Skip to main content
. 2023 Apr 20;24:102. doi: 10.1186/s12875-023-02057-x

Table 2.

Logistic regression of B12 deficiency on potential determinants (n = 592)

Variables Univariate logistic regression Multivariable logistic regression
OR (95% CI) P value OR (95% CI) P value
Age groupa (Reference: < 60 years) 0.259 + 0.027
60–79 years 0.70 (0.46 – 1.08) 0.105 1.26 (0.77 – 2.07) 0.357
≥ 80 years 0.84 (0.44 – 1.61) 0.606 2.86 (1.31 – 6.25) 0.008
Vegetariana (Reference = non-vegetarian) 16.82 (3.72 – 76.00) < 0.001 21.61 (4.47 – 104.44) < 0.001
B12 supplementation (prescribed)a 0.40 (0.26 – 0.62) < 0.001 0.37 (0.22 – 0.61) < 0.001
Metformin daily dosea (g/day) 2.44 (2.00 – 2.97) < 0.001 2.79 (2.22 – 3.49) < 0.001
Folate deficiencya 2.02 (1.34 – 3.04) < 0.001 2.04 (1.27 – 3.28) 0.003
LDL cholesterol levela (mmol/L) 0.73 (0.54 – 0.98) 0.031
Ethnicitya (Reference: Chinese) 0.220 +
Malay 0.85 (0.41 – 1.78) 0.668
Indian 1.63 (0.97 – 2.75) 0.065
Others 0.72 (0.26 – 1.96) 0.516
Male gendera (Reference = Female) 1.19 (0.83 – 1.70) 0.353
Duration of diabetes for ≥ 10 yearsa 1.55 (1.08 – 2.24) 0.017
Calcium supplementation (prescribed)a 0.52 (0.35 – 0.77) < 0.001
PPI or H2A usea 0.93 (0.60 – 1.46) 0.760
Sulphonylurea usea 2.58 (1.77 – 3.76) < 0.001
Acarbose usea 3.46 (2.16 – 5.55) < 0.001
HbA1ca (%) 1.26 (1.07 – 1.48) < 0.01
Statin use 1.20 (0.72 – 2.00) 0.481
Fenofibrate use 1.46 (0.83 – 2.57) 0.192
Insulin use 1.60 (0.90 – 2.83 0.114
DPP4-inhibitor use 0.82 (0.34 – 1.97) 0.656
Creatinine (µmol/L) 1.00 (0.99 – 1.01) 0.966
eGFR (mL/min/1.73m2) 1.00 (0.99 – 1.01) 0.694
Hypertension 0.89 (0.52 – 1.50) 0.651
Hyperlipidaemia 1.16 (0.60 – 2.24) 0.645
Body Mass Index (kg/m2) 1.02 (0.98 – 1.06) 0.328

Abbreviation: eGFR, estimated glomerular filtration rate adjusted for body surface area

aPredictor variables that were further analysed within multivariable logistic regression. + refers to omnibus p – value. “Age”, “Ethnicity”, “Gender” and “PPI or H2A use” were predetermined to be clinically or demographically relevant, and thus forced into the modelling process