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Abstract
Gene flow between previously differentiated populations during the founding of an admixed or hybrid population 
has the potential to introduce adaptive alleles into the new population. If the adaptive allele is common in one source 
population, but not the other, then as the adaptive allele rises in frequency in the admixed population, genetic an
cestry from the source containing the adaptive allele will increase nearby as well. Patterns of genetic ancestry have 
therefore been used to identify post-admixture positive selection in humans and other animals, including examples 
in immunity, metabolism, and animal coloration. A common method identifies regions of the genome that have local 
ancestry “outliers” compared with the distribution across the rest of the genome, considering each locus independ
ently. However, we lack theoretical models for expected distributions of ancestry under various demographic scen
arios, resulting in potential false positives and false negatives. Further, ancestry patterns between distant sites are 
often not independent. As a result, current methods tend to infer wide genomic regions containing many genes 
as under selection, limiting biological interpretation. Instead, we develop a deep learning object detection method 
applied to images generated from local ancestry-painted genomes. This approach preserves information from the 
surrounding genomic context and avoids potential pitfalls of user-defined summary statistics. We find the method 
is robust to a variety of demographic misspecifications using simulated data. Applied to human genotype data from 
Cabo Verde, we localize a known adaptive locus to a single narrow region compared with multiple or long windows 
obtained using two other ancestry-based methods.
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Introduction
Genetic exchange between previously differentiated popu
lations is ubiquitous across species (Payseur and Rieseberg 
2016; Moran et al. 2021), often referred to as “admixture” or 
“hybridization” when moderate- to large-scale movements 
of individuals create new populations with ancestors from 
multiple source populations. In admixed populations, gen
etic ancestry varies between individuals and along the 
chromosome within individuals (Gravel 2012; Hellenthal 
et al. 2014; Aguillon et al. 2022; Gopalan et al. 2022). 
Across the tree of life, variation in genetic ancestry shapes 
genetic and phenotypic variation, such as differences in dis
ease risk between populations. Small amounts of gene flow 
or larger admixture may introduce advantageous alleles 
which then undergo positive selection. Such cases have 
been identified in diverse taxa, often termed adaptive intro
gression (Whitney et al. 2006; Hedrick 2013; 
Huerta-Sánchez et al. 2014; Norris et al. 2015; Racimo 
et al. 2015; Hsieh et al. 2019; Oziolor et al. 2019; Edelman 
and Mallet 2021; Moran et al. 2021; Aguillon et al. 2022) 
or, on shorter timescales in humans, post-admixture posi
tive selection (Tang et al. 2007; Cuadros-Espinoza et al. 
2022; Gopalan et al. 2022).

Despite the ubiquity and biological importance of ad
mixture, understanding evolutionary processes in admixed 
populations remains challenging (Moran et al. 2021; 
Gopalan et al. 2022). Classical methods to detect selection 
may pick up signatures of pre-admixture selection, and are 
often confounded by the process of admixture, which can 
increase linkage disequilibrium (LD) and change the distri
bution of allele frequencies (Lohmueller et al. 2010, 2011; 
Yelmen et al. 2021; Cuadros-Espinoza et al. 2022). Yet, be
cause admixture can introduce advantageous alleles at 
intermediate frequencies, post-admixture selection pro
vides an opportunity for particularly rapid adaptation on 
the scale of tens or hundreds of generations (Hellenthal 
et al. 2014; Hamid et al. 2021). Thus, methods tailored to 
the genetic signatures of admixed populations are import
ant to investigate the extent and impact of post-admixture 
adaptation across many organisms.

Recent methods have advanced our ability to identify 
regions of admixed genomes containing haplotypes under 
positive selection by using patterns of genetic ancestry. 
When one source population provides a beneficial allele, 
we expect that, as the beneficial allele increases in fre
quency, linked alleles from the source population will 
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hitchhike along with it, and thereby the proportion of ad
mixed individuals with ancestry from that source popula
tion at the selected locus (i.e., the local ancestry 
proportion) increases too. This logic has been leveraged 
to detect selection in recently admixed populations by 
identifying outliers in local ancestry proportion compared 
with a genome-wide average. Applied to human popula
tions, variations on ancestry outlier detection have identi
fied genomic regions associated with a range of 
phenotypic traits potentially underlying adaptation, in
cluding response to high altitude, diet, pigmentation, im
munity, and disease susceptibility (Tang et al. 2007; Bryc 
et al. 2010; Jin et al. 2012; Jeong et al. 2014; Bryc et al. 
2015; Rishishwar et al. 2015; Triska et al. 2015; Busby 
et al. 2016; Zhou et al. 2016; Busby et al. 2017; 
Laso-Jadart et al. 2017; Patin et al. 2017; Pierron et al. 
2018; Fernandes et al. 2019; Lopez et al. 2019; Norris 
et al. 2020; Vicuña et al. 2020; Hamid et al. 2021; Isshiki 
et al. 2021; Cuadros-Espinoza et al. 2022).

This ancestry outlier detection approach is useful for iden
tifying regions that may be under selection, but it can yield 
false positives due to long-range LD from the source popula
tions or allele frequencies drifting as a result of serial founder 
effects, and the criteria for determining outliers is difficult 
(Price et al. 2008; Bhatia et al. 2014; Busby et al. 2017); false 
negatives may also occur if the number of true adaptive 
events is greater than the number of outliers retained. 
Importantly, the ancestry outlier approach discards the 
wealth of information from the surrounding genomic con
text. Along genomes, spatial patterns of ancestry, such as 
the distribution of ancestry tract lengths containing a se
lected locus, may be informative about selection on this time
scale in admixed populations. The length of ancestry tracts is 
influenced by the timing and strength of selection, analogous 
to the increase in LD around selective sweeps in homoge
neous populations (Kelley 1997; Sabeti et al. 2002; Kim and 
Nielsen 2004; Voight et al. 2006). Similarly, strong selection 
can influence ancestry patterns along long stretches of the 
genome, often in complex patterns depending on the evolu
tionary scenario (Shchur et al. 2020; Hamid et al. 2021; 
Svedberg et al. 2021). For example, Svedberg et al. (2021) ex
tend their prior model (Ancestry_HMM, Corbett-Detig and 
Nielsen 2017) to explicitly incorporate post-admixture selec
tion by modeling increased ancestry frequency at the selected 
allele and a longer introgressed haplotype. We used similar 
expected signatures summarized in the iDAT statistic devel
oped by Hamid et al. (2021). However, the expected distribu
tions of the length and frequency of ancestry tracts 
surrounding post-admixture positively selected alleles has 
been difficult to explore theoretically, particularly combined 
with variable demographic histories (with the notable excep
tion of Shchur et al. 2020).

However, information about the complex patterns of 
ancestry around a selected locus is lost when relying on 
summary statistics, and there is a bias inherent in the user’s 
choice of quantitative summaries to include during infer
ence. More generally, we lack theoretical expectations 
for patterns of ancestry expected under postadmixture 

selection, especially under a range of selective and demo
graphic histories.

To overcome the loss of spatial information along the 
genome and the simplifying assumptions of classical sum
mary statistics, deep learning techniques have been in
creasingly used in population genetics. Deep learning 
algorithms are multilayered networks trained on example 
data sets with known response variables with the goal of 
learning a relationship between the input data and output 
variable(s) (applications to population genetics reviewed 
in Schrider and Kern 2018). Deep learning techniques are 
flexible with respect to data type and the specific task at 
hand, and have been shown to be effective for inferring 
demographic histories (Sheehan and Song 2016; Flagel 
et al. 2019; Sanchez et al. 2021; Wang et al. 2021), recom
bination rates (Chan et al. 2018; Flagel et al. 2019; Adrion 
et al. 2020), and natural selection (Sheehan and Song 
2016; Kern and Schrider 2018; Gower et al. 2021). 
Among the branches of deep learning, computer vision 
methods are a family of techniques originally developed 
to recognize images by using convolutional neural net
works (CNNs) (Lecun and Bengio 1995; Krizhevsky et al. 
2012; LeCun et al. 2015). CNNs learn from complex spatial 
patterns in large data sets through a series of filtering and 
down sampling operations that compress the data into 
features that are informative for inference. CNNs have re
cently been applied to images of genotype matrices for 
population genetic inference with great success (Chan 
et al. 2018; Flagel et al. 2019; Torada et al. 2019; Battey 
et al. 2020, 2021; Blischak et al. 2021; Gower et al. 2021; 
Isildak et al. 2021; Sanchez et al. 2021). In doing so, re
searchers can circumvent the loss of information and 
bias from using user-defined population genetic summary 
statistics and make inferences for study systems and ques
tions for which we lack theoretical expectations. 
Simulation-based inference is also often flexible enough 
that one may be able to incorporate various demographic 
histories into models, which has proven difficult for theor
etical models.

Here, we build on recent successes in deep learning ap
plications to population genetics problems and develop a 
deep learning object detection strategy that localizes gen
omic regions under selection from images of chromo
somes “painted” by ancestry (fig. 1) (Lawson et al. 2012; 
Maples et al. 2013). In using local ancestry rather than 
the genotypes directly, we focus on post-admixture pro
cesses and are potentially well-suited to low-coverage or 
sparse SNP data common in non-model systems 
(Schaefer et al. 2016, 2017; Wall et al. 2016; Schumer 
et al. 2020). Using this approach, we demonstrate that 
complex ancestry patterns beyond single-locus summary 
statistics are informative about selection in recently ad
mixed populations. We take advantage of existing deep 
learning object detection frameworks, illustrating the 
ease of use and accessibility of deep learning applications 
for population genetic researchers without experience in 
machine learning techniques. In simulated as well as hu
man SNP data, we show that our method is able to localize 
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regions under positive selection post admixture, and re
mains effective at identifying selection under a range of 
demographic misspecifications. We focus on scenarios 
with moderate to high admixture contributions occur
ring in the last tens to hundreds of generations; multiple 
other methods have recently been developed focused on 
older admixture scenarios at low admixture contribution 
rates, often termed adaptive introgression (Racimo et al. 
2017; Setter et al. 2020; Gower et al. 2021; Svedberg et al. 
2021).

Results
Baseline Model Performance
We first describe the object detection method’s perform
ance in a baseline simulated scenario, then explore the ef
fects of model misspecification and compare the method 
to other approaches. Full details on simulations, image 
generation, model training, and performance metrics are 
presented in Materials and Methods. Briefly, in the baseline 
scenario, we simulated a single-pulse admixture event be
tween two isolated source populations. One source popu
lation was fixed for a beneficial variant randomly placed 
along a 50 Mb chromosome tract, with positive selection 
strength post-admixture drawn from a uniform distribu
tion s ∼ U(0, 0.5). For each simulation, we generated two 
images representing two types of genetic data that a 
user may be analyzing: one with full local ancestry (the 
high-resolution scenario) representing whole-genome, 
high-density SNP, or similar data, and the second scenario 
with only 100 ancestry informative markers (AIMs, the 
low-resolution scenario) in the 50 Mb. We then trained 
and validated the method for each of these two sets of 
images. Performance metrics include precision and recall 
(P–R), the proportion of inferred bounding boxes (bboxes) 
that contain the true selected variant, the average width of 

the inferred bboxes, and the average number of inferred 
bboxes per image.

Overall, the locus simulated to be under positive selec
tion was contained within the inferred bbox ∼95% of 
the time in both the full ancestry (high resolution) and 
low-resolution scenarios (table 1 and fig. 2). As expected, 
the high-resolution ancestry scenario had higher P–R 
across the range of detection thresholds (fig. 2), though 
both had P–R curves well above a no-skill (random) 
classifier.

Model Misspecification
Often, we do not know the full model and parameters of a 
population’s history. We tested the robustness of our 
method to several demographic model misspecifications, 
performing inference based on images generated from si
mulations that differed in model and/or parameter from 
the ones used to generate training images. Generally, we 
followed the high-resolution full ancestry baseline scenario 
described above and, in Materials and Methods, and al
tered one aspect of the admixed population’s history for 
each scenario. We separately altered parameters for the 
admixture proportion, the number of generations since 
admixture occurred, as well as different models of the 
population size trajectory (bottleneck with a return to ori
ginal size, expansion, or contraction). We also considered a 
scenario in which both source populations have the bene
ficial mutation segregating at a frequency of 0.5 at the time 
of admixture (i.e., FST = 0 between the source populations 
at this allele) (see also Gopalan et al. (2022) for post-ad
mixture positive selection simulations under different FST 

values between sources at the adaptive locus).
That is, we trained the model once under the baseline 

scenario, and then conducted inference on simulated ver
sions that represent empirical data under different evolu
tionary scenarios. We then evaluated performance using 

FIG. 1. Schematic of our baseline simulation scenario. Image input for the object detection model is generated by sampling 200 ancestry-painted 
chromosomes from a simulated admixed population. Rows represent individuals, with chromosome position along columns. Training samples 
have a known “target” bbox (yellow box), spanning an 11-pixel window centered on the position of the known beneficial variant. Using training 
examples, the object detection model learns the complex patterns of ancestry indicative of positive selection post-admixture and uses this in
formation to localize a beneficial variant to a small genomic region. The trained object detection model is then expected to output bboxes that 
contain variants under selection.
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the same set of metrics as described above for the baseline 
model, presented in table 2 and supplementary fig. S1, 
Supplementary Material online. Under these demographic 
misspecification, the model was still able to detect 80–98% 
of variants under selection, except in two scenarios where 
the impact of selection on patterns of local ancestry is ex
pected to be very weak or entirely absent (table 2).

First, the model underperforms when contributing an
cestry proportions was varied such that we inferred from 
images generated under an admixture scenario with 90% 
ancestral contribution from the source population provid
ing the beneficial allele (m = 0.9). In this scenario the 
method has difficulty in detecting regions under selection 
resulting in a high rate of false negatives (supplementary 
fig. S1A, Supplementary Material online) because, even in 
regions unaffected by selection, the image is primarily 
one color by the end of 50 generations. We do not see 
this effect in the opposite scenario involving 10% ancestral 
contribution from the source population providing the 
beneficial allele (m = 0.1). In this scenario, the beneficial al
lele increasing in frequency results in the “minor” image 
color increasing specifically around that region.

Second, the model also underperforms when the two 
source populations carry the beneficial allele at the same 
frequency (FST = 0). The performance of the model under 
this misspecification follows the no-skill classifier 
(supplementary fig. S1D, Supplementary Material online), 
suggesting the model is randomly assigning bboxes. In 

this case, the model is unable to detect any ancestry-based 
patterns of selection because both ancestries are being 
equally selected. We have previously suggested and de
monstrated this same result with other ancestry-based sig
natures of selection (Hamid et al. 2021; Gopalan et al. 2022).

Performance on Neutrally Evolving Chromosomes
Thus far, we have tested performance on positive examples 
(i.e., simulated chromosomes with a positively selected 
variant); here we consider negative examples where the 
correct inference would be that there are no regions under 
selection. Our method as described above is flexible en
ough to infer 0, 1, or multiple bboxes. However, we did 
not initially provide any negative examples in our training, 
which may impact performance for a truly neutrally evolv
ing chromosome. First, we test our current model per
formance on simulated negative examples, then we train 
a new model including such examples.

First, we generated 1,000 full ancestry images for neu
trally evolving chromosomes generated under our baseline 
demographic model. We performed inference using our 
originally trained full ancestry model without training on 
neutral images. At a detection threshold (“bbox score”) 
of 0.5, our standard setting, the model predicted no 
bbox for 26.5% of images (see Materials and Methods for 
an explanation of the detection threshold parameter). 
For the remaining 73.5% of images, the average bbox score 
is 0.660, indicating overall low confidence in the predic
tions. If we increase the detection threshold to a bbox 
score of 0.7, the model predicted no bbox for 63.2% of 
images. If we increase the detection threshold to a bbox 
score of 0.9, the model predicts no bbox for 94.9% of 
images. For comparison, on the original validation set, 
the average bbox score is 0.972. To summarize, by increas
ing the detection threshold, one can weed out low-confi
dence predictions and have high accuracy on neutrally 
evolving chromosomes.

Next, we train our model including neutral simulations 
(“negative examples”) to understand the potential benefits 
of more tailored training sets. We trained a random subset 
of our original training images, including neutral images 
(training set = 800 total images [640 selection images, 
160 neutral images], validation set = 200 total images 
[180 selection, 40 neutral]). Then, we tested the newly 
trained model on the remaining 800 neutral images. We 
find that of these, 797 (>99%) accurately predict no vari
ant under selection (meaning no bboxes are predicted), 
whereas 3 (0.375%) predict a variant under selection 
even at a detection threshold of 0.5 (model default, but 

Table 1. Performance of Object Detection Method on Images with High and Low Ancestry Resolution.

Ancestry resolution bbox detection rate Average width Average number of bboxes Precision Recall AUC

High (full ancestry) 0.950 10.830 
(var = 0.615, n = 1,978)

1.027 
(var = 0.063, n = 2,000)

0.886 0.897 0.871

Low (100 AIMs) 0.950 10.834 
(var = 0.580, n = 1,964)

1.0175 
(var = 0.064, n = 2,000)

0.867 0.870 0.811

FIG. 2. Precision–recall curves for high (full) and low (AIMs) ancestry 
resolution images across a range of detection thresholds. Area under 
the curve (AUC) is calculated for the two scenarios, with the no-skill 
classifier indicated by the dashed black line.
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relatively low confidence). When we increased the detec
tion threshold to 0.75 to include only high confidence pre
dictions, 100% of the neutral simulations were correctly 
predicted to have no bboxes. Accuracy on selected images 
(n = 9180) remains high in this newly trained model with 
90.8% of predicted bboxes containing a selected variant 
(precision: 0.904, recall 0.828 at a detection threshold of 
0.5). This is trained on a much smaller data set than the 
original model, which likely explains the slightly lower 
overall performance. In sum, either testing a stricter detec
tion threshold or using training data that is more represen
tative of the evolutionary scenario was necessary to 
accurately assign true negatives.

Performance on Chromosomes with Multiple 
Selected Variants
We primarily considered scenarios with a single locus un
der selection, yet depending on the window size consid
ered and the population’s history, there may be multiple 
sites under selection. There are many complex scenarios 
that one could possibly test based on combinations of 
the number of loci across various selection strengths at dif
ferent spacing between variants. In order to gain a general 
intuition for the model performance in scenarios where 
multiple sites are hypothesized to be under selection, we 
consider a simple example and outline a possible solution 
to improve performance in similar cases.

If multiple selected sites are in close proximity, their an
cestry signals may interfere with one another, and the mod
el may have difficulty in distinguishing the signals resulting 
in the model predicting a broad region or a region between 

the two sites to be under selection. If one site has under
gone much stronger selection than the other, the model 
may only confidently identify the stronger signal. As a sim
ple example, we generated 10 images with two sites under 
equal selection strengths (s = 0.05 for both sites). We gen
erated a large chromosome (250 Mb, roughly the size of hu
man chromosome 1), and placed the selected variants near 
opposite ends of the chromosome, so that their signals 
would not interfere with one another; variant 1: 10% of 
the chromosome length (physical position = 25 Mb); vari
ant 2: 90% of the chromosome length (225 Mb). Both var
iants were fixed in ancestral population 1 and absent in 
ancestral population 2, so that the selection signal would 
come from the same ancestry for both sites. The demo
graphic scenario followed our baseline trained model. 
The model, which was trained with a single positively se
lected locus, correctly picked out at least one selected vari
ant for 10 out of 10 images. The model was able to identify 
both selected variants for 5 out of the 10 images.

A model trained with multiple selected sites is likely to 
perform better under these scenarios. Alternatively, if one 
wanted to use the model pre-trained with a single selected 
locus to detect if multiple sites were under selection on the 
same chromosome, one could consider splitting large 
chromosomes into smaller chunks in order to pick up mul
tiple sites analogous to selection scan statistics that are cal
culated in windows along a genome. To test this scenario, 
we split the 10 chromosomes from the example above in 
half to generate two separate images, each containing 
only one selected variant. In this case, the model was 
able to detect the selected variants for all images.

Table 2. Performance of Object Detection Method on Images Generated From Demographic Misspecification.

Misspecification bbox detection rate Average width Average number of bboxes Precision Recall AUC

None (baseline) 0.950 10.830 
(var = 0.615, n = 1,978)

1.027 
(var = 0.063, n = 2,000)

0.886 0.897 0.871

m = 0.1 0.767 10.771 
(var = 0.850, n = 774)

0.787 
(var = 0.198, n = 1,000)

0.942 0.734 0.743

m = 0.25 0.885 10.838 
(var = 0.619, n = 906)

0.953 
(var = 0.181, n = 1,000)

0.912 0.851 0.860

m = 0.75 0.846 10.795 
(var = 0.683, n = 876)

0.881 
(var = 0.115, n = 1,000)

0.875 0.765 0.731

m = 0.9a 0.082 10.763 
(var = 0.277, n = 213)

0.213 
(var = 0.168, n = 1,000)

0.342 0.073 0.044

gen = 25 0.874 10.824 
(var = 0.624, n = 959)

0.995 
(var = 0.087, n = 1,000)

0.814 0.799 0.771

gen = 100 0.977 10.777 
(var = 0.837, n = 996)

1.013 
(var = 0.025, n = 1,000)

0.914 0.918 0.884

Fst = 0a 0.046 10.879 
(var = 0.287, n = 717)

1.262 
(var = 1.173, n = 1,000)

0.054 0.057 0.015

Bottleneck (50%) 0.953 10.858 
(var = 0.498, n = 995)

1.046 
(var = 0.092, n = 1,000)

0.872 0.895 0.860

Bottleneck (10%) 0.939 10.846 
(var = 0.544, n = 990)

1.021 
(var = 0.047, n = 1,000)

0.860 0.870 0.836

Expansion 0.945 10.809 
(var = 0.700, n = 981)

1.017 
(var = 0.063, n = 1,000)

0.887 0.889 0.865

Contraction 0.944 10.881 
(var = 0.403, n = 987)

1.042 
(var = 0.088, n = 1,000)

0.864 0.883 0.852

Further details of models presented in Materials and Methods, supplementary figure S1, Supplementary Material online. The two scenarios that perform poorly are marked (a).
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Comparison to Ancestry Outlier Detection
We next sought to evaluate whether our method constitu
tes an improvement on the most commonly used method 
for detecting regions under selection for admixed popula
tions. The “local ancestry outlier” approach identifies re
gions that deviate from the genome-wide average 
ancestry proportion, which are hypothesized to be en
riched for regions under selection (Tang et al. 2007; Bryc 
et al. 2010; Gopalan et al. 2022). We compared perform
ance between ancestry outlier detection and our method 
by calculating precision and recall, including over a range 
of selection coefficients (table 3 and fig. 3B–E). For each 
genomic window, we additionally calculated the propor
tion of simulations that were classified as being “under se
lection” at that region as a measure of localization ability 
(fig. 3A). The local ancestry outlier approach has much 
lower precision resulting from increased false positives, 
even in scenarios with greater selection strength (table 3
and fig. 3B and C). This is further visualized in figure 3A, 
where the object detection method detects a narrower re
gion under selection (∼3 Mb) compared with the local an
cestry outlier approach (∼8 Mb). The width of the inferred 
region in object detection is highly determined by the 
bbox size in training data, as well as window length and in
put image size so it is likely possible to narrow the inferred 
region further.

Application to Human Genotype Data from Cabo 
Verde
We next tested the object detection method on human 
genotype data from the admixed population of Santiago, 
Cabo Verde using genotype data from 172 individuals at 
∼800k SNPs genome-wide (Beleza et al. 2013). We previous
ly showed multiple lines of evidence for adaptation in this 
data set at the locus contraining the Duffy-null allele that 
is protective against P. vivax malaria, including ancestry 
outlier detection and a statistic that incorporates the 
length of tracts as well as their frequency, iDAT; this allele 
is common in African ancestry and rare in Portuguese an
cestry (Hamid et al. 2021). This locus has been a candidate 
for post-admixture positive selection in multiple other po
pulations as well (Hodgson et al. 2014; Triska et al. 2015; 
Busby et al. 2017; Laso-Jadart et al. 2017; Pierron et al. 
2018; Fernandes et al. 2019).

We test for post-admixture selection along the entirety 
of chromosome 1. Figure 4 shows that all three methods 
detect an adaptive locus in the nearby region; the object 
detection approach is highly specific, returning a single 
bbox approximately centered on the adaptive locus 

(center is ∼130 kb from truth), whereas the 
ancestry-outlier approach returns multiple nearby hits 
across ∼48 Mb (outliers sum to ∼6 Mb). iDAT finds one 
region as an outlier spanning ∼12 Mb and not centered 
on the locus under selection. The nearby centromere 
may be extending the window that ancestry outlier detec
tion identifies as under selection by repressing recombin
ation. We generated the image of ancestry on Santiago 
using genetic distances so the object detection approach 
is less sensitive to recombination variation without need
ing to explicitly model recombination variation in the 
training data.

Notably, inference was conducted using the pre-trained 
baseline model whose demographic and genomic scenario 
differs from that in Cabo Verde. Specifically, the training 
model included 50% ancestry contributions from each 
source 50 generations ago; Santiago is estimated to have 
a 73% African ancestry contribution about 22 generations 
ago (Hamid et al. 2021; Korunes et al. 2022). We also trained 
on a 50 Mb window and applied the method to the whole 
∼250 Mb chromosome 1. Despite these substantial differ
ences, the method performs well, suggesting it can be used 
widely for populations without well-studied demographic 
histories. Further, leveraging the general applicability of 
the baseline model, we made the pre-trained baseline 
model available online at https://huggingface.co/spaces/ 
imanhamid/ObjectDetection_AdmixtureSelection_Space
(see Data Availability). Users can upload an image of 
painted chromosomes and quickly use the pre-trained 
set to get inferred adaptation under our method.

In this example, we used genetic recombination distance 
rather than physical distance. To consider how this choice im
pacts inference, we generated an image from the Cabo Verde 
ancestry calls for chromosome 1, but we used physical dis
tance rather than genetic distance. Then, we uploaded that 
image to the online app with the pre-trained data. The model 
predicts a single bbox corresponding to physical positions 
134,370,749–148,191,519. Notably, Duffy-null is nearby but 
outside this range at physical position 159,174,683 in this gen
ome build (GRCh37). The center of the bbox is ∼18 Mb away 
from Duffy-null. This suggests longer tracts spanning the 
centromere are affecting the model’s ability to localize the se
lection signal surrounding the Duffy-null allele. That is, when 
using physical distance, the model detects a region nearby 
but less localized to a site under selection, likely owing to re
combination interference from the centromere. Indeed, in 
this scenario, iDAT performed better than object detection. 
Therefore, for the purpose of applying this method to real 
data, users can consider training a model using relevant re
combination maps for their system. Alternatively, for 

Table 3. Performance of Object Detection and Local Ancestry Outlier Methods.

Method bbox detection rate Average width Average number of bboxes Precision Recall

Object detection 0.948 10.990 
(var = 0.002, n = 990)

1.037 
(var = 0.092, n = 1,000)

0.875 0.890

Local ancestry outlier — — — 0.542 0.901
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reasonably strong performance, users can do as we did here, 
and generate images using genetic map when inferring with a 
model that was trained using a uniform recombination map.

Discussion
We developed a deep learning object detection strategy to 
detect and localize within the genome post-admixture 
positive selection based on images of chromosomes 
painted by local genetic ancestry. Our results demonstrate 
the power gained when including spatial patterns of ances
try beyond single locus summary statistics, and emphasize 

the need for further development of methods tailored to 
populations that do not fit the assumptions of classical 
population genetics methods.

Our object detection approach can leverage complex 
local ancestry patterns without discarding information 
about the surrounding genomic context or requiring 
user choice of statistics. Using simulated and empirical hu
man genetic data from Cabo Verde, we show that our 
framework better localizes the adaptive locus to a nar
rower genomic window and is less prone to false positives 
compared with common ancestry outlier approaches (figs. 
3 and 4). We expect many empirical examples to actually 

FIG. 3. Comparison of local ancestry outlier approach and object detection method. (A) Heatmap showing, for each genomic window, the pro
portion of simulations that had that region classified as “under selection” by either the object detection (top) or local ancestry outlier (bottom) 
methods. The position of the true selected variant is indicated by the vertical dashed red line. Precision across a range of selection coefficients (s) 
for (B) the local ancestry outlier approach and (C ) the object detection method. Recall across a range of selection coefficients (s) for (D) the local 
ancestry outlier approach and (E) object detection method. (Also see supplementary figs. S2 and S3, Supplementary Material online.)
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perform better than this case study because admixture is 
so recent (∼22 generations) and strong (s = 0.08 from 
Hamid et al. 2021) with ∼73% admixture contributions 
from the source with the adaptive allele, which together 
produce extremely long stretches of African ancestry often 
spanning the entirety of chromosome 1 reminiscent of the 
poor performance observed in table 2 for m = 0.9. In both 
simulated data and our empirical example, the object de
tection approach remains generally effective at identifying 
selection even when we misspecify aspects of demographic 
history such as admixture proportion, admixture timing, 
and population size trajectory. That is, we expect strong 

performance on empirical data even without knowing 
the full details of an admixed population’s history. The 
size of the window that our method identifies will depend 
on the chromosome size, input image size, and choice of 
bbox size used in training. It may indeed be possible to 
identify a narrower window for a small chromosome, a lar
ger image, or if we train with smaller target boxes. The mid
point of the bbox is a reasonable metric for a point 
estimate for the location of the adaptive locus.

Despite the overall strong performance of the method, 
we note several potential pitfalls and areas where future 
work could make this type of approach more generalizable. 

FIG. 4. Identification of a known adaptive allele in a human population using multiple ancestry-based methods. We compare multiple methods 
to detect a well-known example of post-admixture positive selection in an admixed human population from Santiago, Cabo Verde on the 
Duffy-null allele protective against P. vivax malaria (Hamid et al. 2021). (A) iDAT from Hamid et al. (2021), (B) ancestry outlier detection using 
a three standard deviation cutoff, and (C ) the object detection approach developed in this paper. African ancestry in black and European an
cestry in white. The image represents the entirety of chromosome 1 for 172 individuals. The dashed vertical line indicates the position of the 
adaptive allele. The inferred bbox using object detection (C ) is in yellow, closely matching the true bbox centered on the adaptive allele (red) in 
size and location. The other two methods infer multiple and/or longer regions as potentially under selection.
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A primary barrier to effective implementation is the avail
ability and accuracy of local ancestry calls. As with all 
ancestry-based approaches, such as ancestry outlier scans, 
local ancestry calling is a necessary prerequisite for this 
method. Many tools exist to infer local ancestry along ad
mixed chromosomes, including recent developments for 
samples in which it is difficult to confidently call genotypes 
because of low or sparse coverage (Schaefer et al. 2016, 
2017; Wall et al. 2016; Schumer et al. 2020). Still, local ances
try calling remains potentially challenging, especially in 
non-model systems, and the quality of local ancestry esti
mates often depends on reference data availability and 
the degree of differentiation between source populations. 
Notably, we tested our object detection strategy using 
phased ancestry haplotypes, and further work is needed 
to address the effects of phase errors. Phasing accuracy 
can be sensitive to factors such as the availability of refer
ence panels, the number of unrelated individuals present 
in the sample, and the choice of phasing method 
(Browning and Browning 2011). The extent of the impact 
will vary by species, and empirical tests suggest phasing er
ror is minor in humans (Belsare et al. 2019). The pixel struc
ture that combines multiple loci per pixel may smooth over 
some of the impact of errors at short stretches of base pairs. 
We recommend that researchers hoping to take ancestry- 
based approaches to detecting selection first confirm the 
validity of their local ancestry calls, for example by first 
simulating admixed haplotypes from genomes represent
ing proxies for source populations and testing local ances
try assignment accuracy (Williams 2016; Schumer et al. 
2020). Though local ancestry calling is necessary, the similar 
performance of the object detection method in the high 
resolution and low-resolution ancestry scenarios demon
strates the utility of our method for a variety of organisms 
or situations where a limited set of markers are available for 
assigning local ancestry. Compared with local ancestry out
lier approaches, our method may include a potential loss of 
information or resolution from binning many sites into 
fewer possible pixels. However, the selected locus is unlikely 
to be near the edge of an ancestry tract, and we focus on 
selection within the last ∼100 generations or less; therefore, 
we expect tracts to be quite long and regions prone to bin
ning error (i.e., edges) constitute a small proportion of the 
overall tract length. If resolution is a concern, researchers 
can consider testing different image sizes or genomic win
dow sizes as well.

Ancestry-based methods such as the one presented 
here that leverage long stretches of higher-than-expected 
frequency are well suited to detect selection on short time
scales; we focus on history within a couple hundred gen
erations after admixture and selection onset. For 
admixture more than a few hundred generations old, the 
length of ancestry tracts will decay due to recombination 
over time. As local ancestry at distant sites is decoupled 
over generations, detectable signatures of long ancestry 
tracts or high ancestry proportion in a large genomic re
gion surrounding a variant under selection are less likely. 
Therefore, ancestry-based approaches may be better 

suited for detecting post-admixture selection on the scale 
of tens to hundreds of generations since admixture. The 
optimal detection time frame (in generations) will depend 
both on strength of selection, and the timing and propor
tion of admixture. When admixture is older, assuming se
lection occurs immediately post-admixture, there has 
been more time for ancestry tract lengths and frequencies 
to diverge between neutral and selected sites. That is, re
combination has had time to break up ancestry tracts in 
neutral regions, whereas the ancestry tracts remain longer 
in the selected region. So, ancestry-based methods such as 
ours may perform slightly better for older admixture 
scenarios within the informative range (table 2 and 
supplementary fig. S1, Supplementary Material online). 
However, this increase in accuracy is true only until a point: 
if enough time has passed or the selected allele has fixed, 
the haplotypes decay such that detection of sites under se
lection becomes more difficult.

Multiple of the methods we consider in this study, including 
the object detection method presented here, use the length of 
ancestry tracts to detect selection. This signature is influenced 
by the recombination landscape. We demonstrated the impact 
of one type of recombination non-uniformity, centromere 
interference, in the empirical example from Cabo Verde. 
Notably, the impact was different for the common local ances
try outlier approach, iDAT, and our object detection method. 
Local ancestry outlier approaches may have increased false po
sitives and poorer localization if selection occurs in a low recom
bination region as local ancestry proportions are impacted at 
wider distances surrounding a selected variant. The recombin
ation landscape will also affect iDAT because the statistic is 
based on the length of tracts in one genomic region compared 
with others, so the statistic risks both false positives and false 
negatives when using physical distances. Incorporating genetic 
map distances into iDAT may decrease some of the impact, but 
this approach has not been tested and may not improve local
ization. Under the object detection method, if one uses genetic 
map distances to generate images as done here, the recombin
ation landscape has less of an influence on performance. We 
further demonstrated this in our example for detecting selec
tion at the locus containing the Duffy-null allele in Cabo 
Verde wherein we compared localization using genetic map 
distances versus physical distance. We saw worse localization 
using physical distance owing to the nearby centromere de
creasing the recombination rate in the region.

Our empirical example also showed the utility of using 
our pre-trained model available online, even if the model is 
misspecified. A central choice that users make is the size of 
the chromosomal window to include in the 200-pixel im
age. One can consider whole chromosomes, as we did in 
our empirical example of Cabo Verde, or partial chromo
somes, similar to our example with multiple selected sites. 
In this study, we tested our model on chromosomes ran
ging from 50 to 250 Mb. Depending on the population, 
study system, and the size of the chromosomal region in
cluded in the image, the 11-pixel bbox will correspond to a 
different number of SNPs. The ideal size, therefore, will de
pend on the study question and selection history of the 
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population, and there may be a tradeoff between the abil
ity to localize a narrower genomic region and the potential 
loss of information if signatures of selection unable to be 
captured in too small of a window.

Our empirical example used human genetic data, 
though post-admixture selection has been observed across 
a range of organisms. The baseline model scenario is fairly 
general and not organism-specific. For example, the uni
form recombination rate used is reasonable for Anopheles 
mosquitoes and humans (though their overall recombin
ation landscapes differ substantially, the mean rate is simi
lar), and the range of chromosome sizes used in inference 
(50–250 Mb) covers a wide range of organisms. However, 
the accuracy of local ancestry calls may be impacted by 
the availability of high-quality reference data sets as proxies 
for source populations. Available references vary by popu
lation and organism, so this could preclude applicability of 
our method for specific study systems.

Our use of out-of-the box object detection frameworks 
demonstrates that population genetics researchers can ap
ply deep learning applications without prior experience 
with machine learning techniques. We required only 
∼1.5 hours to train the object detection method on 
8,000 images. To train on 800 images, it only took 
∼15 min with comparably high performance (∼90% of se
lected variants detected vs. ∼95% with more training ex
amples), making optimization and troubleshooting on 
small training sets possible in a reasonable timeframe be
fore scaling up to a larger final data set. That is, one may 
consider using a smaller training set for optimization of 
window size and other model decisions prior to training 
on a larger set. Additionally, with the availability of free 
GPU access via platforms such as Google Colab, deep 
learning methodology is accessible to researchers without 
the means or desire to buy their own GPU or pay for access 
to a remote server. The same training set can be used for 
multiple regions of the genome and for multiple popula
tions given the limited impact of model misspecification. 
More generally, the success of our approach suggests 
that researchers should consider object detection meth
ods for other problems in detecting selection and popula
tion genetics.

Materials and Methods
Simulations
Simulated data were generated with the forward simulator 
SLiM 3, combined with tree-sequence recording to track 
and assign local ancestry (Haller et al. 2019; Haller and 
Messer 2019). For our baseline scenario, we considered a 
single-pulse admixture event between two source popula
tions (fig. 1). One source population was fixed for a benefi
cial mutation randomly placed along a 50 Mb 
chromosome, with selection strength drawn from a uni
form distribution ranging from 0 to 0.5. The newly admixed 
population had a population size N of 10,000, with 50% an
cestral contribution from each source. That is, the range of 
Ns is in [0, 5,000]. Tree-sequence files were output after 

50 generations. We used a dominance coefficient of 0.5 (an 
additive model), recombination rate was set to a probabil
ity of a crossover of 1.3 × 10−8 between adjacent basepairs 
per gamete. The SLiM script for our baseline model is avail
able on github (https://github.com/agoldberglab/ObjectD 
etection_AdmixtureSelection/blob/main/admixture.slim).

Ancestry Image Generation
For each simulation, we used tskit to read the tree- 
sequence files and extract local ancestry information for 
200 sampled chromosomes from 100 diploid individuals 
from the admixed population (Kelleher et al. 2016, 2018; 
Haller et al. 2019). We then used R to generate a black 
and white 200 × 200 pixel image of the entire set of 
sampled chromosomes for each simulation (y-axis repre
senting sampled chromosomes, x-axis representing gen
omic position), with each position colored by local 
ancestry for that individual chromosome. In these images, 
“black” represented ancestry from the source population 
that was fixed for the beneficial mutation, and “white” re
presented the other source population. That is, each pixel 
usually contains many sites depending on the length of the 
chromosome one uses. We chose 200 pixels for conveni
ence, but other sizes could work. Larger images will take 
up more computational resources for storage and training.

For our high resolution (full ancestry) images we used 
true local ancestry at every position. For our low- 
resolution ancestry images, we used the same simulations 
but instead only assigned local ancestry at 100 randomly 
dispersed markers to generate images. We used the same 
internally consistent markers across all simulations from 
the same demographic model. This approach to assigning 
local ancestry allowed us to test the model performance 
for scenarios where we have only a few AIMs for popula
tion(s) of interest.

Object Detection Model Architecture and Training
We implemented an object detection model using the 
IceVision computer vision framework (v0.5.2; https:// 
airctic.com/0.5.2/). Specifically, we trained a FasterRCNN 
model (Ren et al. 2016) (https://airctic.com/0.5.2/model_ 
faster_rcnn/) with the FastAI deep learning framework 
(built on PyTorch; https://docs.fast.ai/). We used a re
snet18 backbone and pretrained model weights from 
ImageNet (https://image-net.org/).

For the sets of high- and low-resolution ancestry images 
described above, we generated 8,000 images for training 
and 2,000 images for validation from the same demograph
ic model. In object detection models, the goal is to predict a 
bbox around an object of interest. Under the IceVision 
framework, the bbox is set as [x-min, y-min, x-max, 
y-max]. In our case, our goal is to detect the position of 
the selected variant (if there is one). Thus, for each image 
in our training and validation sets, we defined the target 
bbox as an 11-pixel-wide window centered on the selected 
variant. For example, if the selected variant is in x-axis pos
ition 155, the bbox was defined as [150, 0, 161, 200].

10

https://github.com/agoldberglab/ObjectDetection_AdmixtureSelection/blob/main/admixture.slim
https://github.com/agoldberglab/ObjectDetection_AdmixtureSelection/blob/main/admixture.slim
https://airctic.com/0.5.2/
https://airctic.com/0.5.2/
https://airctic.com/0.5.2/model_faster_rcnn/
https://airctic.com/0.5.2/model_faster_rcnn/
https://docs.fast.ai/
https://image-net.org/
https://doi.org/10.1093/molbev/msad074


Post-admixture Adaptive Variants on Ancestry-Painted Chromosomes · https://doi.org/10.1093/molbev/msad074 MBE

We trained each model for 30 epochs using the learn.fi
ne_tune function, freezing the pretrained layers for one 
epoch. We used a base learning rate of 3 × 10−3 and a 
weight decay of 1 × 10−2.

We largely use an out-of-the-box FasterRCNN architec
ture with preselected hyperparameters; base learning rate 
and weight decay were based on testing a few different va
lues and picking the one with the best overall perform
ance. The number of epochs was based on the tradeoff 
between time to train and gain in validation performance.

The high- and low-resolution ancestry models were 
both trained on an NVIDIA GeForce RTX 2080 Ti GPU. 
The time to train one model was approximately 1.5 hours.

Bounding Box Size and Genomic Resolution
The method can work on other bbox sizes; however, one 
would need to train a model on their desired bbox size. 
As a proof of concept, we retrained a small set (800 train
ing images from our original training set, 200 validation 
images from our original validation set) to detect bboxes 
5 pixels wide, centered on the variant under selection. 
We then inferred on the remaining 9,000 images from 
our original training and validation sets. We still see rea
sonably high performance with this smaller bbox size 
(∼86% of variants detected within a bbox, precision =  
0.768, recall = 0.756) (supplementary table S1, 
Supplementary Material online). Training on more images 
should improve this performance.

Alternatively, if researchers wanted higher resolution 
(i.e., narrower windows), it is likely simpler use a smaller 
chunk of the chromosome to generate images rather 
than retrain the entire model to your desired window size.

Detection Threshold
The model essentially is performing a classification task 
that identifies bboxes, and then returns a probability 
that that bbox actually contains a selected variant. This 
probability is defined as the bbox score, which can be in
terpreted as the model’s level of confidence in that pre
dicted bbox. By default, the model will only return a 
predicted bbox if the score is above 0.5. This is the detec
tion threshold. Users can alter the detection threshold to 
return bboxes above any arbitrary score (i.e., make the 
threshold higher if one wants only higher confidence pre
dictions, lower if one wants to increase recall at the risk of 
lower precision). We used the default detection threshold 
of 0.5 for all performance evaluations, except in the case of 
P–R curves (and AUC). For those, we calculated P–R over a 
range of 10,000 detection thresholds from 0 to 
1. Detection threshold can be set during inference by add
ing the argument to the predict_dl() function in IceVision, 
or directly in our demo app via the slider input.

Validation
We evaluated performance on the validation sets using sev
eral metrics. We first calculated precision and recall by defin
ing each x-axis pixel position as an independent test. Each 

image target had 11 true positives (the size of the bbox, ideally 
centered on the adaptive allele ±5 pixels) and 189 negatives. 
That is, pixels within the true bbox are all labeled as positive 
and pixels outside the true bbox are labeled as negative. 
Because some images may have multiple predicted bboxes, 
and the sizes of these bboxes can vary, the predicted positives 
and predicted negatives can be greater than or less than 1 for 
each pixel. For the purpose of getting a single classification for 
each pixel, if a pixel was predicted within the x-min and x-max 
of any bbox with a score above the threshold, it was classified 
as a “region under selection” (i.e., a “positive” classification). 
x-Axis positions outside all predicted bboxes were classified 
as a “region not under selection” (i.e., a “negative” classifica
tion). In this way, we were able to calculate true and false po
sitives and negatives. We defined P–R in this manner to 
capture multiple aspects of the method’s performance 
such as how well it identifies a bbox of the correct size in 
the correct region.

We also defined several other metrics to assist in evaluat
ing object detection performance across different demo
graphic scenarios. First, we calculated the proportion of 
predicted bboxes that contain the true selected variant, 
which we defined as the bbox detection rate. We chose 
this metric because some images have more than one pre
dicted bbox, and some have none. We wanted to correctly 
punish the model for returning bboxes that did not contain 
a selected variant. For example, if the model predicts two 
bboxes for an image, one which correctly contains the se
lected variant within the bounds, and a second which does 
not, the method is not performing as well as we would like. 
A value close to 1 indicates high sensitivity, or that the meth
od is consistently able to detect a region under selection.

We also calculated the average width of the predicted 
bboxes. If the average width is much wider than the 11-pixels 
we used in training, this may indicate we have low specificity 
to detect a region under selection. Finally, we calculated the 
average number of predicted bboxes per image. Since we are 
only simulating one variant under selection, the model 
should predict 1 bbox per image. These metrics combined 
with the more universal precision and recall statistics al
lowed us to compare performance of our model across dif
ferent scenarios and between different methods.

Code to calculate metrics during both training and infer
ence is found in our github example notebook (https:// 
github.com/agoldberglab/ObjectDetection_AdmixtureSel 
ection/blob/6fa95b941608292d219585b1bd8b8dec9c315 
dce/objectdetection_ancestryimages_example.ipynb).

Model Misspecification
We tested the performance of our baseline high resolution 
ancestry model under several demographic model misspe
cification (see Results and table 2). For each misspecifica
tion scenario, we generated 1,000 high resolution full 
ancestry images (i.e., incorporating full local ancestry infor
mation), ran inference using our trained baseline model, 
and calculated performance metrics detailed in the previ
ous section.
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For these simulations, we followed the baseline scenario 
described previously while changing one feature of the ad
mixture or population history. We tested inference on 
images generated from different admixture contributions 
than what we trained on (10%, 25%, 75%, or 90% contribu
tion from the source population providing the beneficial 
mutation), number of generations since admixture began 
(25 and 100 generations), population size histories (expan
sion, contraction, and moderate (50%) and severe (10%) 
bottlenecks), and a scenario where the selected variant is 
present in both sources at a frequency of 0.5 (i.e., FST of 
0 between the sources).

For the population size misspecifications, the expansion 
(200%) or contraction (50%) events occurred at 25 genera
tions (halfway through the simulation). The bottlenecks 
occurred at 25 generations and lasted for 10 generations 
before expanding to the original population size of 
10,000. All scenarios start with N = 10,000.

Comparison to Local Ancestry Outlier Approach
We generated 1,000 “genome-wide” simulations of five in
dependently segregating chromosomes of 50 Mb each. For 
each simulation, the beneficial allele was fixed at the center 
of the first chromosome. The rest of the simulation fol
lowed exactly the admixture scenario for our baseline 
model described previously. After sampling 200 haplo
types from the population, we binned the first chromo
some into 200 equally sized windows (to be analogous 
with the 200 × 200 pixel images for comparison). Any win
dow with an average local ancestry proportion greater 
than three standard deviations from the genome-wide 
mean was classified as “under selection” by this outlier ap
proach. We generated ancestry-painted images from the 
same simulated chromosomes and classified regions under 
selection using our object detection method trained on 
the baseline high resolution ancestry scenario.

Application to Human SNP Data from Cabo Verde
We used local ancestry calls for ∼800k genome-wide SNPs 
from a previous study of postadmixture selection in Cabo 
Verde, which included 172 individuals from the island of 
Santiago (Beleza et al. 2013; Hamid et al. 2021). We focused 
on Santiago because we had previously detected evidence 
of strong positive selection in this population for the 
Duffy-null allele at the DARC (also known as ACKR1) gene. 
We generated a 200 × 200 pixel image of West African and 
European ancestry tracts on chromosome 1 for these 172 in
dividuals (344 haplotypes). The length of ancestry tracts can 
be influenced by the recombination landscape along the 
chromosome (e.g., long ancestry tracts are often found close 
to the centromere). To account for this effect, we used gen
etic map distances rather than physical positions to calculate 
ancestry tract lengths, and suggest this approach for others 
using our method if a genetic map is available. We then iden
tified regions under selection on chromosome 1 using our 
pretrained high resolution object detection method for the 
baseline ancestry scenario (fig. 4).

To compare our results to the local ancestry outlier ap
proach, we identified sites where the proportion of indivi
duals with West African ancestry was more than three 
standard deviations from the mean genome-wide ancestry 
proportion (∼0.73).

We also compared our results to the calculated iDAT 
values from Hamid et al. (2021) (the full genome-wide 
iDAT scores can also be downloaded from Hamid et al.’s 
associated github repository). These data consist of iDAT 
values for 10,000 randomly sampled SNPs across the gen
ome. iDAT is a summary statistic designed to detect 
ancestry-specific postadmixture selection by calculating 
the difference in the rate of tract length decay between 
two ancestries at a site of interest, similar to how iHS com
pares the decay in homozygosity between haplotypes 
bearing the ancestral and derived alleles at a focal site 
(Voight et al. 2006). Duffy-null was previously shown to 
be in a genomic window with extreme values of iDAT in 
Santiago, indicative of the strong recent positive selection 
at the locus. For our purposes, we first standardized iDAT 
by the genome-wide background. Then, we identified stan
dardized iDAT values on chromosome 1 that were more 
than three standard deviations from the mean genome- 
wide standardized iDAT.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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