Skip to main content
. 2023 Mar 22;40(4):msad074. doi: 10.1093/molbev/msad074

Table 2.

Performance of Object Detection Method on Images Generated From Demographic Misspecification.

Misspecification bbox detection rate Average width Average number of bboxes Precision Recall AUC
None (baseline) 0.950 10.830
(var = 0.615, n = 1,978)
1.027
(var = 0.063, n = 2,000)
0.886 0.897 0.871
m = 0.1 0.767 10.771
(var = 0.850, n = 774)
0.787
(var = 0.198, n = 1,000)
0.942 0.734 0.743
m = 0.25 0.885 10.838
(var = 0.619, n = 906)
0.953
(var = 0.181, n = 1,000)
0.912 0.851 0.860
m = 0.75 0.846 10.795
(var = 0.683, n = 876)
0.881
(var = 0.115, n = 1,000)
0.875 0.765 0.731
m = 0.9a 0.082 10.763
(var = 0.277, n = 213)
0.213
(var = 0.168, n = 1,000)
0.342 0.073 0.044
gen = 25 0.874 10.824
(var = 0.624, n = 959)
0.995
(var = 0.087, n = 1,000)
0.814 0.799 0.771
gen = 100 0.977 10.777
(var = 0.837, n = 996)
1.013
(var = 0.025, n = 1,000)
0.914 0.918 0.884
Fst = 0a 0.046 10.879
(var = 0.287, n = 717)
1.262
(var = 1.173, n = 1,000)
0.054 0.057 0.015
Bottleneck (50%) 0.953 10.858
(var = 0.498, n = 995)
1.046
(var = 0.092, n = 1,000)
0.872 0.895 0.860
Bottleneck (10%) 0.939 10.846
(var = 0.544, n = 990)
1.021
(var = 0.047, n = 1,000)
0.860 0.870 0.836
Expansion 0.945 10.809
(var = 0.700, n = 981)
1.017
(var = 0.063, n = 1,000)
0.887 0.889 0.865
Contraction 0.944 10.881
(var = 0.403, n = 987)
1.042
(var = 0.088, n = 1,000)
0.864 0.883 0.852

Further details of models presented in Materials and Methods, supplementary figure S1, Supplementary Material online. The two scenarios that perform poorly are marked (a).