, 0.62, and 0.60, respectively. The mean AUCs of 1‐year, 2‐
year and 3‐year RFS predicted by the model were 0.58, 0.66, and
0.62, respectively. Moreover, the nomogram results also sug-
gested that patients with higher risk scores had a worse prog-
nosis (Figure 4c,d) and the C‐index of OS and RFS models was
0.76 and 0.74, respectively.

TABLE 1 Analysis of the association between LILRs gene expression and clinical outcomes.

Gene

Overall survival Relapse‐free survival

Patients MST (days) HR (95% CI) p# Patients MST (days) HR (95% CI) p*

LILRA1

Lower 56 473 Reference 46 486 Reference

Higher 56 596 0.60 (0.35–1.03) 0.064 47 716 0.66 (0.31–1.40) 0.281

LILRA2

Lower 56 473 Reference 46 439 Reference

Higher 56 596 0.58 (0.33–1.02) 0.058 47 872 0.35 (0.16–0.76) 0.008

LILRA4

Lower 56 375 Reference 46 593 Reference

Higher 56 614 0.46 (0.27–0.80) 0.006 47 716 0.50 (0.23–1.04) 0.065

LILRA5

Lower 56 485 Reference 48 542 Reference

Higher 56 568 0.82 (0.49–1.38) 0.454 45 831 0.80 (0.39–1.63) 0.537

LILRA6

Lower 56 481 Reference 45 593 Reference

Higher 56 614 0.91 (0.52–1.60) 0.735 48 620 0.75 (0.37–1.50) 0.411

LILRB1

Lower 56 498 Reference 45 486 Reference

Higher 56 592 0.68 (0.40–1.17) 0.164 48 716 0.59 (0.27–1.27) 0.178

LILRB2

Lower 56 485 Reference 46 486 Reference

Higher 56 592 0.85 (0.50–1.45) 0.552 47 831 0.61 (0.30–1.28) 0.193

LILRB3

Lower 56 458 Reference 46 593 Reference

Higher 56 614 0.59 (0.34–1.04) 0.066 47 716 0.60 (0.29–1.23) 0.162

LILRB4

Lower 56 473 Reference 48 486 Reference

Higher 56 603 0.57 (0.33–097) 0.040 45 716 0.46 (0.22–0.96) 0.038

LILRB5

Lower 56 476 Reference 44 593 Reference

Higher 56 596 0.75 (0.43–1.31) 0.318 49 716 0.80 (0.38–1.66) 0.545

Note: Multivariate cox proportional hazards regression model was #adjusted by neoplasm histological grade, targeted molecular therapy, radiation therapy, residual resection in overall
survival and *adjusted by Neoplasm histological grade, residual resection in relapse‐free survival.
Abbreviations: CI, confidence interval; HR, hazard ratio; LILRs, leukocyte immunoglobulin‐like receptors; MST, median, survival time.
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Analysis of the tumour biopsies revealed that LILRA2,
LILRA4, and LILRB4 were associated with the prognosis of
PDAC patients. To test if these genes had prognostic potential
in PBMCs as well, GSE49641 and GSE74629 datasets were
analysed. We found that the difference in the expression of
these genes in cancer patients and the healthy controls was not
statistically significant in GSE49641 (Figure S2A‐C Supporting
Information), but LILRA2 and LILRB4 were significantly
higher in the peripheral blood of cancer patients in GSE74629
(Figure S2D‐F Supporting Information). Due to significant
differences in the expression of LILRA2 and LILRB4 in
GSE74629 in peripheral blood of PDAC patients, we decided
to construct an AUC curve to evaluate the diagnostic efficacy
of LILRA2 and LILRB4 in the diagnosis of PDAC. The AUCs
of LILRA2 and LILRB4 were 0.853 and 0.896, respectively
(Figure S2G in Supporting Information), which showed the
strong ability of LILRA2 and LILRB4 in diagnosing PDAC by
detecting the expression levels in peripheral blood. Then, we
set to confirm whether the lower expression of these genes is
in the tumour tissue compared to the normal peri‐tumoral
pancreatic tissues holds in a validation dataset, namely
GSE55643. LILRA2, LILRA4, and LILRB4 showed low ex-
pressions in tumour tissues, in which LILRB4 was significantly
lowly expressed (p < 0.001; Figure S3A in Supporting
Information).

3.4 | GSEA

GSEA was used to determine the potential molecular mech-
anisms that affected poor prognoses in the higher risk score
groups. Our results indicated that has04650 (natural killer cell‐
mediated cytotoxicity), hsa04062 (chemokine signalling), and
hsa04630 (JAK‐STAT signalling pathway) were enriched in the
C2 gene set, which may be involved in affecting OS and RFS
(Figure 7a). In the C5 gene set, GO 0050863 (regulation of T
cell activation), GO 0002697 (regulation of immune effector
process), and GO 0071706 (tumour necrosis factor super-
family cytokine production) were enriched and significantly
correlated with OS and RFS (Figure 7b).

3.5 | Analysis of TIICs

According to the previous analysis from the TCGA database,
LILRs may influence postoperative clinical outcomes of pa-
tients with PDAC by participating in the regulation of the
immune response and the function of immune cells, but
whether the immune infiltration contributed to it was un-
known. Hence, we used CIBERSORT to evaluate the differ-
ential percentages of TIICs between the higher and lower risk
score groups. CIBERSORT is a deconvolution algorithm
based on gene expression; it is combined with 22 leucocyte
gene signature matrices, which are a defined ‘barcode’ with 547
gene expression signatures to distinguish the subgroups of 22
type immune cells. Figure 8a,b shows the landscape of tumour‐
infiltrating immune cells for 112 early‐stage PDAC cases.
Tumour‐infiltrating immune cell populations for each immune
cell type are shown in Figure 8c. We then performed correla-
tion analyses on the relative percentages of these 22 immune
cells. The result showed that there was a strong correlation
between naïve CD4 T cells and memory B cells (correlation
coefficient = 0.73) (Figure 9). Furthermore, the results of
differential percentages of the tumour‐infiltrating immune cells
showed that there was a difference in T cell CD8 (p = 0.02),
memory‐activated CD4 T cells (p = 0.001), activated NK cells
(p = 0.011), M1 macrophages (p = 0.025), resting dendritic
cells (p = 0.024), eosinophils (p = 0.02), and neutrophils
(p = 0.018) between both groups using the OS prognostic
model (Figure 10a). In addition, the percentages of tumour‐
infiltrating cells in the RFS prognostic model, including
plasma cells (p = 0.038), memory‐activated CD4 T cells
(p = 0.008), gamma delta T cells (p = 0.023), activated NK cells
(p = 0.008), M2 macrophages (p = 0.039), resting dendritic
cells (p = 0.004), and neutrophils (p = 0.002), were statistically
significant between the two groups (Figure 10b). In addition, in
order to understand the TIICs in PMBCs and solid tumour
tissues, we analysed GSE74629 and found that the results were
inconsistent with the analysis results in TCGA, possibly
because the cell types of the components were different
(Figure S3D in Supporting Information).

4 | DISCUSSION

In this study, we investigated the association between LILR
genes and clinical prognosis and diagnosis in early‐stage
PDAC. Our results suggested that compared with adjacent
tissues, LILRA1, LILRA2, LILRA4, LILRA6, LILRB1,
LILRB2, LILRB3, and LILRB4 were significantly overex-
pressed in cancer tissues. Multivariate analyses of the Cox
proportional hazard regression model showed that higher ex-
pressions of LILRA4 and LILRB4 were significantly associ-
ated with better OS, and there was a significant association
between lower expression of LILRA2 and LILRB4 and a
worse RFS. However, inconsistent with the results of other
tumours, high expressions of LILRB2 and LILRB4 were
associated with better clinical outcomes in our study, while
other studies showed that patients with high expressions of

TABLE 2 Combined survival analysis of LILRA4 and LILRB4 gene
expression with overall survival in early‐stage PDAC.

Groups

Overall survival

Patients (n = 112) MST Events HR (95% CI) p*

LILRA4&LILRB4

A 39 378 30 Reference 0.023

B 34 614 16 0.84 (0.42–1.69) 0.631

C 39 603 23 0.42 (0.23–0.79) 0.007

Note: Multivariate cox proportional hazards regression model was *adjusted by
neoplasm histological grade, targeted molecular therapy, radiation therapy, and residual
resection in overall survival (bold means p‐value < 0.05).
Abbreviations: CI, confidence interval; HR, hazard ratio; LILR, Leucocyte
immunoglobulin‐like receptor; MST, median survival time.
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TABLE 3 Combined survival analysis of
LILRA2 and LILRB4 gene expressions with
relapse‐free survival in early‐stage PDAC.Groups

Relapse‐free survival

Patients (n = 93) MST (days) Events HR (95% CI) p

LILRA2 and LILRB4

A 38 439 19 Reference 0.038

B 18 NA 4 0.54 (0.18–1.65) 0.281

C 37 716 12 0.35 (0.16–0.79) 0.012

Note: *adjusted by neoplasm histological grade and residual resection (bold means p‐value < 0.05).
Abbreviations: CI, confidence interval; HR, hazard ratio; MST, median survival time; PDAC, pancreatic ductal
adenocarcinoma; TCGA, The Cancer Genome Atlas.

F I GURE 4 Combined survival analysis of LILRs gene expressions with prognoses for early‐stage PDAC, and a nomogram plot for early‐stage PDAC.
(a) Kaplan–Meier plot for LILRA4 and LILRB4, n = 112 (b) LILRA2 and LILRB4, n = 93, Kaplan–Meier analysis. A nomogram plot for OS (c), RFS (d).
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LILRB2 and LILRB4 predicted worse clinical outcomes
[45–52]. The inconsistency of the results was confusing and
interesting for further study. Tumours are involved in an
abnormally complex process, and the entire process cannot be
explained by individual gene events. Therefore, we conducted a

joint analysis and constructed a prognostic model based on
gene expressions significantly associated with clinical out-
comes. The joint effect of clinical variables and LILR expres-
sion indicated that patients with two risk factors had higher
hazard ratios than those with only one risk factor. Our findings

TABLE 4 The association analysis between risk scores and overall
survival in early‐stage PDAC.

Groups

Overall survival

Patients (n = 112) MST Events HR (95% CI) p*

Risk scores

Lower 56 603 31 Reference 0.039

Higher 56 473 38 1.75 (1.03–3.00)

Note: *adjusted by neoplasm histological grade, targeted molecular therapy, radiation
therapy, and residual resection (bold means p‐value < 0.05).
Abbreviations: CI, confidence interval; HR, hazard ratio; MST, median survival time;
PDAC, pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas.

F I GURE 5 Visualisation for a prognostic model, Kaplan–Meier plot for the risk scores group, and an ROC curve for the effective power of the OS
prognostic model. (a) From top to bottom: risk scores map, survival scatterplot, the heat map of the expression of LILRA4 and LILRB4 lower and higher
groups; red represents upregulation; blue represents downregulation. (b) A Kaplan–Meier plot for the risk score group. (c) The ROC curve for the OS
prognostic model.

TABLE 5 The association analysis between risk scores and
relapse‐free survival in early‐stage PDAC.

Groups

Relapse‐free survival

Patients (n = 93) MST Events HR (95% CI) p*

Risk scores

Lower 47 14 872 Reference 0.007

Higher 46 21 493 2.90 (1.33–6.15)

Note: *adjusted by neoplasm histological grade and residual resection.
Abbreviations: CI, confidence interval; HR, hazard ratio; MST, median survival time;
PDAC, pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas.
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suggested that the risk score can be used to evaluate the clinical
outcomes of patients with early‐stage PDAC. The AUC on the
ROC curves was slightly smaller than some well‐known
prognostic scores, such as the Glasgow prognostic score, or
the modified Glasgow prognostic score. However, the HR
value was similar [59, 60]. The difference was that the prog-
nostic score of this study was also effective in the evaluation of
RFS. Moreover, based on the prognostic model, tumour‐
infiltrating immune cells were investigated. Our findings can
therefore help assess the RFS for PDAC patients and identify
immunotherapeutic targets.

The prognostic model included LILRA and LILRB genes,
consistent with real‐world studies, and were grouped according
to the level of risk score to investigate the possible mechanism
of risk score influencing clinical prognosis using GSEA anal-
ysis, which may make the results more reliable. GSEA results
revealed that the following pathways may be involved in
regulating the potential molecular mechanisms that affect
clinical prognosis; the JAK‐STAT signalling pathway,

regulation of T cell activation, regulation of immune effector
processes, and tumour necrosis factor superfamily cytokine
production were enriched and significantly correlated with the
OS and RFS. Numerous studies have shown that the activation
of the JAK‐STAT signalling pathway promotes the develop-
ment and progression of tumours, including pancreatic cancer
[61–64]. Therefore, we have a reason to speculate that in the
low‐risk group, activation of the JAK‐STAT signalling pathway
played an important role in affecting the OS and RFS. At the
same time, many studies have reported that the JAK‐STAT
signalling pathway is closely related to immune evasion, im-
mune regulation, immune cell differentiation, and drug resis-
tance [64–66].

The results of GSEA also showed enrichment of the
immune‐related signalling pathway, which suggested that the
JAK‐STAT signalling pathway seems to have some association.
Hence, we investigated the differential percentages of TIICs
between the higher and lower risk score groups. Our results
found that in a prognostic model of OS and RFS, there were

F I GURE 6 Visualisation of the prognostic model, a Kaplan–Meier plot for the risk scores group, and an ROC curve for the effective power of the RFS
prognostic model. Using the median expression of each LILR gene as the cut‐off point, we defined the higher and lower risk groups for PDAC. (a) From top to
bottom: risk scores map, survival scatterplot, the heat map of expression of LILRA2 and LILRB4 lower and higher groups; red represents upregulation; blue
represents downregulation. (b) Kaplan–Meier plot for the risk score group. (c) The ROC curve for the RFS prognostic model.

50 - GAO ET AL.



significantly different percentages in memory‐activated CD4 T
cells, activated NK cells, resting dendritic cells, and neutrophils
between the two groups. A series of studies have shown that

TIICs are closely related to tumour development, drug
response, and clinical prognoses in a variety of tumours [67–72].
In these studies, a high fraction of infiltrating and activated CD4

F I GURE 7 The results of GSEA for the OS (a) and RFS (b) prognostic model. The median expression of each LILR gene was used as the cut‐off point,
which defined the higher and lower risk groups for the early‐stage PDAC.
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memory Tcells, resting dendritic cells, and neutrophils indicated
a good clinical prognosis, which is consistent with previous
studies. However, in contrast to previous studies, the high‐risk
group had high percentages of activated NK cells, while the
low‐risk group had lower fractions of activated NK cells, which
was similar to the relationship between the expression of
LILRB4 and clinical prognosis in early‐stage PDAC. In general,

NK cells play an anti‐tumour role and are regarded as prognostic
factors for a good prognosis in some tumours, but tumour‐
infiltrating NK cells may also play a role in promoting tu-
mours [73]. NK cells are divided into two subtypes according to
the cell surface antigens CD56 and CD16; namely CD56dim/
CD16+ and CD56bright/CD16‐. CD56dim/CD16+ NK
cells have a high cytotoxic potential, while the CD56bright/

F I GURE 8 The landscape of tumour‐infiltrating immune cells for 112 early‐stage PDAC cases. (a) A histogram for infraction of 22 types of tumour‐
infiltrating immune cells in each case. (b) A heat map for the fraction of 22 types of tumour‐infiltrating immune cells in each case; red represents upregulation;
blue represents downregulation. (c) Tumour‐infiltrating immune cell populations for each immune cell type.
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CD16‐subtype has a low cytotoxic potential but can secrete
cytokines that promote angiogenesis. The vast majority of
tumour‐infiltrating NK cells are the CD56bright/CD16‐sub-
type and have been reported to have impaired cytotoxicity and
cytokine‐producing functions and promote angiogenesis, thus
playing a role in promoting tumours [74, 75]. Therefore, it is
possible that in the high‐risk group, a high fraction of tumour‐
infiltrating NK cells plays a role in promoting tumours, which is
a reasonable explanation. The infiltrating immune cells are part
of the tumour microenvironment. In the prognosis model, the
combined effect of the infiltrating immune cells indicates the
possible mechanism of poor prognosis in the high‐risk group.
The bioinformatics analysis in solid tissues was based on a
complex statistical method and was calculated using a formula.

CIBERSORT was verified in lung specimens obtained during
surgical resection of early‐stage non‐small‐cell lung carcinomas
and disaggregated lymph node biopsies from follicular lym-
phoma by flow cytometry. The results of CIBERSORT were
significantly correlated with flow cytometry measurements
([76]), but the real correlation in PDAC needs to be verified by
additional studies.

5 | CONCLUSION

In this study, we investigated the associations between LILRs
genes and clinical prognosis in early‐stage PDAC. The results
revealed that LILRA4 and LILRB4 were significantly

F I GURE 9 Correlogram of Pearson's correlation analysis of tumour‐infiltrating immune cells; red denotes a positive correlation, blue denotes a negative
correlation, and the shade of colour represents the size of the correlation coefficient.
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associated with OS, and LILRA2 and LILRB4 were associated
with the RFS. LILRB4 was significantly related to the prog-
nosis of PDAC patients, but the prognostic values of LILRA2
and LILRA4 need further validation. The prognostic model
suggested that patients with early‐stage PDAC with higher risk
scores had worse clinical outcomes. The results of potential

molecular mechanistic analyses suggested that in the prog-
nostic model, the JAK‐STAT signalling pathway, immune‐
related signalling pathways, and tumour‐infiltrating immune
cells may play a crucial role in affecting the clinical outcomes,
but further functional experiments are needed for
confirmation.

F I GURE 1 0 A violin diagram of differential infiltrating infraction analysis for the OS prognostic model (a) and RFS prognostic model (b).
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