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Abstract

Background AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and
biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody
perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of
spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains
largely unknown.

Results A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the
phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events
demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsSAP2/ERFs
amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of
CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies
contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among
five subfamilies. The promoters of CsSAP2/ERFs also contained various signal-sensing elements, such as abscisic acid
responsive elements, light responsive elements and low temperature responsive elements. The evidence presented
here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/
ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their
expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud
break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out
through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually
identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant.
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Conclusions This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant,
establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and

contributes to the improvement of tea cultivars.

Keywords Tea plant, AP2/ERF, Spring bud break, Low temperature, Light

Background

The AP2/ERF family is one of the largest transcription
factor family that is mainly found in plants [1]. This fam-
ily detects and binds numerous cis-acting elements, such
as GCC-box, DRE/CRT, and CEI and is involved in the
expression of various plant genes [2]. In general, AP2/
ERFs have at least one conserved AP2 domain, which
comprises 60—70 amino acid residues, forming a typi-
cal 3D structure of three B-folds and one a-helix [3-5].
According to Sakuma’s classification method [6], the
AP2/ERF family can be divided into five categories,
namely DREB, ERF, AP2, RAV subfamilies and Soloist.

With the genome-wide identification and analysis
of the AP2/ERF family in different plants (such as Ara-
bidopsis [7, 8], rice [7], peanut [9], grapevine [10] and
poplar [11]), the research on their functions has been
deepened. AP2/ERFs are associated with the construc-
tion of complex signal transduction pathways in plants.
They respond to a variety of stimuli, for example, extreme
temperature, drought, high salt and hormones (ethylene,
gibberellin and abscisic acid) [2], and have emerged as
key regulators of the various physiological and biochemi-
cal reactions of plants, which assist plants in effectively
improving their ability to cope with adversity stress [12,
13]. Furthermore, AP2/ERFs regulate the expressions of
target genes during numerous phases of plant growth
and development, including cell proliferation and dif-
ferentiation [14-17], flower growth [3, 18], bud break
[19-23] and leaf senescence [24, 25]. Studies in tea plant
have shown that the AP2/ERF family contains the most
abundant transcription factors in tea plant [26]. Some
AP2/ERFs have been cloned in tea cultivars ‘Shuchazao;,
‘Anji Baicha’ and ‘Yingshuang’ [27-30]. Further research
indicated that these regulators mainly responded to abi-
otic stress, such as low temperature, high salt and eth-
ylene. RNA-seq analysis was also performed on a short
winter dormancy tea cultivar ‘Emei Wenchun, in which
the PB.2659.1, an AP2/ERF transcription factor closest to
PtEBBLI in poplar, was screened out by significantly dif-
ferentially expression analysis [22, 31].

The economic value of tea plant is inextricably con-
nected with its growth and development period. Green
tea production accounts for more than 60% of the tea
industry in China, with spring elite green tea account-
ing for more than half of the total output value. However,
the economic benefits of spring elite green tea heav-
ily depend on the harvest time. The bud break time in
spring has a direct effect on the yield of spring tea since

the fresh shoots of tea plant are the main harvest objects.
Accordingly, the spring bud break period, as an impor-
tant agronomic trait of the growth and development
period in tea plant, has received extensive attention in
the tea industry. A large number of independent genes
regulate the release of the bud dormancy and the bud
break as a complex process controlled by multiple genes.
Genes, such as CsCDK1 [32], CsARF1 [33], CsAIL (an
AP2/ERF transcription factor) [34] and CsDAMI [35],
have been cloned in tea plant, and their expressions have
been confirmed to change during the dormancy release
of tea plant. However, the molecular mechanism of tea
plant bud break remains largely unknown.

Although some AP2/ERFs have been cloned in tea
plant, few reports have focused on tea plant bud break.
Here, AP2/ERF family in tea plant was analyzed using
bioinformatics. The analysis focused on the classifica-
tion of the gene family, phylogenetic tree information,
chromosome localization, gene duplication, cis-acting
elements of the promoters, gene structure, and con-
served motifs. Subsequently, the expression patterns of
CsAP2/ERFs in different stages of spring bud break were
explored by RNA-seq, and the potential interaction genes
were mined by weighted correlation network analysis
(WGCNA). Finally, temperature and light treatment
were conducted on tea plant to explore the response pat-
terns of CsAP2/ERFs. This research provided a reference
point for further study on the molecular mechanisms of
CsAP2/ERFs in regulating the bud break of tea plant.

Results

Identification of CsAP2/ERFs in tea plant

According to the annotation information of the AP2
domain (PF00847), 178 AP2/ERF genes were identified
from the tea plant genome. The protein sequences of
these genes were extracted and compared with 147 AP2/
ERF proteins in Arabidopsis. Based on the domain char-
acteristics and sequence similarity, the AP2/ERF family in
tea plant was divided into five categories, namely DREB
subfamily (52 members), ERF subfamily (88 members),
AP2 subfamily (30 members), RAV subfamily (4 mem-
bers) and Soloist (4 members). We named these genes
in accordance with the family classification and genome
location information, and recorded them in Table SI.
Thereafter, the basic physicochemical properties of
CsAP2/ERFs were analyzed. The amino acid lengths of
CsAP2/ERFs ranged from 67 aa (CsSoloists-0I) to 748
aa (CsAP2-29), and the protein molecular weight (MW)
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ranged from 74.54 kDa (CsSoloists-0I) to 811.66 kDa
(CsAP2-29). The theoretical isoelectric point (pI) varied
from 4.49 (CsERF-36) to 10.24 (CsERF-70).

Phylogenetic analysis of CsAP2/ERFs

An unrooted phylogenetic tree was constructed in tea
plant by using the conserved sequences of proteins in the
CsAP2/ERF family (Fig. 1). Meanwhile, the DREB and
ERF subfamilies were subdivided into six groups based
on two main distribution methods proposed by Sakuma
[6] and Nakano [7]. Table 1 summarizes the number of
AP2/ERFs of tea plant, Arabidopsis [7], poplar [11] and
grapevine [10]. Overall, the ERF subfamily has a numeri-
cal advantage in all species listed. According to the com-
parison of the distribution of subfamilies in four species,
the distribution of CsAP2/ERFs was more similar to that
of poplar and grapevine. Moreover, the A3 group (IVb) of
DREB subfamily was missing in tea plant and grapevine,
which is consistent with previous reports [10, 26].
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Gene location and genome synteny of CsAP2/ERFs

159 CsAP2/ERFs were unevenly distributed across 15
chromosomes, except for 19 genes on contigs (Fig. 2).
Chrl had the largest number of CsAP2/ERFs (26 genes),
whereas Chr10 had the smallest (2 genes). CsDREBs
located on every chromosome except Chr 8 and Chr 10.
Apart from that, two CsRAVs were mapped on Chr6 and
Chr10, as well as three CsSoloists were mapped on Chr
11, Chr 13 and Chrl5. CsERFs were more likely to get
clustered on chromosomes compared with other CsAP2/
ERFs. Clustered CsERFs were easy to spot in Chrl, Chr5,
Chr7, Chr14 and Chrl5. Every chromosome contained
more than two types of CsAP2/ERFs, while Chr 8 only
has CsERFs.

We detected gene duplication events in the CsAP2/ERF
family in tea plant (Fig. 3), and 72 pairs of whole genome
duplication (WGD) or segmental duplication events and
13 pairs of tandem duplication events were found. Thus,
WGD or segmental duplication was the main expansion
pattern of the CsAP2/ERF family. Meanwhile, tandem
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Fig. 1 A neighbor-joining phylogenetic tree of the AP2/ERF family in tea plant. The phylogenetic tree was constructed based on 178 conserved domain
sequences of CsAP2/ERFs. The CsAP2/ERF family was allocated to five subfamilies (DREB subfamily with groups A1-A6, ERF subfamily with groups B1-B6,

AP2 subfamily, RAV subfamily and Soloist), and covered with different colors
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Table 1 Summary of the AP2/ERF family in tea plant, Arabidopsis, poplar and grapevine
Distribution method Sakuma’s method Nakano’s method Camellia sinensis Arabidopsis thaliana Populus trichocarpa Vitis vinifera

Family/subfamily Group Group
DREB Al lllc 4 6 6 7
A2 IVa. IVb 6 8 18
A3 Vb 0 1 2
A4 llla, b, llid, llle 20 16 26 13
A5 lla, Ilb, lic, lla M 16 14 7
A6 la, Ib " 10 Nl 5
Total 52 57 77 36
ERF B1 Vllia, VIllb 12 15 19 7
B2 VI 6 5 6 3
B3 IXa, IXb, IXc,Xb 32 17 35 37
B4 Xa, Xc 17 8 7 4
B5 WY 3 8 8 4
B6 Va, Vb, VI-L, Xb-L 18 12 16 18
Total 88 65 91 73
AP2 30 18 26 18
RAV 4 6 5 4
Soloist 4 1 1 1
Total 178 147 200 132
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Fig. 2 Genome location of 159 CsAP2/ERFs on 15 chromosomes. The chromosomal positions of CsAP2/ERFs were mapped according to the genome of
tea cultivar ‘Shuchazao' The subfamilies were shown in different colors (CsDREBs in blue, CsERFs in green, CsAP2s in yellow, CsRAVs in pink and CsSoloists

in purple)

duplication promoted the extension of CsDREBs and paralogous gene pairs were less than one, indicating
CsERFs. We calculated the Ka/Ks values for all paralo- that purifying selection was dominant during the evolu-
gous genes to assess the selection pressures (Table S4). tion of the CsAP2/ERFs. To further explore the potential
The results showed that the ratios of Ka/Ks between all  evolutionary mechanisms of the CsAP2/ERF family, the
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Fig. 3 The synteny analysis of CsAP2/ERFs. The value on each chromosome represents the chromosome length in Mega base (Mb). The gray lines indicate
all synteny blocks in the genome of tea cultivar ‘Shuchazao; and the gold lines denote the whole genome duplication (WGD) or segmental duplicated

gene pairs of CSAP2/ERFs

synteny analysis of the AP2/ERF families of tea plant,
Arabidopsis and poplar was conducted (Fig. 4). The syn-
teny relationships are presented in Table S5. The results
showed that tea plant has more AP2/ERF gene pairs with
poplar (300 pairs) than with Arabidopsis (133 pairs). This
result suggested that the AP2/ERF family of tea plant was
evolutionarily similar to poplar.

Gene structure and conserved motif analysis of CSAP2/ERFs
The CDS, UTR and introns were analyzed to character-
ize the gene structure of CsAP2/ERFs. The CsAP2s had
the unique gene structures in the CsAP2/ERF family, and
they tended to include several short tandem CDS regions
(Figure S2). Comparatively, the other four subfamilies
had fewer number of CDS, ranging from one to four in
the majority (Figure S3-S6), and CSS0012420 (CsDREB)
was one exception which had seven CDS. All CsRAVs
and several CsDREBs had a long, complete CDS almost
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Fig.4 The synteny analysis of AP2/ERFs between Arabidopsis, tea plant and poplar. Gray lines indicate all synteny blocks between tea plant and the other

two species. The red lines indicate the orthologous AP2/ERFs

covering the whole genes. A total of 76 CsAP2/ERFs had
the UTRs in their structure, but nine of them only had
the 5’-UTR as well as 16 only had the 3’-UTR.

15 conserved motifs were predicted by the MEME to
investigate the key motif in CsAP2/ERFs. The motif com-
positions were distinct in different subfamilies (Figure S2-
S6). However, motif 1 was conserved in all CsAP2/ERFs
except all CsSoloists and two CsERFs (CSS0005103 and
CSS0037642). CsAP2s had two main composite patterns,
one was motif 1-motif 3-motif 1, and the other was motif
7-motif 10-motif 2-motif 1. Based on these basic pat-
terns, the composition of CsAP2s would add or replace
some motifs. CSDREBs, CsERFs and CsRAVs had a similar
motif composition, a series connection of motif 2-motif
4-motif 1. On this basis, more than half of CsDREBs
added motif 6, and only one CsDREB (CSS0033589)
added motif 8. Motif 11 was conserved in CsRAVs com-
pared with motif 9. Different from CsDREBs and CsRAVs,
the motifs of CsERFs were more diverse in groups B3 and
B6. Motif 9 was found in group B6, while motifs 8, 13 and
14 were found in group B3. Besides, CsSoloists were half
more covered with motif 12.

Putative cis-acting element analysis of CsAP2/ERFs

The PlantCARE database was exploited to analyze
the cis-acting elements in CsAP2/ERFs. As the results
showed in Table S6, the elements were classified into five
categories: hormone response, plant growth and meta-
bolic regulation, stress response, structural elements and
transcription factor binding sites. The hormone respon-
sive elements include five types: abscisic acid response
(ABRE), auxin response (TGA-element and AuxRR-core),
gibberellin response (TATC-box, P-box and GARE-
motif), MeJA response (TGACG-motif and CGTCA-
motif) and salicylic acid response (TCA-element). Plant
growth and metabolic regulation elements contain MSA-
like (cell cycle regulation), circadian (circadian control),

HD-zip 1 (differentiation of the palisade mesophyll
cells), ACE (light response), CAT-box (meristem expres-
sion), RY-element (seed-specific regulation) and so on.
The third type is stress responsive elements, such as the
wound responsive element (WUN-motif) and the low-
temperature responsive element (LTR). The fourth type
consists of structural elements, such as the protein bind-
ing site (Box III/HD-Zip 3) and promoter and enhancer
regions (CAAT-box). Finally, the common transcrip-
tion factor binding sites include the MYB binding site
(MBS, MBSI and MRE) and the MYBHv1 binding site
(CCAAT-box).

In CsAP2/ERFs, the most widely distributed cis-acting
elements are the structural elements, which account for
more than 70% of the total amount in the five subfamilies,
and are as high as 80.34% in CsSoloists. In addition, plant
growth and metabolic regulation elements account for
more than 10% in each subfamily, the highest is 13.98%
in CsERFs, followed by 13.20% in CsAP2s and 12.72%
in CsRAVs. The distribution of the hormone responsive
elements widely varied, ranging from 8.67% (CsRAVs) to
3.42% (CsSoloists). CsDREBs (6.31%) and CsERFs (6.51%)
have similar numbers of hormone responsive elements,
while CsSoloists (3.42%) have slightly less. Stress respon-
sive elements accounted for 3.13% (CsDREBs), 3.14%
(CsERFs), 4.53% (CsAP2s), 2.89% (CsRAVs), and 4.56%
(CsSoloists) of the total, respectively. Among the five sub-
families, transcription factor binding sites are the least
distributed, occupying only about 1% of the total cis-act-
ing elements.

Expression profiles of CsAP2/ERFs during spring bud break
The expression profiles of CsAP2/ERFs were detected
by RNA-seq, and the results were analyzed from T1
(November 1, 2021) to T13 (March 19, 2022) to clar-
ify the role of CsAP2/ERFs during tea plant bud break,
which were classified into four stages (S1: paradormancy,
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S2: endodormancy, S3: ecodormancy and S4: bud expan-
sion and break) [36—38]. A total of 62 CsAP2/ERFs were
selected by the FPKM values (FPKM>5) (Table S7).
These genes were hierarchically clustered according to
the expression similarities and grouped into six expres-
sion modules, naming clusters A-F for further analy-
sis (Fig. 5). Cluster F contained the largest number of
CsAP2/ERFs (18 members). 15 genes belonged to cluster
C, followed by clusters D, B and A, which contained 11, 8
and 6 CsAP2/ERFs severally. Besides, cluster E contained
the last number of CsAP2/ERFs (4 members).

The analysis of the clustering results indicated that
there were two main expression patterns. Clusters A and
B more actively expressed in the stages close to bud break
(S3 and S4), while other clusters in the early stages (S1
and S2). The expression of cluster A sharply decreased
after S1, and it was almost not expressed in the whole S2.
The expression of cluster B was similar to that of clus-
ter A in this phase. The expression recovery of clusters
A and B was observed in S3 and slightly declined in S4.
In contrast, other clusters were inactive in both S3 and
S4 periods except for cluster E with a transient recov-
ery of expression in T9 (S3). Clusters C, E and F showed
apparent expression peaks during the whole expression
process compared with clusters A, B and D. The highest
expression levels were evident in T3 (S2), T9 (S3) and T7
(S2). The expression peak of cluster E appeared at T9, and
two obvious fluctuations occurred before this. Clusters
C and F had virtually identical expression patterns, and
they showed high expression levels at T3 and T7. In con-
trast with cluster C, the expression peak of T7 was higher
than that of T3 in cluster F.

Expression profiles of the potential interacting genes of
CsAP2/ERFs
WGCNA was performed to explore the potential inter-
action genes of CsAP2/ERFs to further elucidate the
mechanism of CsAP2/ERFs in tea plant bud break regula-
tion (Fig. 6a). In the clustering module of WGCNA, the
previously mentioned CsAP2/ERFs (picked by FPKM >5)
were mainly divided into three modules, namely, Blue,
Brown and Turquoise. Meanwhile, some reported genes
involved in the bud break of woody perennials appeared
in these three modules. The co-expression network
between CsAP2/ERFs and bud break related genes were
analyzed (Fig. 6b). The top 50% genes in each network
were selected according to the degree values to further
analysis. Subsequently, referring to the correlation coef-
ficients (Table S8), the expression profiles of 12 CsAP2/
ERFs and nine highly related genes (|r| > 0.70) were
shown in Fig. 6¢.

CSS0041210 and CSS0038945 was classified into
Module Blue. Three cyclin-related genes (CSS0024392,
CSS0007207 and CSS0012344) were found in this
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module. These genes had similar expression patterns
with CSS0038945 (r>0.80) and were negatively corre-
lated with the expression of CSS0041210 (r < —0.85). The
expressions of genes listed in Module Brown were con-
sistent (r>0.70), and their expression peaks appeared at
S4 and decreased with the development of the tea buds.
The gene expression peak in Module Turquoise mainly
appeared in S2, while CS§50022420 was not active in this
phase. The results of the correlation analysis showed that
the expression of CS50022420 was negatively correlated
with CSS0041853 (CO2), and the correlation coefficient
was —0.73. Concurrently, CSS0041853 (CO2) was posi-
tively correlated with the expressions of CSS0010538,
CSS0008086 and CSS0037896, and the correlation
coeflicients were 0.78, 0.86 and 0.95, respectively. The
expression of CSS0010538 was also highly consistent
with CS§S0003691 (DAM) and CSS0033241(CUCI), with
the correlation coefficients of 0.70 and 0.79 separately.
CSS0033241(CUCI) had the highest expression correla-
tion with CSS0008086 (r=0.80).

Expression profiles of CsAP2/ERFs under low and high
temperature treatment

The WGCNA analysis mentioned above found 12 CsAP2/
ERFs which had the potential relationships with bud
break related genes, and the temperature experiments
were performed to further verify whether these genes
were involved in bud break under temperature-con-
trolled processes. And interestingly, nine CsAP2/ERFs,
which responded to high (30 °C) or low temperature
(4 °C) treatment, were discovered (Fig. 7a). The results of
the expression levels indicated that they were all sensitive
to low temperature, and CSS0041210 and CSS0049609
were simultaneously influenced by high temperature.

Expression profiles of CsAP2/ERFs under light treatment
The expression profiles of 12 CsAP2/ERFs screened by
WGCNA were detected under light treatment. As the
results showed in Fig. 7b, nine CsAP2/ERFs responded to
light, and four of them were down-regulated under shade
treatment while five were up-regulated. CSS0049609
expressed significantly different at five sampling times,
however, CSS50025246 and CSS0017245 distinguished at
only one time.

Discussion

The AP2/ERF family is vital in plant development and
stress resistance [2]. However, the identification and
functional studies of this family remain poorly under-
stood due to the complex genetic background of tea
plant. 89 CsAP2/ERFs were previously characterized
using transcriptome data [26]. In this study, we identified
more CsAP2/ERFs (178) in the genome of tea plant, and
they were grouped into five subfamilies according to the
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Fig. 5 Heatmap of CsAP2/ERFs during the different stages of tea plant bud break. The 62 CsAP2/ERFs clustered into six groups based on their specific
expressions during the four stages (S1-54) of tea plant bud break (S1: T1-T2, S2: T3-T7, S3: T8-T9 and S4: T10-T13). The circular heatmap showed the cor-
relation analysis between the environmental factors and gene expression levels (DMT: daily mean temperature, DHT: daily maximum temperature, DLT:
daily minimum temperature). The graph on the right of the heatmap showed the expression patterns of the six distinct clusters. Gene expression levels
were represented by standardized FPKM values. The standardization method was z-score, z = (x —)/0 (x: original value, z: transformed value, p: mean and
o: standard deviation)
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contained domains and the sequence conservation. The
number of AP2/ERFs greatly varies among different spe-
cies, as shown in Table 1. The number of CsAP2/ERFs
in tea plant is relatively large among the plants we have
listed. This condition could be caused by the two WGD
events in tea plant during the process of genome evo-
lution [39]. In addition, 72 pairs of WGD or segmental
duplication were detected in tea plant, making a major
construction to the increase in the number of CsAP2/
ERFs, which is different from the main amplification of
other transcription factor families, such as WRKY and
PME [40, 41]. The amplification of AP2/ERFs in several
plants, such as pear [42] and pumpkin [43], is also domi-
nated by segmental duplication. Accordingly, segmental
duplication may be a main extension form of AP2/ERFs.
Moreover, not all duplicated genes had similar expression

profiles (Fig. 5), which had also been confirmed in pump-
kin [43]. Based on the result of the comparison of the
synteny of AP2/ERFs between tea plant, Arabidopsis and
poplar, more gene pairs are present in tea plant and pop-
lar. Given that both are woody perennials, more similar
selective pressure and closer relationship may support
the formation of more orthologous genes [39, 44, 45].
The differences in gene structure and composition may
contribute to the functional diversity of AP2/ERFs [43,
46]. The gene structure analysis showed that the same
group or subfamily shared similar gene structures in the
CsAP2/ERF family. For example, the CsAP2 subfamily
tended to contain three to nine short and tandem CDS
regions (Figure S2c), while the CsDREB and CsERF sub-
families were more likely to form an intron-free structure
(Figure S3c, 4c). The structural characteristics of these
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subfamilies are consistent with the AP2/ERFs in other
plant [43, 47, 48]. The classification results obtained from
phylogenetic trees basically match the prediction results
of the conserved domain (Figure S2-S6), indicating that
the conserved domains are also an important identifi-
cation feature of the classification in the AP2/ERF fam-
ily. The analysis of the motif composition revealed that
most CsAP2/ERFs contained motifs 1, 2 and 4, which
were associated with the AP2 domain. Additionally, the
subfamilies were differentiated into their unique motifs,
such as motif 6 of the CsDREB subfamily, motif 14 of
the CsERF subfamily and motif 15 of the CsAP2 sub-
family, which may support their different functions [49].
Meanwhile, the exogenous hormones and environmen-
tal signals may be vital in regulating the transcriptional
activity of AP2/ERFs [2], and the recognition of these
signals needs to be accomplished by cis-acting elements.
The analysis of the cis-acting elements on the promoters
of CsAP2/ERFs proved that there were various types of
hormone response elements and signal-sensing elements
(Table S6), such as abscisic acid responsive elements
(ABRE), gibberellin responsive elements (TATC-box,
P-box and GARE-motif), light responsive elements
(ACE) and low temperature responsive elements (LTR).
The existence of multiple signal-sensing elements sup-
ports the involvement of AP2/ERFs in plant physiology
and metabolism.

AP2/ERFs are involved in the construction of plant
growth and development system and have been con-
firmed to play a regulatory role in the bud break of woody
perennials, such as poplar [20, 22], pear [19] and peach
[23]. Most tea plants located in the temperate tea produc-
ing area need to experience a cycle of spring bud break
and winter dormancy as a member of woody perennials
[44, 50, 51]. We observed the bud break process of the tea
buds from November 2021 to March 2022 (from S1 to
S4) (Figure S1). The tea buds experienced paradormancy,
endodormancy and ecodormancy in S1-S3, respectively.
The growth of the tea buds stopped at this time due to
the surrounding environment or endogenous signals [52,
53]. At the end of S3, the growth points of the tea buds
regained their growth capacity but remained in a state
of growth arrest due to the limitations of growth condi-
tions [54]. Next, the growing substances in the tea buds
continued to accumulate in S4, which made the tea buds
enter the expansion period (T10-T12). On March 19,
2022 (T13), the tea buds broke. Consequently, tea plant
entered the one and a bud (one bud with one leaf) stage.

Favorable external environment is the key factor for
spring bud break of tea plant. Temperature and light
are essential in tea plant dormancy to bud break transi-
tion[31, 55-59]. Here, we investigated the cis-elements of
CsAP2/ERFs on their promoters and showed that many
cis-elements were signal perception elements, such as
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LTR (low temperature response), ACE and G-box (light
response). By calculating the correlation between the
expressed CsAP2/ERFs with daily minimum tempera-
ture (DLT), daily maximum temperature (DHT) and daily
mean temperature (DMT), it was found that most genes
were related to the DLT, accounting for 42.50% (|r| = 0.5)
(Table S7). Meanwhile, the temperature and light treat-
ment found that nine CsAP2/ERFs could significantly
respond to low temperature, and nine could respond to
light. Among the above-mentioned genes, seven of them
can respond to both low temperature and light.

Tea plant regenerates productive buds in spring under
suitable conditions, and this phase is a multi-signal reg-
ulation process, which often occurs with altered gene
expressions [33, 35, 60, 61]. The expressions of CsAP2/
ERFs were detected by RNA-seq during the whole pro-
cess from winter dormancy to spring bud break. The
cluster analysis divided the gene expressions into clus-
ters A-F. The gene expressions of clusters A and B were
highest at the end of the dormant stage and the tea bud
expansion stage. The high-level expression of cluster
C-F appeared in the early of stage of dormancy, they
expressed barely near the tea bud break. The seasonal
expression analysis of woody perennials showed that
AP2/ERFs had a huge expression transition after chill-
ing accumulation of dormancy or before bud break.
In poplar, the expression of EBB3 was induced by low
temperature in the winter/spring months (November to
March) [20]. The similar expression pattern of PpEBB
was found in pear [19]. Compared with poplar and pear,
cluster A and B were more synchronized with the pro-
cess of tea plant bud break in spring. Further research
revealed that CSS0047280 in cluster A is the ortholo-
gous gene of ESR2 in Arabidopsis. ESR2 is vital in shoot
regeneration through the transcriptional regulation of
CUCI, and ectopic expression of CUCI could promote
adventitious shoot formation from Calli through Shoot
Apical Meristem (SAM) activation [62]. This work pro-
vided a reference for studying the potential mechanism
of CSS0047280 in tea plant bud break. In addition, the
CSS0035725 in cluster B had high homology with EBB3,
the bud break regulation gene in poplar [20]. This result
also indicates that this gene may have a similar function
to EBB3 in regulating the bud break. Furthermore, the
genes in other clusters were down-regulated before tea
plant bud break, showing an opposite expression pattern
to the genes in clusters A and B which also suggested a
possible negative regulatory mechanism.

D-type cyclins are an important cell cycle progression
checkpoint, whose expression correlates with bud reac-
tivation of growth at the bud break, and participates in
compound pathways in the regulation of bud break in
woody perennials [20, 34, 63, 64]. In poplar, CYCD3.1
promotes poplar bud break, and it is up-regulated by
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EBB3 which is up-regulated by EBBI. The entire pathway
is induced by low temperature signals [20]. Our study
found a CsAP2/ERF (CSS0049609) that could respond
to low temperature signal and were highly correlated
with D-type cyclin genes in expression. CSS0039817,
the orthologous gene of poplar CYCD3.1, had a similar
expression pattern to CSS00033589 and CSS0049609
in module Brown. The correlation coefficients of gene
expression were 0.89 (CSS0039817 and CSS0033589)
and 0.90 (CSS0039817 and CSS0049609) during spring
bud break (Table S9). These results demonstrate that
CSS00033589, CSS0049609 and CSS0039817 may be
similar to the regulation mechanism of EBBI and EBB3
on CYCD3.1. Moreover, C550028484 and CSS0022420
had high sequence similarity and similar expression
profile with CsAIL, an AP2/ERF transcription factor
reported in tea plant [34]. Previous studies have shown
that CsAIL may be an upstream regulatory gene of tea
plant D-type cyclin genes CsCYCD3.2 and CsCYCDé.1,
which is consistent with our experimental results. The
above-mentioned results provide evidence to prove that
the CsAP2/ERFs are involved in the expression and regu-
lation of D-type cyclin genes, thereby affecting tea plant
bud break.

Conclusions

This study performed a systematic analysis of the CsAP2/
ERF family in tea plant. A total of 178 CsAP2/ERFs were
identified and divided into five subfamilies. The evolu-
tion, gene location, conserved motifs, and cis-acting
element features of CsAP2/ERFs were investigated. Fur-
thermore, the expression patterns of CsAP2/ERFs in dif-
ferent periods of tea plant bud break were analyzed. Nine
low temperature responsive and nine light responsive
CsAP2/ERFs were found during the experiment of the
temperature and light treatments. Finally, CsAP2/ERFs
may be an upstream regulator of D-type cyclin genes,
which affected tea plant bud break in spring. Our study
provided a new direction for further research on the
functioning of CsAP2/ERFs in tea plant bud break.

Materials and methods

Identifications of the CsAP2/ERFs

The genome data and annotation information of the
chromosome-level reference of tea plant were down-
loaded from TPIA (http://tpdb.shengxin.ren/) [65]. The
Hidden Markov Model (HMM) file was downloaded
from InterPro (https://www.ebi.ac.uk/interpro/down-
load/Pfam/) [66] and submitted to Simple HMM Search
of TBtools [67] along with the AP2 domain ID (PF00847).
The above-mentioned steps were used to retrieve the
AP2/ERF proteins from the tea plant genome [39]. After
eliminating repetitive sequences, the rest of the proteins
were analyzed by CD-search of NCBI (https://www.ncbi.
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nlm.nih.gov/Structure/cdd/wrpsb.cgi) [68]. Ultimately,
178 CsAP2/ERFs were identified. The ExPAsy ProtParam
(https://web.expasy.org/protparam/) [69] was employed
to predict the physical and chemical parameters of the
CsAP2/ERF proteins, including the amino acids, molecu-
lar weight and isoelectric points (Table S1).

Phylogenetic tree construction

The protein sequences of 178 CsAP2/ERFs were extracted
from the tea plant genome by TBtools [67], and the AP2/
ERF protein sequences of Arabidopsis were downloaded
from the PlantTFDB (http://planttfdb.gao-lab.org/) [70].
The conserved domains were predicted through CDD
(http://www.ncbi.nl.nih.gov/Structure/cdd/wrpsb.cgi)
[71], and the predicted results were downloaded for phy-
logenetic analysis. Then, all sequences were aligned by
MUSCLE in MEGA [72] with the neighbor-joining (NJ)
method using the Poisson model, and the bootstrap test
was replicated 1000 times. The result was imported into
the iTOL (https://itol.embl.de/) [73] to display the phylo-
genetic tree.

Chromosomal distribution and gene duplication

The location information of CsAP2/ERFs on the chro-
mosomes was collected by the TeaGVD (http://www.
teaplant.top/teagvd) [74]. One Step MCScanX of TBtools
[67, 72] was used to identify the synteny regions on the
tea plant genome [39] based on E-value<1E-5. Then, the
paralogous relationships were extracted by the ID infor-
mation of CsAP2/ERFs. The genome data and annotation
information of the Arabidopsis and poplar were down-
loaded from EnsemblPlants (http://plants.ensembl.org/
info/data/ftp/index.html) [75]. The above-mentioned
files were used for synteny analysis together with the
genome information of the tea plant [39]. The chromo-
somal localization and gene synteny were visualized by
TBtools [67]. Finally, non-synonymous substitutions (Ka)
and synonymous substitutions (Ks) of the paralogous
genes were calculated using KaKs_Calculator 2.0 with the
calculation method NG [76].

Gene structure, conserved motif and promoter analysis
The structures (CDS, UTR and introns) of 178 CsAP2/
ERFs were extracted from the genome annotation infor-
mation of tea plant [39] and displayed through the GSDS
(http://gsds.gao-lab.org/) [77]. Then, the TBtools [67]
was used to extract the genome sequences of 178 CsAP2/
ERFs and the 2 kb sequences upstream from the tran-
scription start site. The MEME (https://meme-suite.org/
meme/tools/meme) [78] was used to identify conserved
motifs. The 2 kb sequences upstream of the genes were
analyzed by the PlantCARE (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/) [79] for predicting
the cis-acting elements in the promoters of CsAP2/ERFs.
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Plant growth and treatment

The 8-year-old early-sprouting tea cultivar ‘Longjing43’
was grown in Shengzhou experimental base, Tea
Research Institute of Chinese Academy of Agricultural
Sciences (TRICAAS), Zhejiang, China. From November
1, 2021 to March 19, 2022, the apical buds were sam-
pled 13 times depending on the development of buds
and weather conditions. The records of sampling can be
obtained from Figure S1 and Table S3. In the same field
in Shengzhou, tea plants with consistent growth were
selected for light treatment. The tea plant in light group
grew naturally without additional treatment. the shade
group was shaded for four days before sampling, and the
shading rate was 95%. On the fifth day, two groups of tea
plant were sampled every three hours separately, from
9am to 9pm on December 14, 2021. Potted early-sprout-
ing tea cultivar ‘Longjing43’ (2-year-old) with consistent
and robust growth was cultivated in the greenhouse. The
tea plant was then moved into the high (30 °C), low (4 °C)
and middle (15 °C) temperature climate chambers for
treatment. The humidity of the artificial climate cham-
ber used for temperature treatment was set at 70%, and
the photoperiod of 14 h of light (10,000 1x) and 10 h of
darkness is maintained. After two days of treatment, the
apical buds were harvested, and frozen in liquid nitrogen
and stored at —80 °C. Three biological replicates were set
up for each sample.

Gene expression analysis based on RNA-seq and qRT-PCR
The total RNA was extracted by EASY-spin Plus Complex
Plant RNA Kit (Aidlab Biotechnologies Company, Bei-
jing, China) and used to construct cDNA libraries. The
Agilent bioanalyzer 2100 system was used to detect the
library quality. The qualified libraries were sequenced
on the NovaSeq 6000 platform (Illumina Inc., CA, USA)
developed by the Novogene Bioinformatics Technology
Co., Ltd (Beijing, China). After removing the unqual-
ify reads (adapter reads, poly-N reads and low-qual-
ity reads), the clean reads were aligned to the tea plant
genome using HISAT2 [80]. The average total reads were
44,917,372, and the average map rate up to 85.94%. The
transcript expression levels of individual genes were
quantified using FPKM values, which were counted by
featureCounts basing on the length of the gene and reads
count mapped to the genes.

Subsequently, the gene expression heatmap was gen-
erated by TBtools [67]. Real-time qPCR was conducted
on LightCycler® 480 II (Roche Molecular Biochemi-
cals, Mannheim, BW, Germany) using LightCycler® 480
SYBR® Green I Master (Roche Molecular Biochemicals,
Mannheim, BW, Germany). Each treatment performed
three biological and three technical replicates. The rela-
tive expression level was calculated by using the 2744¢T
method [81]. The internal reference gene was CsGAPDH.
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The primer sequences of the reference genes and CsAP2/
ERFs are listed in Table S2.

WGCNA analysis

WGCNA [82] was performed by the R package. The gene
expression data were obtained from RNA-seq. All genes
were filtered by the standard of FPKM>1, and we set
the soft threshold to nine to construct the network. The
dissimilarity between genes was used for the hierarchi-
cal clustering of genes, and a hierarchical clustering tree
was established. Then, the tree was cut into 15 modules
(the minimum number of genes in the module was 30)
by using the dynamic shearing method, and the mod-
ules with a coefficient of dissimilarity less than 0.25 were
merged. The WGCNA results were used to identify gene
sets with high covariation and to mine potential interact-
ing genes. The gene co-expression network was visual-
ized using Cytoscape [83].
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WGD whole genome duplication
FPKM fragments per kilobase of transcript per million mapped reads
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