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A B S T R A C T

In this paper, a novel deep learning-based medical imaging analysis framework is developed, which aims to deal
with the insufficient feature learning caused by the imperfect property of imaging data. Named as multi-scale
efficient network (MEN), the proposed method integrates different attention mechanisms to realize sufficient
extraction of both detailed features and semantic information in a progressive learning manner. In particular,
a fused-attention block is designed to extract fine-grained details from the input, where the squeeze-excitation
(SE) attention mechanism is applied to make the model focus on potential lesion areas. A multi-scale low
information loss (MSLIL)-attention block is proposed to compensate for potential global information loss and
enhance the semantic correlations among features, where the efficient channel attention (ECA) mechanism is
adopted. The proposed MEN is comprehensively evaluated on two COVID-19 diagnostic tasks, and the results
show that as compared with some other advanced deep learning models, the proposed method is competitive
in accurate COVID-19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and
exhibits satisfactory generalization ability as well.
1. Introduction

In modern medicine, various medical imaging techniques have been
developing prosperously, such as the computer tomography, X-ray and
magnetic resonance imaging [1–3], etc. In comparison to the traditional
detection methods, applying medical imaging techniques has the ad-
vantages of short detection time, convenient operations and relatively
low costs [4,5]. Hence, they have been widely applied in many impor-
tant diagnostic scenes, which accordingly requires an effective analysis
on the obtained imaging data.

In general, the medical imaging data always present the charac-
teristics of large amount, huge dimension and highly non-linearity,
which make it an extremely challenging task to efficiently extract
the rich semantic information of some serious diseases. Owing to the

✩ This work was supported in part by the Natural Science Foundation of China under Grant 62073271, the Fundamental Research Funds for the Central
Universities of China under Grant 20720220076, the Natural Science Foundation of China under Grant 2020J01296, the Science and Technology Research
Program of Chongqing Municipal Education Commission of China under Grant KJQN202001319, the Startup Project for High-level Talents of Xiamen University
of Technology of China, the Scientific Research Climbing Program of Xiamen University of Technology of China, and the Xiamen Medical and Health Guidance
Project of China under Grant 3502Z20224ZD1010.
∗ Corresponding author.
E-mail addresses: zidong.wang@brunel.ac.uk (Z. Wang), zny@xmu.edu.cn (N. Zeng).

fast development of artificial intelligence (AI), the deep learning (DL)-
based models have exhibited inspiring performance in analyzing data
generated by various medical imaging techniques [3,6,7], which can
realize the end-to-end learning from the great amount of data and has
aroused great research interests [8–10].

It is noticeable that performance of the DL-based models can be
severely affected by the imperfect medical imaging data, for example,
in the chest X-ray images, the organic entity may merely occupy
50% of space, whereas the rest of background part contains much
useless and redundant information, which causes the waste of com-
putational resources and leads to inefficient feature extraction [11].
Similarity in imaging results of different diseases also impedes the
accurate recognition of relevant conditions [12].
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To deal with the imperfect property of data so as to improve the
learning ability of the DL-based models, many efforts have been carried
out, where the application of attention mechanism is a hot research
topic. In [13], a novel feature attention super-resolution network has
been proposed to take full use of the rich anatomical information in
magnetic resonance images, which can effectively predict the missing
high-resolution details in magnetic resonance images so as to realize
accurate disease diagnosis. To overcome the data redundancy, a mul-
timodal spatial attention module has been proposed in [14], which
automatically emphasizes the important spatial regions and suppresses
the normal ones.

It is worth mentioning that while applying attention mechanism,
global information loss is commonly encountered due to the too much
focus on the specific local areas, which declines the recognition accu-
racy. Moreover, to promote accurate diagnosis, the extracted features
are required to contain both sufficient details and rich semantic infor-
mation, and it is promising to take full advantages of various attention
mechanisms to realize efficient feature learning. In addition, how to
balance the model complexity and recognition accuracy when de-
signing corresponding feature refinement components also deserves
attention.

Based on above discussions, in this paper, a novel medical imaging
analysis framework is developed, which dedicates to overcoming the
weak feature representation resulted from the imperfect property of the
imaging data. Particularly, in the developed multi-scale efficient net-
work (MEN), a fused-attention and a multi-scale low information loss
(MSLIL)-attention block are proposed to form an information refine-
ment module so as to realizes a from-coarse-to-fine feature extraction
in a progressive learning manner. To be specific, in the fused-attention
block, the squeeze-excitation (SE) attention mechanism is applied to
highlight important channels and suppress the useless information.
In the MSLIL-attention block, the efficient channel attention (ECA)
mechanism is applied to capture global dependencies and, by doing
so, the potential information loss can be compensated to some extents.
As a result, not only detailed features can be efficiently extracted,
the semantic correlations among different features are enhanced as
well. Finally, the proposed MEN is applied to the important COVID-19
diagnostic tasks for performance evaluation.

The main contributions of this paper are outlined as follows.

(1) A novel DL-based medical imaging analysis model MEN is de-
veloped, which efficiently extracts the features in a progressive
learning manner.

(2) The proposed fused- and MSLIL-attention blocks can effectively
coordinate the focus on lesion areas and the compensation of
global information loss.

(3) Combinations of diverse attention mechanisms realizes sufficient
learning of both details features and semantic information.

The remainder of this paper is organized as follows. Related work is
eviewed in Section 2. The proposed MEN is elaborated in Section 3. Re-
ults and discussions are presented in Section 4. Finally, the conclusions
re drawn in Section 5.

. Related work

Since the proposed model is applied into the COVID-19 detection
ask, in this section, some related recent studies are reviewed in terms
f the performance improvement on the DL-based model.

Regarding to the optimization on model training, in [15], a frame-
ork called COVID-ResNet has been proposed for COVID-19 detection,
here during training, the image size is progressively adjusted to
nhance the generalization ability. In [16], an improved snapshot
nsemble technique has been proposed for COVID-19 chest X-ray im-
ges classification, which replace the original probability average by a
eighted one, and experiments have shown the effectiveness of such
ptimization.

To cope with the over-fitting problem caused by limited chest X-
2

ay image in COVID-19 category, some light-weight neural networks
have been designed. In [17], a novel framework DarkCovidNet has been
proposed for COVID-19 detection, where both the number of hidden
layers and filters are reduced. Experimental results have shown that
the proposed method is a reliable light-weight model that effectively
removes redundant information, which obtains accuracy of 98.08%
and 87.02% in binary classification and multi-classification case, re-
spectively. A 24-layer convolutional neural network (CNN) has been
proposed in [18], which is based on the first five hidden layers of
the VGG [19] architecture and is pre-trained to ensure the accuracy.
In [20], the EfficientNetB4 network has been improved by adding a
GPA module and dropout layer to reduce the parameters. Although
experiments have shown that above strategy can effectively simplify the
model structure, in complicated multi-classification tasks, these light-
weight models may suffer from insufficient learning, resulting in low
classification accuracy.

To realize sufficient feature extraction from images, a multi-kernel-
size spatial-channel attention mechanism has been proposed in [21],
which applies convolutional kernels in different sizes combined with
channel and spatial attention to promote accurate recognition of the
COVID-19. In [22], the DenseNet has been combined with GAT [23]
model for COVID-19 detection, where multiple independent attention
mechanisms are deployed, and it is proven that the multi-head mech-
anism can distinguish the attention on multiple features between the
central and neighboring nodes. Depth-wise dilated convolution module
has been applied in [24] to enlarge the receptive field, which allows
the model capturing rich global information of the chest X-ray image.
In [25], a PEPX module has been designed, which not only reduces the
network complexity, but also obtains channel information in different
dimensions.

In this study, by applying the progressive learning approach, multi-
scale feature extraction and multi-modal residual fusion methods are
integrated to enhance the model performance without significantly
increasing the computation complexity.

3. Methodology

In this section, the proposed multi-scale efficient network is pre-
sented, whose overall framework is shown in Fig. 1, including modules
of data preprocessing, information refinement and classifier.

3.1. Overall framework of MEN

According to Fig. 1, three main modules are contained in the
proposed MEN, where sufficient feature extraction and fusion are per-
formed to realize accurate classification. Firstly, images in three cate-
gories are input to the data preprocessing module, which are further
expanded with a series of data augmentation operations, including
normalization, center cropping, modal splicing and data partitioning.
In particular, to enrich the channel information of images in pneumo-
nia class, 3 × 3 convolution, layer normalization and Silu activation
function [26] are applied to transfer the RGB images to 24-channel
enhanced vectors.

Then, attention mechanism is applied in the subsequent information
refinement module, which is mainly realized by the designed fused-
and MSLIL-attention blocks. In particular, the former is used to extract
fine-grained information and the latter is responsible for enhancing
semantic correlations by capturing global dependencies, which realizes
a progressive learning and more implementation details of above two
attention blocks are provided in the following subsections.

Finally, classification is accomplished in the classifier, where 1 × 1
convolution, adaptive average pooling and a fully-connected (FC) layer

are applied to process the extracted features.
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Fig. 1. Framework of the proposed multi-scale efficient network.
Fig. 2. Architecture of components in the fused-attention block.

3.2. Fused-attention block

As is shown in Fig. 1, the fused-attention block is composed of
several repeated fused-convolution (Fused-Conv) modules, whose ar-
chitecture is shown in Fig. 2. Notice that the input images of Fused-
Conv have large size but few channels, as a result, extracting detailed
information is focused in this module by embedding in the squeeze-
excitation (SE) attention mechanism [27]. At first, the global average
pooling is performed to realize feature compression in spatial dimen-
sion. Next, importance of each channel is predicted on the compressed
features by an FC layer, which is reflected by weight coefficients 𝝎, and
the principle of obtaining 𝝎 can be described as:

𝒔 = 1
𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑰(𝑖, 𝑗)

𝝎 = 𝜎
(

𝑾 2𝛿
(

𝑾 1𝒔
))

(1)

where 𝐻 and 𝑊 are number of channels, 𝑰 is the initial input and 𝒔
is the compressed one. 𝑊1 and 𝑊2 are two matrices, 𝜎 and 𝛿 denotes
activation functions in the FC layer. At last, the output is obtained
by channel-wise multiplication of the weight coefficient and the initial
input.
3

It is noticeable that the SE attention mechanism is beneficial for
highlighting the lesion areas in the images so as to determine the focus
on important semantic information in case of high-resolution images.
At the end of Fused-conv module, the 1 × 1 convolution is used to
adjust the number of channels, which enables the fusion of context
information.

3.3. MSLIL-attention block

To enhance the extraction of semantic information by introduc-
ing useful features, a novel MSLIL-attention block is developed in
the proposed MEN, which consists of a series of MSLIL convolution
(MSLIL-Conv) modules.

As is shown in Fig. 3(a), a multi-branch structure is deployed in the
MSLIL-Conv module, where two dilated-convolutions [28] and a group-
convolution are set in parallel. Particularly, the dilated-convolution
can make compensation for the lost receptive fields by providing rich
global information, and the 3 × 3 group-convolution can further reduce
computational burdens. By adjusting the hyper-parameters of convolu-
tion operators, the outputs of above three branches can be integrated
to enter the efficient channel attention (ECA) mechanism [29]. In
addition, the integrated multi-branch output is further multiplied with
the output of above ECA mechanism, which can remain partial original
features so as to reduce the loss of essential information.

Framework of the ECA mechanism is illustrated in Fig. 3(b), which
is equipped with a residual structure to extract the superior semantic
information. Different from the SE mechanism, the learning of channel
importance is performed directly on the input via 1D convolutions. In
this regard, information loss caused by dimension-reduction operations
in FC layers can be effectively avoided. Moreover, appropriate cross-
channel interaction is also realized to enhance the correlations of
each channel information. In ECA mechanism, the weights of the 1𝐷
convolution are interleaved with each other in a cross-channel manner,
which present in groups and for each group, the number of weight
depends on the size of convolution kernel 𝑘. The weight of feature 𝑦𝑖
is calculated by considering only the interaction between 𝑦𝑖 and its 𝑘
adjacent channels, which is expressed as:

𝜔𝑖 = 𝜎

( 𝑘
∑

𝑤𝑗𝑦𝑗𝑖

)

, 𝑦𝑗𝑖 ∈ 𝛺𝑘
𝑖 (2)
𝑗=1
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Fig. 3. Architecture of components in the MSLIL-attention block.
where 𝛺𝑘
𝑖 is the set of 𝑘 adjacent channels of 𝑦𝑖 and 𝑤 is the weight of

𝑦𝑖. Note that above Eq. (2) can be implemented by a fast 1D convolution
with kernel size of 𝑘 by:

𝝎 = 𝜎
(

C1D𝑘(𝐲)
)

(3)

where C1D refers to the 1𝐷 convolution, and the obtained weights
are shared in all 𝐶 channels. In addition, considering that the channel
number 𝐶 in the proposed MEN is the power of 2, following non-linear
map 𝜙 is applied to characterize the relationship between 𝐶 and 𝑘 by:

𝐶 = 𝜙(𝑘) = 2𝛾×𝑘−𝑏 (4)

where 𝛾 and 𝑏 are two coefficients, and in this study, they are set as
𝛾 = 2 and 𝑏 = 1, respectively. Finally, given a channel dimension 𝐶,
the kernel size 𝑘 can be adaptively obtained as:

𝑘 = 𝜙−1(𝐶) =
|

|

|

|

log2(𝐶)
𝛾

+ 𝑏
𝛾
|

|

|

|𝑜𝑑𝑑
(5)

where | ⋅ |𝑜𝑑𝑑 outputs the nearest odd number.
In addition, two dropout layers are deployed in the MSLIL-attention

block, which randomly discard the 20% of features so as to effectively
reduce the computational complexity and prevent the overfitting.

4. Results and discussions

In this section, the proposed MEN is applied to the COVID-19
detection tasks for performance evaluation, where two public datasets
of chest X-ray images are adopted, and the results are compared with
other popular deep learning models.

4.1. Experimental environment

4.1.1. Datasets
In this study, the proposed MEN is evaluated on two public COVID-

19 chest X-ray image datasets (https://aistudio.baidu.com/aistudio/
datasetdetail/163046) [30], which are denoted as D1 and D2, re-
spectively. In each dataset, three categories of images are contained,
including COVID-19, normal and viral pneumonia. It is noticeable that
the samples in COVID-19 and viral pneumonia category are highly
similar, which brings difficulties in accurate recognition. The data
partition for model training and testing is based on the ratio of 8:2 as
shown in Fig. 4, and moreover, some data augmentation operations like
random flip and center crop are performed on the training set, which
further enrich the samples to promote robust feature learning.
4

Table 1
Hyperparameter settings.
Parameters Settings

Training epochs 200
Batch size 16
Optimizer SGD
Learning rate 0.01
Learning rate decay Cosine decay

4.1.2. Evaluation metrics
For the above mentioned three-category classification tasks, con-

fusion matrix is adopted for performance evaluation, based on which
five metrics of accuracy, precision, recall, specificity, and F1 score are
calculated as follows.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(6)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

Specif icity = 𝑇𝑁
𝐹𝑃 + 𝑇𝑁

(9)

F1 score = 2 ×
𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(10)

where TP and FP refer to the true and false positive classification
results, TN and FN are the true and false negative ones, respectively.

4.1.3. Experimental settings
In Table 1, the model configurations when training the proposed

MEN are presented, and the comparison models employed in this study
are parameterized according to the corresponding literature, includ-
ing ResNet101 [31], MobileNetV2 [32], DensNet201 [33], Efficient-
NetV2_s [34], and EfficientNet_b0 [35]. All experiments are carried out
on the deep learning framework Pytorch, and the operating system is
Windows 10 with an NVIDIA GTX 2060 single GPU.

https://aistudio.baidu.com/aistudio/datasetdetail/163046
https://aistudio.baidu.com/aistudio/datasetdetail/163046
https://aistudio.baidu.com/aistudio/datasetdetail/163046


Computers in Biology and Medicine 159 (2023) 106947T. Xie et al.
Fig. 4. Data partition for model training and testing.
Fig. 5. Confusion matrix on the D1 dataset.

Fig. 6. Confusion matrix on the D2 dataset.

4.2. Evaluation results

At first, the confusion matrix obtained by the proposed MEN on
dataset D1 is illustrated in Fig. 5, and corresponding data are reported
in Table 2 for a clear view. It is found that on the COVID-19 category,
the highest classification accuracy of 99.27% is achieved, and the
COVID-19 samples that are misdiagnosed as viral pneumonia only
5

Table 2
Percentage of Ground-truth and Prediction results based on confusion matrix on D1.

Ground-truth Prediction results

COVID-19 Normal Viral-Pneumonia

COVID-19 99.27% 0.372% 0.372%
Normal 1.115% 97.03% 1.860%
Viral-Pneumonia 0.372% 1.860% 97.77%

Table 3
Percentage of Ground-truth and Prediction results based on confusion matrix on D2.

Ground-truth Prediction results

COVID-19 Normal Viral-Pneumonia

COVID-19 97.67% 2.33% 0%
Normal 0% 99.25% 0.746%
Viral-Pneumonia 0% 2.60% 97.40%

take proportion of 0.37%, which shows that the proposed MEN can
effectively distinguish the highly similar images in COVID-19 and viral
pneumonia category. For the other two categories, the misclassification
rates are both around 2.6%, which implies that the proposed MEN
presents a satisfactory classification performance on dataset D1.

Similarly, the evaluation results on dataset D2 are displayed in
Fig. 6 and Table 3, respectively. It is noticeable that the data are quite
limited in D2, especially the COVID-19 samples, which makes it tough
for sufficient feature extraction. While according to the results, only
one image in COVID-19 category is misclassified as the normal one
and none of samples in the other two categories are recognized as the
COVID-19 sample. Moreover, even the lowest accuracy occurring in vi-
ral pneumonia image identification reaches 0.974, which demonstrates
that the proposed MEN does extract features with strong representation
from the limited data, thereby exhibiting outstanding feature extraction
ability.

Based on the above confusion matrices, five indicators in Eq. (6)–
(10) are calculated, and corresponding evaluation results on D1 and
D2 are reported in Table 4 and Table 5, respectively. Notice that the
presented results are in class-wise, and an intuitive presentation is also
shown in Figs. 7 and 8.

As is shown in Table 4, all of the evaluation metrics exceed 97%
on dataset D1, where the recall, specificity and accuracy obtained in
COVID-19 class obtain the highest value of 99.26%, which demon-
strates that the proposed MEN is competent in accurate recognition of
the COVID-19 samples. In addition, accuracy obtained in the other two
categories also reaches 0.9827 and 0.9851, respectively, which shows
the competitiveness of our MEN in accurate classification.

In Table 5, evaluation metrics obtained by the proposed MEN
on dataset D2 are reported, and it is found that both precision and
specificity in the COVID-19 class reach 1.0. It is worth mentioning
that as compared to dataset D1, the amount of data in D2 is fewer
with unbalanced distribution, especially the COVID-19 samples are
quite limited. Therefore, such result sufficiently prove the superiority
of the proposed MEN, and the accuracy obtained on dataset D2 is even
0.57% higher than that on D1. Moreover, the F1 score on all categories
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Table 4
Performance of the proposed MEN on dataset D1.

Metrics Category

COVID-19 Normal Viral-Pneumonia

Precision 0.9852 0.9775 0.9777
Recall 0.9926 0.9703 0.9777
Specificity 0.9926 0.9888 0.9888
F1 score 0.9889 0.9739 0.9777
Accuracy 0.9926 0.9827 0.9851

Table 5
Performance of the proposed MEN on dataset D2.

Metrics Category

COVID-19 Normal Viral-Pneumonia

Precision 1.0 0.9708 0.9924
Recall 0.9767 0.9925 0.9740
Specificity 1.0 0.9744 0.9936
F1 score 0.9884 0.9816 0.9832
Accuracy 0.9983 0.9828 0.9845

Fig. 7. Performance of the proposed MEN on dataset D1.

surpasses 0.98, which shows the excellent comprehensive performance
of MEN by well balancing the precision and recall.

Based on above discussions, one can conclude that the proposed
MEN is reliable in the important diagnostic task of recognizing COVID-
19 based on the chest X-ray images. On two different diagnostic scenes,
our MEN achieves satisfactory results, which also exhibits a well gen-
eralization ability.

4.3. Comparisons with other advanced models

To further verify the competitiveness of our method in feature
extraction, the proposed MEN is compared with other five advanced
deep learning models, and the comparison results in terms of the overall
classification performance are displayed in Table 6, Table 7 and Fig. 9.
Particularly, in [16], an improved snapshot ensemble technique has
been combined with a neural network, and data-specific augmentation
operations have been investigated in [30]. Both of the above two
recently proposed models have obtained satisfactory results on dataset
D2, and as a result, in Table 7, they are also compared with the
proposed MEN, where the results are directly cited from the original
papers.

According to Table 6, the proposed MEN shows an improved per-
formance on all five metrics as compared with other five advanced
deep learning models, with each metric exceeding 98%. It may due
to the deployments of two different channel attention mechanisms
in appropriate locations, which allows a feature extraction with rich
6

Fig. 8. Performance of the proposed MEN on dataset D2.

and accurate information. In the more difficult diagnostic task on
dataset D2, it is also found from Table 7 that the proposed MEN
outperforms other seven state-of-the-art models in terms of each metric.
It is noticeable that as compared to the results on dataset D1, there
are declines to different extents regarding to accuracy on D2 obtained
by the Renet101, Densenet201 and Efficientnetv2_s model. On the
contrary, accuracy obtained by Efficientnet_b0, Mobilenetv2 and the
proposed MEN is even higher on D2 than that on D1, which implies
that a lighter structure may be more suitable for handling limited
and imbalanced data. In the designed MSLIL-Conv module of MEN,
not only the data are further enriched by the deployed multi-branch
structure, two embedded dropout layers also effectively prevent the
over-fitting phenomenon. Consequently, the proposed MEN can present
stable performance in the case of insufficient and imbalanced data.

In addition, the receiver operator characteristic (ROC) curves ob-
tained by above six models are illustrated in Fig. 10, which selects
recall as the vertical coordinate and 1−specificity as the horizontal
one. A property of the ROC curve is that its shape is able to remain
unchanged as the distribution of positive and negative samples changes,
which thereby reduces the interference caused by different test sets
and provides an objective estimation of the model performance. Note
that if the ROC curve is closed to the top left corner, that is, the area
under curve (AUC) is large, then the model is deemed to have good
performance. As can be seen in Fig. 10, the proposed MEN yields the
best AUC values of 0.9979 on D1 and 0.9999 on D2, respectively, which
shows the competitiveness of our method in extracting discriminative
features from both positive and negative samples.

Moreover, a supplement dataset from Kaggle without training is
adopted for performance evaluations of the six models, where the
task is also to recognize the COVID-19 samples from images of three
categories, and the ROC curves are presented in Fig. 11. Combining
the results shown in Fig. 10, it is found that the AUC value obtained
by Efficientnetv2_s, which is the sub-optimal model on both datasets
D1 and D2, is greatly reduced to 0.8691 on the supplement dataset.
By contrast, the proposed MEN still maintains the highest AUC value
of 0.9397, which shows the outstanding robustness and generalization
ability of our method.

According to the above discussions, the proposed MEN is competent
in recognizing COVID-19 based on chest X-ray images with consider-
able overall performance. Although satisfactory results are achieved
on different diagnostic tasks, there are still some spaces for further
improvements on our method. Firstly, the ability of extracting highly
discriminative features can be enhanced by diverse convolution vari-
ants and multi-scale feature fusion methods [36,37]. Secondly, common
spatial pattern [38] and multi-agent systems [39] can be applied to
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Table 6
Performance comparison of the proposed MEN and other five advanced models on dataset D1.

Databases Metric Models

Resnet101 Densenet201 Efficientnetv2_s Efficientnet_b0 Mobilenetv2 Ours

D1

Precision 0.9550 0.9677 0.9752 0.9733 0.9213 0.9801
Recall 0.9541 0.9641 0.9678 0.9727 0.9195 0.9802
Specificity 0.9771 0.9839 0.9876 0.9864 0.9597 0.9901
F1 score 0.9545 0.9678 0.9752 0.9730 0.9203 0.9801
Accuracy 0.9694 0.9785 0.9835 0.9818 0.9463 0.9868
Table 7
Performance comparison of the proposed MEN and other seven advanced models on dataset D2.

Databases Metric Models

Resnet101 Densenet201 Efficientnetv2_s Efficientnet_b0 Mobilenetv2 [16] [30] Ours

𝐷2

Precision 0.9565 0.9423 0.9819 0.9821 0.9509 0.9523 0.9795 0.9877
Recall 0.9368 0.9600 0.9814 0.9767 0.9318 0.9563 0.9794 0.9811
Specificity 0.9684 0.9729 0.9840 0.9840 0.9640 0.9716 0.9880 0.9893
F1 score 0.9466 0.9512 0.9817 0.9785 0.9413 0.9542 0.9794 0.9844
Accuracy 0.9655 0.9690 0.9827 0.9828 0.9609 0.9518 0.9794 0.9885
Fig. 9. Performance comparison of MEN and other five advanced models on datasets 𝐷1 (left) and 𝐷2 (right).
Fig. 10. ROC curves of the developed MEN and other comparison models on two datasets.
optimize the training process, and aiming at the training data, some
filtering techniques can be adopted to alleviate the interference of
noises [40–44] In addition, some data enhancement techniques can
7

be considered as well [45]. Moreover, a number of optimization algo-
rithms and systems can be used to realize potential better structural
configurations so that the established network can exhibit superior
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Fig. 11. ROC curves of six models on the supplement dataset.

performance [46–50]. Finally, it is also promising to apply the proposed
MEN to more medical diagnostic scenes [51].

5. Conclusion

In this paper, a novel multi-scale efficient network has been de-
veloped, which is a competent medical imaging analysis framework
with efficient feature extraction boosted by the two designed attention
blocks. In a progressive learning manner, both fine-grained features and
semantic information have been sufficiently obtained, which promotes
the improvement of the detection accuracy. The proposed MEN has
been comprehensively evaluated on two COVID-19 diagnosis tasks, and
comparison results with some other advanced models show that the
proposed method has presented overwhelming advantages in terms of
all applied evaluation metrics, which demonstrates its effectiveness and
competitiveness.
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