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Abstract

Whole-brain segmentation is a crucial pre-processing step for many neuroimaging analyses 

pipelines. Accurate and efficient whole-brain segmentations are important for many neuroimage 

analysis tasks to provide clinically relevant information. Several recently proposed convolutional 
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neural networks (CNN) perform whole brain segmentation using individual 2D slices or 3D 

patches as inputs due to graphical processing unit (GPU) memory limitations, and use sliding 

windows to perform whole brain segmentation during inference. However, these approaches 

lack global and spatial information about the entire brain and lead to compromised efficiency 

during both training and testing. We introduce a 3D hemisphere-based CNN for automatic 

whole-brain segmentation of T1-weighted magnetic resonance images of adult brains. First, 

we trained a localization network to predict bounding boxes for both hemispheres. Then, we 

trained a segmentation network to segment one hemisphere, and segment the opposing hemisphere 

by reflecting it across the mid-sagittal plane. Our network shows high performance both in 

terms of segmentation efficiency and accuracy (0.84 overall Dice similarity and 6.1 mm overall 

Hausdorff distance) in segmenting 102 brain structures. On multiple independent test datasets, our 

method demonstrated a competitive performance in the subcortical segmentation task and a high 

consistency in volumetric measurements of intra-session scans.

Keywords

MRI; segmentation; 3D CNN

1. Introduction

Structural magnetic resonance imaging (MRI) is the most widely used neuroimaging 

modality for clinical investigation of the human brain, ranging from development (Gogtay 

et al., 2004; Wilson et al., 2021; Wang et al., 2019; Fjell et al., 2015; Knickmeyer et 

al., 2008; Giedd et al., 1996; Gilmore et al., 2018) and aging (Guo et al., 2017; Gur 

et al., 1991; Grajauskas et al., 2019; Scahill et al., 2012; Gunning-Dixon et al., 2009) 

research, to neurological conditions such as developmental disorders (Habibullah et al., 

2020; Kuzniecky, 1994) or dementia (Agosta et al., 2017; Noor et al., 2019). It can provide 

a high-resolution 3D volumetric representation of the brain with sufficient image contrast 

to differentiate among distinctive brain structures and tissue types. Therefore, MRI is the 

preferred modality particularly for studying structural abnormalities associated with brain 

disorders, where the detection of subtle disease-related changes, such as atrophy, can greatly 

assist with earlier diagnosis and intervention. Furthermore, structural MRI is frequently used 

as the anatomical reference for other imaging modalities with lower spatial resolution, 

such as functional MRI (fMRI) or positron emission tomography (PET). Accordingly, 

whole-brain segmentation of the structural MRI is one of the most important processing 

steps for almost all neuroimaging analyses pipelines: an accurate and efficient segmentation 

is a prerequisite to a greater clinical relevance of the imaging findings.

To achieve successful translate the neuroimage analysis techniques into clinical practice, 

an ideal segmentation algorithm needs to be fast and accurate. Otherwise, it can become 

a bottleneck in processing time and may affect the results of subsequent analyses. The 

classical segmentation method uses nonlinear registration to align the intensities or folding 

patterns of an image with those of a manually segmented atlas template (Fischl et al., 2002; 

Ma et al., 2014). However, these techniques usually require large amounts of computational 

resources and processing time. For example, the popular FreeSurfer package, one of the 
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most commonly used segmentation tools, can take more than 24 hours to process one image 

using a typical desktop computer (Fischl, 2012). In addition, manual intervention are often 

needed to reduce segmentation bias or correct for segmentation errors (Derakhshan et al., 

2010; Despotović et al., 2015; Mortamet et al., 2009; Monereo-Sánchez et al., 2021). These 

limitations may render the classical segmentation methods less ideal for large, multi-site 

studies that are increasingly becoming the norm.

There is an increasing interest in using CNNs for whole-brain segmentation because of 

its fast inference time and high performances in semantic segmentation tasks (Ren et al., 

2015; He et al., 2017; Liu et al., 2016). Several CNNs have been proposed for subcortical 

and whole-brain segmentations. Yet, these networks cannot directly segment a whole-brain 

image due to graphical processing unit (GPU) memory constraints. Instead, they segment 

2D slices or 3D patches of a whole-brain image, which are then fused together to create a 

final segmentation. Many of the existing networks are trained on very small 3D patches with 

patch sizes ranging from 133 to 383 (de Brebisson and Montana, 2015; Dolz et al., 2018; 

Wachinger et al., 2018; Fedorov et al., 2017; McClure et al., 2018). Only a few studies have 

used large 3D patches of size 963 (Li et al., 2017; Jog et al., 2019). A drawback of patch-

based approach is that patches contain mostly local information and lack the spatial context. 

To improve the performance of 3D patch-based CNN, recent studies have incorporated 

spatial context into network training. For instance, (Wachinger et al., 2018) augmented 3D 

patches with coordinate information and showed that providing spatial context to input 

patches leads to a higher segmentation accuracy. Huo et al. (2019) used a different approach 

and registered MRI images to a common space, followed by training individual networks 

for each patch. Since each patch is associated with a fixed spatial location, each network 

implicitly learns contextual information for the corresponding location.

Our goal was to devise a memory efficient solution that allows us to train on inputs that are 

as large as possible and as semantically meaningful as a whole-brain image. The amount 

of memory required for whole-brain segmentation depends on two factors: the size of the 

input image and the number of structures to segment. Typically, a CNN uses a softmax layer 

to assign class probabilities to each voxel. In this setting, the CNN generates a volume for 

each structure, meaning the size of an output segmentation is the size of the input multiplied 

by the number of brain structures. With limited GPU memory, it is not feasible to segment 

a high-resolution MRI image (1 mm isotropic) into a large number of structures (left and 

right). We note that structures in one hemisphere of the human brain have symmetric 

counterparts in the opposing hemisphere. As such, for the purposes of segmentation, the 

CNN does not need to learn different representations for corresponding structures in each 

hemisphere. We can divide the task of segmenting a whole-brain image into segmenting 

each cerebral hemisphere separately. These tasks are more manageable because an image 

of a hemisphere is significantly smaller and a hemisphere contains half the number of 

structures of the whole brain. Moreover, a hemisphere image already contains both local and 

global contexts. This strategy utilizes the bilateral organization of the brain to drastically 

reduce memory usage. We test the proposed method on diverse data sets and evaluated the 

segmentation accuracy and consistency.
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2. Materials

2.1. Data

The training data used in the preparation of this article was obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), the Australian 

Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) group, the Open Access 

Series of Imaging Studies (OASIS) database, and the Human Connectome Project (HCP) 

database. The ADNI was launched in 2003 as a public-private partnership, led by principal 

investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial MRI images, PET scans, biological markers, and clinical and neuropsychological 

assessments can be combined to measure the progression of MCI and early Alzheimer’s 

disease. As such, ADNI data includes images of controls with normal aging, subjects with 

mild cognitive impairment, and subjects with dementia of the Alzheimer’s type (DAT). The 

AIBL and OASIS data contain images with similar demographics and clinical factors. The 

methodology of AIBL and OASIS studies have been previously reported (Ellis et al., 2009; 

LaMontagne et al., 2018). The HCP dataset is an open-access data set with high-resolution 

MRI images of healthy young adults (Van Essen et al., 2013). Segmentations generated 

using a dedicated FreeSurfer pipeline are also made available (Glasser et al., 2013).

To train our network, we combined the ADNI, AIBL, OASIS and HCP data sets and split the 

images at the subject and data set level. This was to ensure the training, validation, and test 

sets did not share any subjects. As shown in Table 1, we used 60% of the images from each 

dataset for training, 20% of the images for validation, and the remaining 20% as held-out 

test data.

We divide our experiments into three parts:

1. Evaluation of segmentation accuracy (held-out test data)

2. Comparison with manual segmentation (CANDI, IBSR and MICCAI 2012 

datasets)

3. Evaluation of segmentation consistency (MIRIAD and TRT datasets)

The first experiment was evaluated on the held-out test images, which have similar 

acquisition parameters as the training data. The second and third experiments were 

evaluated on independent test data sets. For the second experiment, we used images 

and manual segmentations obtained from the Child and Adolescent NeuroDevelopment 

Initiative (CANDI), the Internet Brain Segmentation Repository (IBSR), and the MICCAI 

2012 dataset. The CANDI data set contains images and the corresponding sub-cortical 

segmentations, of healthy children and children with psychiatric disorders in the 5–15 age 

range. We obtained a total of 103 images from https://www.nitrc.org/projects/candi_share. 

The IBSR dataset provides 18 images along with manually guided expert segmentations 

to encourage the validation of segmentation algorithms. The MR brain data sets and 

their manual segmentations were provided by the Center for Morphometric Analysis at 

Massachusetts General Hospital and are available at https://www.nitrc.org/projects/ibsr. The 

MICCAI 2012 dataset is used in the MICCAI Multi-Atlas Labeling challenge (Landman 

and Warfield, 2012). This challenge provides 20 images and manual segmentations for 
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testing. The MICCAI 2012 data set is available upon request at https://my.vanderbilt.edu/

masi/workshops/.

To evaluate the consistency of our segmentation, we used data sets with intra-session scans. 

We obtained images from the Minimal Interval Resonance Imaging in Alzheimer’s Disease 

(MIRIAD) data set, which contains 185 pairs of back-to-back scans of normal aging controls 

and subjects with DAT (Malone et al., 2013). The Test-Retest (TRT) data set is released 

to assess the reliability of volumetric measurements (Maclaren et al., 2014). It contains 

120 images from 3 subjects who were scanned twice within each session for a total of 20 

sessions spanning 31 days.

2.2. Image pre-processing

The MRI images were reoriented into the radiological convention and re-sampled into a 

standard 256 × 256 × 256 image grid with 1 mm isotropic voxel size. We performed 

min-max scaling to rescale the image intensity values to the range between 0 and 1.

3. Methods

Figure 1 illustrates our hemisphere-based approach, which consisted of a localization 

network and a segmentation network. The localization network predicts bounding boxes 

for both hemispheres and the segmentation network segments the localized left hemisphere 

into 54 FreeSurfer-based structures. To segment the right hemisphere, we simply performed 

a left-right flip on the localized right hemisphere and applied the segmentation network.

3.1. Localization network

We used downsampled MRI images for hemisphere localization to reduce their memory 

footprint and to speed up the training process. Figure 2 illustrates the architecture of 

our localization network. It uses convolutional layers with increasing dilation factors. 

Each convolutional layer is followed by an instance normalization layer and an activation 

layer with leaky rectified linear units (Ulyanov et al., 2017; Maas et al., 2013). The 

convolutional layers are followed by a global average pooling layer which performs extreme 

dimensionality reduction. The final layer is a fully connected layer with 12 units. It performs 

bounding box regression to predict the center voxel’s coordinates and the bounding box’s 

dimensions for each hemisphere. The network outputs a total of 12 bounding box parameters 

for a given image. We trained the network to minimize the mean squared error using the 

Adam optimization method with the default learning rate of 0.001 and a batch size of 8 

(Kingma and Ba, 2014). For augmentation, we applied translation of maximum 20 voxels 

on-the-fly.

3.2. Segmentation network

Our segmentation network is shown in Figure 3. Similarly to the popular U-Net architecture, 

our network has two paths of convolutional networks with skip connections between the 

paths to promote information flow (Ronneberger et al., 2015). The skip connections simply 

concatenate features in one path to those in the other path. However, unlike the U-Net 

architecture, we did not perform downsampling and upsampling in the two paths. Rather, 
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we progressively increased the dilation factors in one path and decreased the dilation factors 

in the other path. Increasing the dilation factors expands the receptive field size, providing 

more spatial context to subsequent network layers. While a large dilation factor is useful 

for the global context, it can be detrimental to small regions with thin boundaries. In the 

other path, we used decreasing dilation factors to aggregate local features. Similar networks 

have been used to segment small objects in remote sensing tasks (Hamaguchi et al., 2018). 

We only performed downsampling in the first layer to reduce the input image’s size and 

memory usage. With the exception of the final layer, every convolutional layer is followed 

by an instance normalization layer and an activation layer with leaky rectified linear units 

(Ulyanov et al., 2017; Maas et al., 2013). In total, the network has 21 convolutional layers.

We trained the network to minimize both the voxel-wise cross-entropy loss and the soft dice 

loss according to:

Lsegmentation = Lcross − entropy + Lsoft − dice

The soft dice loss for each region is given by

Lsoft − dice, roi = 1 − 2∑i
N yiyi

∑i
N yi

2 + ∑i
N yi

2

where the sums run over N voxels of a predicted segmentation 

y
and a reference segmentation y. The final soft dice loss is the average of the soft dice 

losses of all regions. Since the cross-entropy loss function treats all voxels equally and 

independently evaluates the class prediction for each voxel, networks trained using only the 

cross-entropy loss function fail to detect small regions. Therefore, the network would be 

biased towards regions with large volumes. On the other hand, the soft dice loss function 

implicitly re-weighs the voxels, which helps handle such class imbalances. However, since 

this function does not differentiate between over-segmentation and under-segmentation, we 

opted to optimize both cross-entropy and soft dice loss. We trained the network using 

the Adam optimization method with the default learning rate of 0.001 (Kingma and Ba, 

2014). We used 2 GPUs to speed up the training process, with each GPU processing one 

hemisphere. We stopped training the network when the validation loss stopped decreasing. 

In total, we trained the network for 12 epochs which took about 72 hours.

Table 2 listed the configuration details for both of the hemisphere localization and the 

segmentation networks, including the number of trainable parameters, number of epochs, 

optimizer, batch size, and the loss function.

3.3. Post-processing

To create a final whole-brain segmentation, we used the bounding boxes to 

orient the two segmentations obtained by passing the left and horizontally 

flipped right hemispheres to the segmentation network. Since the bounding 

boxes of the two hemispheres overlap, we used majority voting with a 

Yee et al. Page 6

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 × 5 × 5
neighborhood for each voxel where the two segmentations disagreed. We combined the left 

and right labels for 6 structures (white matter hypointensities, 3rd-ventricle, 4th-ventricle, 

brain stem, corpus callosum and cerebrospinal fluid) and kept the left and right labels 

separate for the remaining 48 structures. The final segmentation had a total of 102 structures. 

We computed a brain mask by performing dilation and keeping the largest component. The 

brain mask was used to convert the labels of any voxels located outside of the brain to 

background.

3.4. Evaluation measures

We used three metrics to analyze the similarity and discrepancy between our segmentation 

and a reference segmentation: signed relative volume difference (SRVD), Dice Similarity 

Coefficient (DSC) and Hausdorff Distance (HD). SRVD is computed according to:

SRV D(A, B) = V olume(A) − V olume(B)
V olume(A) × 100%

where A is a binary reference segmentation and B is a predicted segmentation. It 

is a volume-based metric that ranges between −100 and 100, where 0 indicates 

perfect segmentation, positive value indicates over-segmentation, and negative value 

indicates under-segmentation. Note that imperfect segmentations or even non-overlapping 

segmentations can result in a SRVD of 0 as long as the volumes of the predicted and 

reference segmentations are equal. In our variant of SRVD, we ignore the direction of 

volume difference and take the absolute of relative volume difference (ARVD) according to:

ARV D Bt1, Bt2 = V olume Bt1 − V olume Bt2
V olume Bt1

× 100%

where 

Bt1

and 

Bt2

are segmentations of the first and second scans of a pair of back-to-back scans. This metric 

measures the variability of volume measurements for scans acquired on the same day.

We used DSC to measure overlap (Dice, 1945). It provides a similarity measure that ranges 

between 0 and 1, where 0 shows no overlap between two segmentations and 1 shows 100% 

overlap. DSC is defined as the following

DSC(A, B) = 2 A ∩ B
A ∪ B

For small structures, DSC may be overly sensitive to errors. Note that DSC does not 

differentiate between over-segmentation and under-segmentation, nor does it account for 

shape fidelity.
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HD, a distance-based metric, measures the discrepancy between two shapes (Jain and 

Dubes, 1988). It is defined by

HD(A, B) = max(ℎ(A, B), ℎ(B, A))

where 

ℎ(A, B)
is computed according to

ℎ(A, B) = maxa ∈ Aminb ∈ B ∥ a − b ∥

HD compares the boundaries between two segmentations and gives the maximum of all 

distances from a boundary point in one segmentation to the closest boundary point in the 

other segmentation. A low HD value indicates that every point of either segmentation is 

close to some point of the other segmentation. Note that HD is sensitive to outliers and a 

single outlying voxel can result in a high HD value.

4. Results

4.1. Localization performance

In Table 3, we show the performance of the localization network on the held-out test data. 

Overall, each predicted coordinate is within 3 voxels away from the ground truth coordinate, 

and each predicted dimension is within 4 voxels of size difference. To account for error 

in the localization network and to avoid under-segmentation, we increased each predicted 

dimension of the bounding boxes by 10 voxels. The expanded bounding boxes were used to 

localize both hemispheres in the segmentation network.

4.2. Evaluation of segmentation accuracy

4.2.1. Held-out test data—Figure 4 shows examples of input images, reference 

segmentations, and our automatic segmentations. For the held-out test data, the distributions 

of SRVD, DSC and HD for all structures are shown in Figure 5. The overall mean DSC 

is 0.836 and the overall mean HD is 6.067. Regions with a mean DSC that is much 

lower than the overall mean DSC include bilateral cuneus, entorhinal, pericalcarine, frontal 

pole, temporal pole, and accumbens areas. The errors in these regions are likely due to 

over-segmentation as the predicted volumes of these regions tended to be higher than the 

reference volumes. However, over-segmentation errors are mostly limited since the distances 

between the predicted boundaries and the reference boundaries of these structures are quite 

small, as shown in the HD boxplot. We show sample segmentations of these regions in 

Figure 7. The first column shows that the FreeSurfer segmentations are not error-free, 

potentially resulting in low DSC values for some images. The bilateral choroid plexus and 

white matter hypointensities regions include scattered voxels, making their DSC and HD 

metrics much more sensitive to errors and outliers.
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4.3. Comparison with manual segmentation

The manual segmentations provided in the CANDI, IBSR and MICCAI 2012 data sets 

contained different numbers of structures, some of which do not directly correspond to any 

FreeSurfer label. However, all three data sets have manual segmentations of the subcortical 

structures. For this experiment, we focused on comparing our automatic subcortical 

segmentation results with these manual subcortical segmentations.

4.3.1. CANDI dataset—We evaluated our network on the CANDI dataset. In Figure 8, 

we show the distribution of SRVD, DSC and HD for several subcortical regions. The mean 

DSC is 0.79. DSC scores greater than 0.85 were observed in the bilateral thalamus, bilateral 

caudate and right putamen, while lower DSC scores were observed in the bilateral amygdala 

and accumbens areas. The volume difference boxplot indicates that our network tends 

to over-segment most of the subcortical regions except for the amygdala. A challenging 

aspect of the CANDI data set is that it represents a much younger demographic. Overall, 

the distances between the predicted and reference boundaries were quite small except for 

bilateral caudate and hippocampus. For each subcortical region, we show examples of the 

input images and segmentations in Figure 9.

4.3.2. IBSR dataset—Figure 10 shows the distributions of SRVD, DSC and HD for the 

14 subcortical structures obtained on the IBSR dataset. Overall, the predicted subcortical 

volumes are higher than the volumes derived from manual segmentations. The overall mean 

DSC is 0.778. Larger structures such as the thalamus, caudate, and putamen have higher 

DSC values, whereas smaller structures such as the amygdala and accumbens area have 

lower DSC values. The overall mean HD is 5.034. Regions with mean HD larger than the 

overall mean include bilateral caudate and hippocampus.

We compared our method with the state-of-the-art methods in Table 4. For a fair 

comparison, we included only methods that performed independent testing on the IBSR 

data set. The overall mean DSC and HD achieved using our network were 0.779 and 5.034. 

Even though our network was trained on FreeSurfer data, it performed better on the IBSR 

data compared to the FreeSurfer data. The performance of our network is also comparable 

with other CNN-based approaches (Dolz et al., 2018; Roy et al., 2018). However, these 

networks were trained to segment much smaller numbers of structures. Dolz et al. (2018) 

trained their network to segment 8 subcortical structures and Roy et al. (2018) fined-tuned 

their network with other manual segmentations to segment 27 structures. We show samples 

of IBSR images and their segmentations in Figure 11 to highlight the fact that these images 

have a lower contrast and a lower resolution of 1.5 mm in the anterior-posterior direction, 

which make these images difficult to segment.

4.3.3. MICCAI 2012 Multi-Atlas dataset—We show the distributions of SRVD, DSC 

and HD obtained on the MICCAI 2012 dataset in Figure 12. The overall mean DSC was 

0.780 and the DSC values for bilateral amygdala and accumbens area were the lowest. The 

overall HD was 5.486 and the HD values for bilateral caudate were the worst. In Figure 13, 

we show examples of caudate segmentations sorted by HD values and we show examples 

of amygdala and accumbens area segmentations sorted by DSC values. Table 5 compares 
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the DSC and HD values obtained using our method and FreeSurfer. Our method showed 

a significant improvement of segmentation accuracy for most of the structures, except for 

the caudate and hippocampus. Other CNN-based methods have shown lower to comparable 

performances prior to training on the MICCAI 2012 images and higher performances after 

training on the MICCAI 2012 images (Roy et al., 2018; Kushibar et al., 2018).

4.4. Evaluation of segmentation consistency

4.4.1. MIRIAD dataset—The DSC and HD distribution patterns in Figure 14 are similar 

to those of the held-out test data with an overall mean DSC of 0.836 and HD of 6.093 

across 102 structures. The overall mean change in volumes across back-to-back scans is 

2.229 for our method and 5.634 for FreeSurfer. This indicates that our network is capable of 

generating consistent segmentations and volume measurements for intra-session scans.

4.4.2. TRT dataset—We computed the intra-session coefficient of variation 

CV s = σs
x × 100

where the standard deviation of intra-session measurements, 

σs = ∑i
m xi

′ − xi
′′ 2/2m

, is based on differences between 

m
pairs of back-to-back measurements (Maclaren et al., 2014). The total coefficient of 

variation, 

CV t

, was computed using the standard deviation across all measurements. Table 6 shows the 

comparison between the intra-session and total variation of volumetric measurements of 

subcortical structures obtained using our method and FreeSurfer. The volumetric 

measurements generated using our method have less variation between scans and days.

5. Discussion

In this study, We proposed a new strategy for whole-brain segmentation, in which a CNN 

is first trained on both the left and horizontally flipped right hemispheres rather than 

smaller patches. A hemisphere can be considered as a very large patch that contains all 

the structures to be segmented. This provides an important context for the segmentation 

task and simplifies the sampling process for network training. A patch-based CNN requires 

a more sophisticated sampling strategy that accounts for the presence of brain structures 

in each patch. The localization network can therefore be considered as part of a sampling 

strategy. Additionally, using a hemisphere as the input patch allows us to more efficiently 

learn representations and manage memory usage. We can use the same representations for 

both hemispheres by simply performing a left-right flip on one of the hemispheres. In 

other words, our segmentation network does not need to learn separate filters and generate 

separate labels for the left and right parts of each structure. The predicted segmentations can 

be affixed with left and right annotations based on which bounding box was used. Since each 

hemisphere is considered as an independent sample, this strategy also allows us to double 

the number of training samples.
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Our method shows high accuracy in generating FreeSurfer segmentations as shown in 

Section 4.2.1. However, it is difficult to directly compare our method with other CNN 

approaches due to differences in the selection of training data, testing data and brain 

structures. The experiment most closely related ours, McClure et al. (2018), trained 

a patch-based CNN (323 patches) on a very large dataset (N = 11,148) to generate 

FreeSurfer-based segmentations of 49 brain structures. They achieved a DSC of 0.78 on 

a held-out test data and a DSC of 0.73 on an independent test data. Our network, which 

obtained DSC of 0.836 on both the held-out test data and independent MIRIAD data, 

outperformed their CNN. In comparing our segmentations with manual segmentations, we 

have demonstrated that our network’s subcortical segmentation performance is comparable 

to other CNN-based approaches. On intra-session scans, our method showed consistent 

volumetric measurements.

In addition to the improvement in terms of accuracy, the proposed method also showed 

improvement in computational complexity and reduction in the inference time. In terms 

of computational complexity, the light-weight hemisphere localization network is able to 

reduce the input image dimension to half of the original size. Furthermore, the proposed 

framework is able to drastically reduce the whole brain segmentation time from FreeSurfer’s 

over 24 hours to the level of seconds. In addition, compared to the other CNN-based whole 

brain segmentation using multi-view 2D slices as input and using sliding windows during 

inference(Roy et al., 2019; Henschel et al., 2020), the proposed hemisphere-based 3D-CNN 

segmentation is able to achieve further speedup the segmentation at given that only two 

forward passes are necessary to perform inference on each volume.

5.1. Limitations and future work

We note that our method performed better on images with similar acquisition parameters as 

the training data. To generalize better to unseen data, our network needs to be more robust 

to intensity, contrast and scanner variations. We used minimal pre-processing, augmentation, 

and post-processing techniques in our experiments. Pre-processing techniques such as 

intensity, contrast and spatial normalization are often performed to provide segmentation 

algorithms with consistent input images. Alternatively, augmentation strategies such as 

alteration of the intensity and contrast in training images can be employed to expose our 

segmentation network to a wider range of images. A recent study showed that augmenting 

the contrast in training images can improve the robustness of segmentation networks (Jog 

et al., 2019). This augmentation scheme uses altered versions of training images to simulate 

various acquisition protocols. A network trained on voxel-wise cross-entropy loss and soft 

Dice loss does not actually learn inter-class relationship, and it does not account for the 

topological interactions of different structures. This may lead to implausible classifications. 

Various studies have used fully connected conditional random fields while post-processing 

their results to formulate constraints among voxels and penalize implausible connections 

among voxel pairs (Wachinger et al., 2018; Kamnitsas et al., 2017; Chen et al., 2014). Some 

of these techniques can improve our network’s robustness and performance.

Finally, in this study, we have tested the robustness of the proposed whole brain 

segmentation through extensive independent validation of the proposed methods using 
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multiple independent dataset, including CANDI, IBSR, and MICCAI2012. To translate the 

proposed machine-learning-based method into a real clinical situation, further extensive 

clinical evaluations with perspective studies on independent real clinical institutional 

datasets are necessary (Ma et al., 2021). The clinical generalizability of the proposed 

model could potentially be further improved by incorporating more divesed dataset collected 

from multiple sites with different clinical situations. On the other hand, challenges are 

still needed to be resolved. For example, additional manual ground truth data would 

be expensive to generate, even through semi-automatic procedures using the constantly 

evolving segmentation model. And the constrain of limited capability of sharing privacy-

sensitive patient data might need to be overcome through federated learning approaches (Lo 

et al., 2021).

6. Conclusions

We have presented a CNN-based segmentation strategy that performs segmentation directly 

on large and semantically meaningful input images. We trained our neural networks to 

localize and segment cerebral hemispheres. Through various experiments, our network 

demonstrated high accuracy in generating FreeSurfer-based segmentations, outperformed 

FreeSurfer in subcortical segmentations of the IBSR and MICCAI 2012 datasets, and 

produced consistent volumetric measurements for intra-session scans.
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Figure 1: 
Illustration of our hemisphere-based segmentation pipeline. (a) A sample MRI image. (b) 

The localization network predicts 12 bounding-box parameters for a given image. (c) The 

bounding-box parameters include the coordinates of the center voxel and dimensions of each 

bounding box. (d) Images of both hemispheres are obtained by cropping the original image 

and image of the right hemisphere is horizontally flipped. (e) The segmentation network 

segments each hemisphere into 54 structures. (f) The segmentation generated is affixed with 

left or right label accordingly. (g) The segmentation generated for the right hemisphere is 

horizontally flipped and fused with the segmentation generated for the left hemisphere.
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Figure 2: 
The localization network predicts the coordinates of the center voxel and the width, the 

height, and the depth of the bounding box for each hemisphere. Each block in the figure 

listed the detailed parameters for each network layer. For the convolutional layer (red), 

parameters include: the number of convolutional filters, convolutional kernel size, stride 

number, and dilation sizes; the global average polling layer (green) doesn’t include learnable 

parameters; the fully connected layer have output a total of 12 parameters representing the 

coordination for the two bounding boxes for each given image (6 for each hemisphere).
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Figure 3: 
The architecture of the proposed segmentation network. Each block in the figure listed 

the detailed parameters for the corresponding network layer. Each convolution layer uses a 

kernel size of 3 × 3 × 3, a stride of 1 × 1 × 1 and a dilation factor of 1 unless otherwise 

specified.
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Figure 4: 
Examples of test input images, reference segmentations, and predicted segmentations. 

Reference segmentation refers to FreeSurfer segmentation except for the CANDI, IBSR 

and MICCAI 2012 datasets, in which case it refers to manual segmentation.
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Figure 5: 
Boxplots of SRVD, DSC and HD for 68 cortical structures evaluated on the held-out test 

data. For the SRVD boxplot, a gray line is drawn on the reference point 0. The gray lines in 

the DSC and HD boxplots show the overall mean DSC and HD values across all structures.
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Figure 6: 
Boxplots of SRVD, DSC and HD for 34 subcortical structures evaluated on the held-out test 

data. For the SRVD boxplot, a gray line is drawn on the reference point 0. The gray lines in 

the DSC and HD boxplots show the overall mean DSC and HD values across all structures.
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Figure 7: 
Sample segmentations of the held-out test dataset with the (a) lowest, (b) median and (c) 

highest DSC in bilateral cuneus, entorhinal, pericalcarine, frontal pole and temporal pole.

Yee et al. Page 23

Comput Med Imaging Graph. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Boxplots of SRVD, DSC and HD for 14 subcortical structures evaluated on the CANDI 

dataset. For the SRVD boxplot, a gray line is drawn on the reference point 0. The gray 

lines in the DSC and HD boxplots show the overall mean DSC and HD values across all 

structures.
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Figure 9: 
Sample segmentations of the CANDI dataset with the (a) lowest, (b) median and (c) highest 

DSC for each subcortical region.
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Figure 10: 
Boxplots of SRVD, DSC and HD for 14 subcortical structures evaluated on the IBSR 

dataset. For the SRVD boxplot, a gray line is drawn on the reference point 0. The gray 

lines in the DSC and HD boxplots show the overall mean DSC and HD values across all 

structures.
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Figure 11: 
Sample segmentations of the IBSR dataset with the (a) lowest, (b) median and (c) highest 

DSC for each subcortical region.
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Figure 12: 
Boxplots of SRVD, DSC and HD for 14 subcortical structures evaluated on the MICCAI 

2012 dataset. For the SRVD boxplot, a gray line is drawn on the reference point 0. The gray 

lines in the DSC and HD boxplots show the overall mean DSC and HD values across all 

structures.
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Figure 13: 
Sample segmentations of the MICCAI 2012 dataset with the (a) worst, (b) median and (c) 

best HD values for caudate and DSC values for other structures.
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Figure 14: 
Boxplots of ARVD, DSC and HD for 102 structures evaluated on the MIRIAD dataset. The 

ARVD boxplot shows the variability of volumetric measurements across back-to-back scans. 

The gray lines in the DSC and HD boxplots show the overall mean DSC and HD values 

across all structures.
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