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With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied
with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as
one of the most devastating sequelae in PWH. The limited available data describing the lung compli-
cations in PWH with a history of opioid abuse warrants more research to better define the course of
disease pathogenesis. The current study was conducted to investigate the progression of lung tissue
remodeling in a morphine (Mor)eexposed rhesus macaque model of SIV infection. Pathologic features
of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and prolifera-
tion of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or
without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic
changes and collagen deposition in the alveolar and the bronchiolar region. There was increased
oxidative stress, profibrotic transforming growth factor-b, fibroblast proliferation and trans-
differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques,
which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was
decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared
with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV
independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
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Since the discovery of HIV, HIV-associated pulmonary
complications have been the prominent cause of morbidity
and mortality in people with HIV (PWH).1 Epidemiologic
studies in the era of mono-antiviral therapy showed that the
most frequent pulmonary complications among PWH were
acute bronchitis, bacterial pneumonia, and Pneumocystis
carinii pneumonia.1 Despite the advent of combined anti-
retroviral therapy, the incidence of chronic obstructive
pulmonary disease,2,3 pulmonary arterial hypertension,4

chronic bronchitis,5 and asthma6 is higher in PWH. A
recent multicenter nationwide cohort study has revealed an
stigative Pathology. Published by Elsevier Inc
increased incidence of previously unrecognized pulmonary
fibrosis (PF) among HIV-infected patients.7 However, the
role of drug abuse on interstitial lung disease, such as PF or
idiopathic PF, remains unexplored, specifically when sub-
stance abuse is highly prevalent among PWH, with nearly
. All rights reserved.
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SIV and Morphine-Induced Lung Fibrosis
50% afflicted with drug abuseeassociated comorbidities.8 A
study involving a cohort of 167 HIV-infected patients found
that 47.3% of participants had respiratory abnormalities
associated with i.v. drug use, of which 21% presented with
irreversible airway obstruction.9

PF is a progressive fatal lung disease characterized by
excessive proliferation of fibroblasts and deposition of
extracellular matrix (ECM) that leads to irreversible lung
remodeling.10 Environmental and occupational factors, such
as smoking, viral infection, and pollutants, may accelerate
pulmonary injury and promote fibrosis.11 The pathophysi-
ology of PF entails accelerated proliferation and decreased
apoptosis of fibroblasts, and increased deposition and
decreased breakdown of ECM.12 The elevated ECM depo-
sition may result from the increased epithelial-mesenchymal
transition (EMT).13 Moreover, HIV-1 and SIV infections
promote a massive accumulation of collagen through in-
duction of transforming growth factor-b1 (TGF-b1) in the
lymphoid tissues of humans and rhesus macaques.14,15 Also,
SIV infectioneinduced pulmonary arteriopathy in rhesus
macaques and morphine (Mor) dependence potentiate the
endothelial injury and the pulmonary vascular remodeling in
SIV-infected macaques.16 Therefore, the current study
investigated the pathogenic changes in the lungs of
morphine-exposed rhesus macaques after SIV infection. The
study presents, for the first time, evidence that SIV infection
in rhesus macaques induces histopathologic and lung tissue
remodeling manifestations of pulmonary fibrosis that are
significantly exaggerated in morphine dependence.

Materials and Methods

Macaques

Archival lung tissues from the male Indian rhesus macaques
(Macaca mulatta) infected with SIVmac251 exposed to
morphine (SIV þMor group), or infected macaques without
morphine dependence (SIV group), or morphine-exposed
uninfected controls (Mor group), or saline controls were
used for this study. All the Institutional Animal Care and
Use Committee guidelines were followed, and the experi-
mental protocols were approved by Institutional Animal
Care and Use Committee, University of Nebraska Medical
Center. For macaques in Mor group and SIV þ Mor group,
45 weeks of morphine injections were administered (72 mg/
kg/week, i.m., 12 injections per week). Sham injections of
saline were given to macaques in the saline group and SIV
group. Macaques in the SIV alone and SIV þ Mor groups
were infected with SIVmac251 following 9 weeks of
morphine administration. Animals were sacrificed at the end
of 34 weeks after viral inoculation. The homogenates of the
lung regions were used for assessing the expression of
different protein and mRNA of interest. Inflated, paraffin-
embedded lung tissue sections were used for histopatho-
logic and immunostaining analyses. See online supplement
for further details of Materials and Methods.
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Histopathology and Masson Trichrome Collagen
Staining

Formalin-fixed, paraffin-embedded lung tissue sections (5
mm thick) of experimental macaques were deparaffinized in
xylene and rehydrated in descending grades of ethanol and
deionized water. Standard hematoxylin and eosin staining
was performed, and histology was assessed by light micro-
scopy. For collagen assessment in the lung tissues, Masson
trichrome stain kit (ab150686; Abcam, Cambridge, MA) was
used according to the manufacturer’s instructions. Briefly, the
deparaffinized sections were treated with Bouin solution at
60�C for 1 hour, followed by staining with Weigert Iron
Hematoxylin, Biebrich ScarleteAcid Fuchsin solution, and
Aniline Blue Stain Solution (all from Sigma-Aldrich, St.
Louis, MO). Then, 1% acetic acid was used to remove the
extra non-specific staining from the section. Black-stained
nuclei, red-stained cytoplasm and muscle fibers, and blue-
stained collagen were determined by light microscopy.

SIV Lung Viral Load Quantification

SIV RNA concentration in the lung tissue samples was
measured by quantitative RT-PCR, as previously
described.17 Briefly, total RNA was extracted from lung
tissues using a Qiagen kit (74104; Qiagen, Germantown,
MD), according to the manufacturer’s instructions. SIV gag
RNA was quantified by quantitative RT-PCR using the
TaqMan RNA-to-Ct 1-Step kit (4392938; Thermo Fisher
Scientific, Waltham, MA) using the following primers:
forward, 50-GTCTGCGTCATCTGGTGCATTC-30; reverse,
50-CACTAGGTGTCTCTGCACTATCTGTTTTG-30; and
SIV probe, 50-/6-carboxyfluorescein (FAM)/CTTCCTCAG/
ZEN/TGTGTTTCACTTTCTCTTCTGCG/3IABkFQ-30.

Immunohistochemistry

Formalin-fixed, paraffin-embedded lung tissue sections (5
mm thick) were deparaffinized in xylene and rehydrated in
descending grades of ethanol and deionized water. Followed
by antigen retrieval in Tris EDTA buffer (pH 9.0), and
blocking with phosphate-buffered saline containing normal
3% goat serum (S-1000; Vector Laboratories, Burlingame,
CA), the tissue sections were probed with primary antibodies
4-hydroxynonenal (4HNE; rabbit polyclonal IgG; 1:200
dilution; ab46545; Abcam), TGF-b1 (mouse monoclonal
IgG; 1:500 dilution; Ma5-18023; Thermo Fisher Scientific),
CD64 (rabbit polyclonal IgG; 1:200 dilution; ab203349;
Abcam), Ki-67 (rabbit polyclonal IgG; 1:250 dilution;
ab15580; Abcam), a-smooth muscle actin (a-SMA; rabbit
polyclonal IgG; 1:500 dilution; ab7817; Abcam), and
claudin-5 (rabbit polyclonal IgG; 1:50 dilution; ab15106;
Abcam). The immunoprobed tissues were detected with
respective fluorescent-conjugated secondary antibodies, and
the images were acquired using Zeiss LSM 800 confocal
laser-scanning microscope (Carl Zeiss, Inc., Jena, Germany).
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ImageJ software version 1.4.3.67 (NIH, Bethesda, MD;
https://imagej.nih.gov/ij, last accessed December 26, 2022)
was used for image quantification.

Western Blot Analysis

Protein expression in experimental samples was analyzed by
standard Western blot analysis procedure, as described
previously.18 Briefly, proteins were extracted from lung
tissue samples using radioimmunoprecipitation assay lysis
buffer containing protease (78429; Thermo Fisher Scienti-
fic) and phosphatase (78427; Thermo Fisher Scientific) in-
hibitors and were quantified by using Pierce BCA Protein
Assay Kit (23228; Thermo Fisher Scientific), according to
the manufacturer’s instruction. Immunoblotting was per-
formed for superoxide dismutase 2 (rabbit polyclonal IgG;
1:2000 dilution; ab13533; Abcam), catalase (rabbit mono-
clonal IgG; 1:1000 dilution; D4P7B#12980; Cell Signaling
Technology, Danvers, MA), glutathione peroxidase 1 (rab-
bit polyclonal IgG; 1:2000 dilution; ab22064; Abcam),
matrix metalloprotease (MMP)-2 (rabbit monoclonal IgG;
1:2000 dilution; D4M2N; Cell Signaling Technology),
MMP-9 (rabbit polyclonal IgG; 1:1000 dilution; ab38898;
Abcam), MMP-7 (rabbit monoclonal IgG; 1:1000 dilution;
ab207299; Abcam), TGF-b1 (mouse monoclonal IgG;
1:1000 dilution; Ma5-18023; Thermo Fisher Scientific),
a-SMA (rabbit polyclonal IgG; 1:1000 dilution; ab7817;
Abcam), E-cadherin (rabbit monoclonal IgG; 1:2000 dilu-
tion; 24E10#3195; Cell Signaling Technology), N-cadherin
(D4R1H; Cell Signaling Technology), and vimentin
(ab24525; Abcam). The antigen-antibody complex was
detected by SuperSignal chemiluminescent substrate
(VJ311133; Thermo Fisher Scientific), according to the
manufacturer’s instruction. b-Actin antibody (sc-47778;
Santa Cruz Biotechnology, Dallas, TX) was used for the
protein normalization. Images of protein bands were ac-
quired using a digital photographic scanner, GT-X750
(Seiko Epson Corp., Los Alamitos, CA), and were quanti-
fied using ImageJ software version 1.4.3.67.

Enzyme-Linked Immunosorbent Assay

Macaque’s lung tissue homogenate of saline, SIV, Mor, and
SIV þ Mor groups was used to detect tumor necrosis factor-
a and IL-1b using enzyme-linked immunosorbent assay kit
(BMS223-4 and BMS224-2; Thermo Fischer Scientific),
according to the manufacturer’s instructions.

Statistical Analysis

The data are represented as means � SEM. The statistical
significance was analyzed by one-way analysis of variance,
followed by Tukey multiple comparisons test using the
GraphPad Prism Software version 5 (Boston, MA). Statis-
tical analysis was performed, where P < 0.05 was consid-
ered statistically significant.
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Results

Histopathologic Changes in the Lungs of Morphine-
Exposed, SIV-Infected Macaques

The histopathologic changes in the lungs of macaques were
analyzed by hematoxylin and eosin staining (Figure 1A).
Normal distal lung morphology with archetypal alveolar
spaces was observed in the saline control group (Figure 1A).
However, SIV-infected and uninfected Mor-exposed ma-
caques exhibited severe distortion of lung morphology,
consisting of diffuse fibrous areas and obscured alveolar
framework with thick scars. Inflammation-related tissue
thickening with infiltration of immune cells into the inter-
stitium was observed in SIV-infected macaque lungs
(Figure 1A). Distorted architecture with honeycomb struc-
tures, consisting of enlarged airspaces lined by bronchial
epithelium frequently filled with mucus and inflammatory
cells, was evident in Mor alone (Figure 1A) and SIV þ Mor
(Figure 1A) macaque lungs. Fibroblastic foci, consisting of
small dome-shaped interstitial collection of myofibroblasts,
were observed in both Mor alone and SIV þ Mor groups of
macaque lungs. Large contiguous fibrotic masses with more
frequent honeycomb and fibroblast foci, along with focal
alveolar as well as interstitial damage, were found in all of the
animals in SIVþMor groups. The histopathologic scores are
provided in Figure 1B, which shows that inflammation-
related pathologic changes were high in SIV alone group
of macaques (*P< 0.05 versus saline; yP < 0.05 versus Mor;
zP < 0.05 versus SIV þ Mor). SIV lung viral loads of all the
chronically infected macaques (both SIV alone and SIV þ
Mor) were stable at 105 to 107 copies/mg of RNA (Table 1).
Having found fibrotic changes in the lungs of experimental
macaques, the study next analyzed the collagen deposition in
each lung section by Masson trichrome staining. Represen-
tative micrographs are shown in Figure 1, C and D. Normal
alveolar spaces with no signs of disease and typically low
amounts of collagen were observed in the saline group
(Figure 1C). Thickened alveolar septa, with some accumu-
lation of pulmonary interstitial cells and collagen, were
evident in SIV alone group (Figure 1C). Damaged alveolar
structures and disorderly arranged lung parenchyma, with
higher accumulation of interstitial collagen, were found in
Mor alone group (Figure 1C). However, multifocal fibroblast
clusters with massive accumulation of interstitial collagen
were evident in the lungs of the SIV þ Mor group
(Figure 1D). Figure 1D represents the detailed assessment of
collagen in the proximal and distal bronchiolar region of
experimental macaque lungs. Collagen deposition was
significantly high in the proximal bronchiolar region of SIV
þ Mor group (Figure 1D). Interestingly, more collagen
deposition was found in the distal bronchiolar region of Mor
alone and SIV þ Mor group of macaque lungs (Figure 1D).
Morphometric analysis was performed by calculating the
percentage area of aniline blueestained collagen fibers to
estimate the degree of fibrosis. There was a significant
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Pathologic analysis of the lung tissue. A: Hematoxylin and eosin (H&E) staining to examine lung pathology in saline, SIV, morphine (Mor), and
SIV þ Mor groups of macaques. Top panels: H&E-stained sections. Bottom panels: H&E-stained sections. B: Histopathologic scores of the different treatment
groups. Immune cell infiltration was scored in macaque lungs stained with H&E. One-way analysis of variance, followed by Tukey multiple comparison test, was
used to determine the statistical significance. C: Masson trichrome staining in lung tissues of experimental macaques. Top panels: Masson trichromeestained
sections. Bottom panels: Masson trichromeestained sections. D: Masson trichrome staining in the proximal bronchioles (top panels) and distal bronchioles
(bottom panels) of the experimental macaque lung tissues. Values represent the means � SEM (B). *P < 0.05 versus saline; yP < 0.05 versus Mor; zP < 0.05
versus SIV þ Mor. Scale bars: 1000 mm (A and C, top panels, and D); 100 mm (A and C, bottom panels). Original magnification: �4 (A and C, top panels, and
D); �20 (A and C, bottom panels).

SIV and Morphine-Induced Lung Fibrosis
increase in the percentage area of collagen fibers in SIV þ
Mor group compared with the saline (P < 0.05), SIV
(P < 0.05), and Mor (P < 0.05) groups. As expected, SIV
alone (P < 0.05) and Mor alone (P < 0.05) groups also
exhibited more collagen accumulation compared with saline
control group (Supplemental Figure S1).
Increased Oxidative Stress in the Lungs of Morphine-
Exposed, SIV-Infected Macaques

Several lines of evidence suggest that HIV infection causes
pronounced oxidative stress.19,20 To determine whether
oxidative stress plays a significant role in SIV-induced PF,
the expression of 4HNE, the end product of lipid
Table 1 Representing the Viral Load of SIVmac251 in Lung
Tissues of SIV Alone and SIV þ Mor Group of Macaques

Lung tissue RNA viral loads

Animal ID Treatment SIV copies/mg RNA

14T004 SIV 314,988,969
15N223 SIV 974,530
14X006 SIV 53,248,195
12N067 SIV 125,550
14X002 SIV þ Mor 708,435
13T005 SIV þ Mor 539,564
14X043 SIV þ Mor 324,147

ID, identifier; Mor, morphine.

The American Journal of Pathology - ajp.amjpathol.org
peroxidation,21 was examined in SIV- and/or Mor-exposed
macaques. Immunofluorescence analysis of 4HNE in lung
tissues indicated that both SIV and Mor independently
increased the 4HNE levels that were further up-regulated in
SIV þ Mor lungs (*P < 0.05 versus saline, yP < 0.05
versus SIV, and zP < 0.05 versus Mor; immunofluorescence
and quantification are shown) (Figure 2, A and B). Inter-
estingly, the 4HNE adducts were localized predominantly in
the cytoplasm of bronchial epithelial cells, and the expres-
sion was low in the cytoplasm of alveolar epithelial cells.
Changes associated with SIV- and Mor-induced expression
of 4HNE were also evident by Western blot analysis
(Figure 2, C and D). To strengthen the inference that SIV/
Mor affects the oxidation-reduction status of macaque
lungs, the expression profile of antioxidant enzymes,
including superoxide dismutase 2, was assessed. As shown
in Figure 2E, a significant down-regulation of the enzyme
was observed in macaque lungs exposed to SIV and Mor
compared with saline (*P < 0.05), SIV (yP < 0.05), and
Mor (zP< 0.05) groups of macaques. Similarly, Western
blot analysis indicated that the levels of antioxidant en-
zymes catalase (yP < 0.05 versus SIV, and zP < 0.05 versus
Mor) and glutathione peroxidase 1 (yP < 0.05 versus SIV,
and zP < 0.05 versus Mor) were significantly reduced in
SIV þ Moreexposed animals (Figure 2, E and F). How-
ever, interestingly, the level of these enzymes was inde-
pendently up-regulated either by SIV exposure or by Mor
dependence (Figure 2E). This might reflect an early attempt
383
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by the organism to compensate for the potential antioxidant
milieu induced by the treatments. For example, vascular
endothelial growth factor is important to mend lung injuries,
and early or subtoxic exposure to cigarette smoke increases
vascular endothelial growth factor.22 However, chronic
emphysema is associated with reduced levels of vascular
endothelial growth factor in the lung.23,24 Together, these
results suggest that SIV and Mor may lead to lung injury
through oxidative stress by changing the oxidation-
reduction phenotype of the lung.

Increased Inflammation and Matrix Degradation in the
Lungs of Morphine-Exposed, SIV-Infected Macaques

Because oxidative stress promotes PF by activating proin-
flammatory cytokines,25,26 the study sought to examine the
expression of proinflammatory cytokines in SIV/Mor-exposed
macaque lungs. As examined by the enzyme-linked immu-
nosorbent assay, the protein content of tumor necrosis factor-a
and IL-1b was significantly elevated in all the treatment
groups, with the greatest increase in the SIV alone group. The
SIV group showed significant difference compared to saline,
morphine, and SIV þ Mor (*, y, zP < 0.05) (Figure 3, A and
Figure 2 Increased oxidative stress in lungs of morphine (Mor)eexposed, S
crographs showing expression of 4-hydroxynonenal (4HNE) in lung tissues of mo
fluorescence intensity was performed in minimum 10 fields from four macaques. C
exposed, SIV-infected macaques. D: Quantitative analysis of relative fold chang
peroxide dismutase 2 (MnSOD2), catalase, and glutathione peroxidase 1 (GPX1) in
analysis of relative fold change of protein expression. One-way analysis of varian
statistical significance (B, D, and F). Values represent the means � SEM (B, D, an
Mor. Scale bars Z 1000 mm (A). Original magnification, �4 (A).
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B). Considering that inflammatory cells may impact the
pathogenesis of PF, the expression profile of MMPs was
analyzed next, as oxidative stress and inflammation lead to
degradation of ECM through the up-regulation of MMPs.
MMPs, such as MMP-2, MMP-7, and MMP-9, degrade ECM
and affect the structural integrity of pulmonary tissues in both
experimental and clinical fibrotic lung pathologies.27e29

Western blot analysis of the lungs indicated that MMP-2
and MMP-9 levels were significantly up-regulated in all
treatment groups, with the largest increase in the SIV þ Mor
group. MMP-2 was significantly up-regulated in the SIV þ
Mor group compared to saline/morphine alone, while MMP-9
was significantly up-regulated in the SIV þ Mor group
compared to saline alone (*P < 0.05 and zP < 0.05,
respectively) (Figure 3, CeE). Analogous results were
observed with gelatin zymography analysis of the lung tissue
homogenates from these groups (Figure 3F). Apart from
MMP-2/MMP-9, matrilysin (MMP-7) is believed to play a
central role in the pathogenesis of PF, as it is considered a
potential peripheral blood biomarker in patients with PF.27 As
seen in Figure 3, G and H, SIV (*P < 0.05) and Mor
(yP < 0.05) independently increased MMP-7 levels
compared to saline group; however, the levels of MMP-7
IV-infected macaques. A: Representative immunohistochemistry photomi-
rphine-exposed, SIV-infected macaques. B: Quantitative analysis of mean
: Western blot analysis showing expression of 4HNE in lung tissues of Mor-
e of 4HNE expression. E: Western blot analysis showing expression of su-
lung tissues of morphine-exposed, SIV-infected macaques. F: Quantitative

ce, followed by Tukey multiple comparison test, was used to determine the
d F). *P < 0.05 versus saline (Sal); yP < 0.05 versus SIV; zP < 0.05 versus
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were increased further by a combination of SIV þ Mor
(yP < 0.05) compared to morphine alone. These results sug-
gest that SIV and Mor increase the concentrations of MMP-2,
MMP-7, and MMP-9, which are likely to contribute to the
increased chronic obstructive pulmonary disease and PF in
PWH.
Morphine Dependence Increases the Expression of
Profibrotic Transforming Growth Factor-b1 in SIV-
Infected Macaque Lungs

TGF-b1 plays a crucial role in promoting lung fibrosis.30

Therefore, the study determined the expression of TGF-b1
in macaque lungs exposed to SIV and/or morphine. As
shown in Figure 4, A and B, Western blot analysis indicated
that SIV and Mor independently significantly increased the
expression of TGF-b1 over the control lungs (*P < 0.05).
Moreover, the expression was further increased in the SIV þ
Mor group (*P < 0.05 versus saline, yP < 0.05 versus SIV,
and zP < 0.05 versus Mor). Similarly, the immunofluores-
cence analysis also showed similar changes in the expression
of TGF-b1 in various experimental groups (Figure 4, CeE).
TGF-b1 in the lung is primarily produced by the alveolar
Figure 3 Increased inflammation and matrix degradation in lungs of morphin
nosorbent assay showing expression of tumor necrosis factor (TNF)-a and IL-1b
analysis showing expression of matrix metalloproteinase (MMP)-2 and MMP-9 in
titative analysis of relative fold change of MMP-2 and MMP-9 expression. F: Gelati
tissues of morphine-exposed, SIV-infected macaques. G: Western blot analysis show
macaques. H: Quantitative analysis of relative fold change of MMP-7 expression. On
used to determine the statistical significance (A, B, D, E, and H). Values repres
yP < 0.05 versus Mor; zP < 0.05 versus SIV þ Mor.

The American Journal of Pathology - ajp.amjpathol.org
macrophages.31,32 Therefore, the study determined the
contribution of alveolar macrophages to the overproduction
of TGF-b1. The lung tissue sections were stained for TGF-b1
and costained with the macrophage marker CD64. Indeed,
the TGF-b1 staining largely colocalized with the CD64
marker in the lungs, and the expression was highest in the
SIV þ Moreexposed lungs (Figure 4C).
Increased Fibroblast Proliferation and Myofibroblast
Differentiation in Morphine-Exposed, SIV-Infected
Rhesus Macaques

Fibroblast foci are the leading edge of PF pathogenesis and
represent the differentiation of fibroblasts to myofibro-
blasts.33 To ascertain the proliferation and differentiation of
fibroblasts, the study examined the differentiation markers on
the macaque lungs by Western blot and immunofluorescence.
Expression of the proliferation marker Ki-67 was negligible
in the nuclei of the control lungs. However, Ki-67 expression
was significantly up-regulated in SIV, Mor, and SIV þ Mor
lungs compared to saline group (*P < 0.05); in the latter
(SIV þ Mor), expression was higher than in the SIV or Mor
groups (y, zP < 0.05) (Figure 5, A and B). Similarly, a-SMA
e (Mor)eexposed, SIV-infected macaques. A and B: Enzyme-linked immu-
in lung tissues of Mor-exposed, SIV-infected macaques. C: Western blot

lung tissues of morphine-exposed, SIV-infected macaques. D and E: Quan-
n zymography analysis showing the expression of MMP-2 and MMP-9 in lung
ing expression of MMP-7 in lung tissues of morphine-exposed, SIV-infected
e-way analysis of variance, followed by Tukey multiple comparison test, was
ent the means � SEM (A, B, D, E, and H). *P < 0.05 versus saline (Sal);
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exhibited an analogous increase in the lungs as indicated by
immunofluorescence (Figure 5, C and D) and Western blot
(Figure 5, E and F). Using immunofluorescence localization,
the study found that Ki-67epositive proliferating fibroblasts
were localized within areas of interstitial fibrosis and away
from fibroblast foci (Figure 5G). Myofibroblasts within the
fibroblast foci expressed negligible antigen Ki-67
(Figure 5G). To validate this finding, lung tissue sections
were costained with vimentin, along with Ki-67 and a-SMA.
As shown in Figure 5H, a-SMAepositive cells in fibroblast
foci that colocalized with vimentin were negative for Ki-67
expression. Ki-67epositive cells in the interstitial areas
were colocalized with vimentin (Figure 5H), which
confirmed that proliferating fibroblasts were localized in the
interstitial fibrotic area and myofibroblasts in the fibroblast
foci were less proliferating.

Increased Epithelial-Mesenchymal Transition in the
Lungs of Morphine-Exposed, SIV-Infected Rhesus
Macaques

Fibroblastic foci in the lung are characterized by vigorous
proliferation and migration of mesenchymal cells through
EMT, leading to an abnormal accumulation of ECM. The
EMT is a biological process in which nonmotile epithelial
Figure 4 Increased expression of transforming growth factor (TGF)-b1 in lu
showing expression of TGF-b1 in lung tissues of Mor-exposed, SIV-infected macaqu
Representative immunohistochemistry photomicrographs showing expression of T
and E: Quantitative analysis of mean fluorescence intensity was performed in minim
Tukey multiple comparison test, was used to determine the statistical significance
versus saline (Sal); yP < 0.05 versus SIV; zP < 0.05 versus Mor. Scale bars Z 10

386
cells change to a mesenchymal phenotype and the hallmark
of EMT is the loss of epithelial surface markers, most
notably E-cadherin, and the acquisition of mesenchymal
markers, including vimentin and N-cadherin,34 that leads to
cell migration, proliferation, and adhesion,35 promoting
lung diseases, such as PF. Moreover, the lung epithelial/
endothelial cell barriers form the tight junctions that require
the participation of tight junction proteins, including clau-
dins. The loss of claudins encourages diseases such as PF
and chronic obstructive pulmonary disease in the lung.36

The expression of the endothelial marker claudin-5 is
reduced in the alveoli in interstitial pneumonitis in patients
with HIV.37 Therefore, whether SIV/Mor affected the
expression of E-cadherin and N-cadherin, vimentin, and
claudin-5 was studied next. As seen in the Western blot in
Figure 6, AeD, compared with control macaque lungs, SIV
and Mor significantly decreased E-cadherin and increased
N-cadherin and vimentin, indicating that the treatments
promoted EMT. Moreover, the combination of SIV and Mor
(SIV þ Mor) exaggerated these EMT indexes. Furthermore,
examination of the immunofluorescence data indicates that
SIV and Mor, independently and collectively, reduce the
expression of claudin-5 (Figure 6, E and F). Together, these
results suggest that SIV and Mor dysregulate the EMT and
the lung alveolar tight junctions, which may encourage
ngs of morphine (Mor)eexposed, SIV-infected macaques. A: Western blot
es. B: Quantitative analysis of relative fold change of TGF-b1 expression. C:
GF-b1 and CD64 in lung tissues of Mor-exposed, SIV-infected macaques. D
um 10 fields from four macaques. One-way analysis of variance, followed by
(B, D, and E). Values represent the means � SEM (B, D, and E). *P < 0.05
0 mm (C). Original magnification, �20 (C).
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Figure 5 Increased fibroblast proliferation and myofibroblast differentiation in morphine (Mor)eexposed, SIV-infected rhesus macaques. A and C:
Representative immunohistochemistry photomicrographs showing expression of Ki-67 (A) and a-smooth muscle actin (a-SMA; C) in lung tissues of morphine-
exposed, SIV-infected macaques. B and D: Quantitative analysis of mean fluorescence intensity was performed in minimum 10 fields from four macaques. E:
Western blot showing expression of a-SMA in lung tissues of Mor-exposed, SIV-infected macaques. F: Quantitative analysis of relative fold change of a-SMA
expression. G: Representative immunohistochemistry photomicrographs showing the colocalization of Ki-67 and a-SMA in lung tissues of macaques from SIV þ
Mor group. H: Representative immunohistochemistry photomicrographs showing the colocalization of vimentin, Ki-67, and a-SMA in lung tissues of macaques
from SIV þ Mor group. One-way analysis of variance, followed by Tukey multiple comparison test, was used to determine the statistical significance (B, D, and
F). Values represent the means � SEM (B, D, and F). *P < 0.05 versus saline (Sal); yP < 0.05 versus SIV; zP < 0.05 versus Mor. Scale bars Z 100 mm (A, C, G,
and H). Original magnification, �20 (A, C, G, and H).

SIV and Morphine-Induced Lung Fibrosis
fibrotic lung diseases. These processes are further exacer-
bated in the lungs exposed to both SIV þ Mor.
Discussion

Pulmonary complications remain a substantial cause of
morbidity and mortality in individuals with HIV. The
fundamental mechanisms for the increased rates of pul-
monary diseases in PWH are multifactorial. Earlier studies
on SIV-infected rhesus macaques have shown altered
pulmonary immunity with enhanced inflammation,38

minimal cell death of virus-infected alveolar macro-
phages to facilitate HIV persistence, and promotion of
lung damage.39 Interestingly, morphine was found to
potentiate the SIV-mediated pulmonary arteriopathy in
rhesus macaques.16 However, the effect of morphine and
SIV interactions in inducing pulmonary fibrosis is yet to
be revealed. In this context, this study used archival lung
tissues from Mor-dependent SIV-infected rhesus ma-
caques to explore the effect of Mor and SIV interaction on
inducing fibrotic changes in the lungs. The study provided
morphologic and molecular evidence for the induction of
The American Journal of Pathology - ajp.amjpathol.org
pulmonary fibrosis with increased accumulation of inter-
stitial collagen and presence of honeycombing and fibro-
blast foci in the lungs of SIV-infected rhesus macaques
exposed to morphine. To the best of our knowledge, this is
the first study to report the incidence of pulmonary fibrosis
in the rhesus macaque model of SIV infection and Mor
dependence.

Mor dependence resulted in the formation of large
contiguous fibrotic masses with honeycombing filled with
inflammatory cells and fibroblast foci with abundant myo-
fibroblasts and massive accumulation of interstitial collagen
in SIV-infected macaque lungs. Numerous lines of evidence
show that HIV infection triggers pronounced oxidative
stress with a reduction of total antioxidant capacity in the
lungs.40 Interestingly, Mor interaction with SIV/simian HIV
infection causes higher oxidative tissue injury in rhesus
macaques.41 In addition to macaques, abnormal oxidant/
antioxidant balance is also evident in PWH, which may play
a significant role in inducing lung damage.26 A consequence
of such increased oxidative burden may be lipid peroxida-
tion in the lungs.42 This study showed increased levels of
4HNE adducts, a highly reactive diffusible product of lipid
peroxidation, in the bronchial epithelial cells of SIV-
387
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Figure 6 Increased epithelial-mesenchymal transition in the lungs of morphine (Mor)eexposed, SIV-infected rhesus macaque. A: Western blot analysis
showing expression of E-cadherin, N-cadherin, and vimentin in lung tissues of morphine-exposed, SIV-infected macaques. BeD: Quantitative analysis of
relative fold change of protein expression. E: Representative immunohistochemistry photomicrographs showing expression of claudin 5 in lung tissues of
morphine-exposed, SIV-infected macaques. F: Quantitative analysis of mean fluorescence intensity was performed in minimum 10 fields from four macaques.
One-way analysis of variance, followed by Tukey multiple comparison test, was used to determine the statistical significance (BeD and F). Values represent the
means � SEM (BeD and F). *P < 0.05 versus saline (Sal); yP < 0.05 versus SIV; zP < 0.05 versus Mor. Scale bars Z 100 mm (E). Original magnification, �20
(E).
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infected macaques with chronic dependence to Mor. To
evaluate the status of pulmonary antioxidant protection
during SIV infection, the expression of antioxidant enzymes
was analyzed. There was a dramatic decrease in the
expression of antioxidants in the lungs of SIV þ Mor group
of macaques. However, there was a significant increase in
the expression of catalase and glutathione peroxidase 1 in
SIV- or Mor-treated macaque lungs. Persistent oxidative
stress diminishes the potential of antioxidants to be
expressed and imposes an imbalance between the produc-
tion of oxidants and antioxidants in the lungs. This could be
the possible reason for the enhanced expression of catalase
and glutathione peroxidase 1 in SIV or Mor groups, and
diminished expression of these antioxidants in SIV þ Mor
group of macaques. A recent study has demonstrated the
pathogenic role of inflammatory cytokines that up-regulated
the expression of MMPs in the lungs of patients with HIV
who developed emphysema.43 Up-regulated expression of
MMPs play an important role in the development of PF.
Among many different MMPs, MMP-2 and MMP-9 show
increased activity in pulmonary diseases, including PF.44

Herein, the study found that increased activity of MMPs
is positively correlated to the pathogenesis and progression
of PF on SIV infection and Mor dependence. The variability
in the expression levels of MMPs and cytokines among the
various macaque groups could be due to limitation in the
388
number of animals in each group. It is possible that
morphine dependence establishes a fibrotic phenotype that
could occlude the inflammatory responses. It is also possible
that although some pathways could be common, the two
agents could also induce two distinct pathways to induce
pathogenesis, which over time become distinct entities.
Longitudinal assessment of disease condition in the context
of morphine and/or SIV could lead to a better understanding
of these pathways.
Overwhelming evidence highlights TGF-b1 as the most

potent inducer of fibrosis by enhancing ECM production,
matrix degradation, and collagen accumulation.45 Wierci�n-
ska-Drapalo et al46 investigated the possible relationship of
circulating TGF-b1 with the clinical outcomes of HIV
infection in a cohort of 66 patients. An almost twofold in-
crease in the level of plasma TGF-b1 was observed in HIV-
infected patients compared with healthy controls.46 In an
earlier study, Estes et al14 found a parallel increase in im-
mune activation, TGF-b1epositive regulatory T cells, and
collagen 1 deposition in the lymphatic tissue of SIV-
infected rhesus macaques. In addition to plasma and
lymph nodes, TGF-b1 overproduction during pulmonary
fibrogenesis is also evident from alveolar macrophages,
bronchial epithelium, and alveolar epithelial cells.31 The
current finding supports these observations and suggests that
Mor in combination with SIV enhances proliferation of
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Schematic representation of the pathologic role of SIV and morphine in macaque lungs. SIV was shown to induce oxidative stress and
inflammation with up-regulated expression of matrix-degrading enzymes matrix metalloproteinase (MMP)-2/MMP-9/MMP-7 in macaque lungs. These patho-
logic events may result in increased production of transforming growth factor (TGF)-b1 by alveolar macrophages, which further facilitate the induction of
epithelial-mesenchymal transition (EMT) in lungs. Increased fibroblast proliferation and trans-differentiation of fibroblasts into myofibroblasts may result in
the massive accumulation of interstitial collagen and fibrosis in experimental macaque lungs. Morphine was found to potentiate SIV-mediated pathologic
changes in the lungs. ECM, extracellular matrix; GPX1, glutathione peroxidase 1; 4HNE, 4-hydroxynonenal; a-SMA, a-smooth muscle actin; SOD, superoxide
dismutase; TNF-a, tumor necrosis factor-a.

SIV and Morphine-Induced Lung Fibrosis
fibroblasts, which could lead to an increase in the expression
of TGF-b1 in macaque lungs. Although multiple cell types
are involved in the pathogenesis of lung fibrosis, fibroblast
proliferation and trans-differentiation of fibroblasts to
myofibroblasts are considered as the key events in the
initiation and progression of PF. In the context of fibrosis,
TGF-b1 released by the injured alveolar epithelial cells or
alveolar macrophages can cause trans-differentiation of
fibroblast to myofibroblast that contributes to tissue
remolding via overproduction of ECM proteins, cytokines,
and specific growth factors.47,48 Myofibroblasts are tran-
siently present and orchestrate scar formation in normal
acute wounds. However, persistent activation of myofibro-
blast at the site of injury results in excessive deposition of
ECM. In accordance with the previous reports on PF, an
abnormal proliferation of fibroblasts and their differentiated
phenotype, myofibroblasts, was found herein in the exper-
imental lung tissues.49 The origin of these contractile
a-SMAepositive myofibroblasts remains debated. Previous
studies sought to explain and have proposed several theories
for the origin of these cells, including the following: i) they
are derived from proliferating and activated resident fibro-
blasts, ii) they are derived from type I or type II epithelial
cells via the process of EMT, iii) they are derived from bone
marrowederived fibroblast, or iv) they are derived from
pericytes in the lung interstitium.50 Several studies have
highlighted the best explanation for the increased myofi-
broblasts in the injured epithelial area, which is EMT, in
which type I and type II epithelial cells lose their epithelial
cell phenotype and acquire mesenchymal characteristics
with increased motility that helps to escape the injured area.
The current results substantiate the previous reports, where
The American Journal of Pathology - ajp.amjpathol.org
decreased expression of epithelial markers along with
increased expression of mesenchymal markers were noted in
the rodent model of PF.51,52

On the basis of these observations, we speculate that
morphine significantly potentiates SIV-mediated fibrogenesis
and progression of fibrosis in macaque lungs. Although the
mechanistic underpinnings are not clearly defined in this
study, it provides proof that Mor dependence enhances
oxidative stressemediated epithelial degeneration, the release
of profibrotic TGF-b1, transactivation of myofibroblasts, and
accumulation of interstitial collagen associated with SIV
infection in macaque lungs (Figure 7). A better contemporary
understanding of the burden of pulmonary complications
associated with HIV infection is important for patient care
and future research endeavors in this field. SIV and morphine
show significant effects individually, and whether these are
additive or synergistic is not clear. It is possible that although
some pathways could be common, the two agents could also
induce two distinct pathways to induce pathogenesis, which
over time become distinct entities, both harmful to the sub-
ject. Longitudinal assessment of disease condition in the
context of morphine and/or SIV could lead to a better un-
derstanding of these pathways. In addition, a recent publi-
cation also demonstrated that morphine can cause immune
suppression in SIV-infected animals.53
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