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Abstract

Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a 

high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or 

refractory AML has increased therapeutic resistance and poor long-term survival. In recent 

years, advancements in the mechanistic understanding of leukemogenesis has allowed for 

the development of targeted therapies. These therapies offer novel alternatives to intensive 

chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a 

significant portion of patients do not respond to these therapies and relapse occurs in most patients 

who initially responded. This review will focus on the mechanisms of resistance to targeted 

therapies in relapsed or refractory AML.
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Proposed mechanisms of relapse and resistance following targeted therapies in AML. Figure 

created with biorender.com.

Introduction

Acute myeloid leukemia (AML) is an aggressive clonal disease of hematopoietic stem 

and progenitor cells. Historically, treatment has focused on induction with intensive 

chemotherapy followed by consolidation with chemotherapy or allogeneic hematopoietic 

cell transplant. Despite intensive therapy, approximately 10–40% of patients have primary 

refractory disease and relapse remains the primary cause of long term treatment failure1,2. In 

patients who relapse, the five-year overall survival (OS) rates are estimated around 10%2,3. 

Relapsed and refractory AML therefore remains a central problem for improving outcomes 

in the treatment of AML.

The mechanisms of leukemogenesis and disease relapse have been an intense area of study 

over the last several decades. Leukemic stem cells (LSC) are a population of cells that retain 

transcriptional and molecular features of hematopoietic stem and progenitor cells with the 

ability to regenerate leukemic cells4–7. Historically, these cells have been associated with 

increased therapeutic resistance and relapse4,5,8,9. Mechanistic studies suggest that clonal 

evolution of pre-leukemic stem cells or a dominant LSC population can occur through 

acquisition of additional mutations or dysregulated cellular processes, which provide a 

survival advantage and molecular basis for relapse4–6,10.

Advancements in mechanistic studies of leukemogenesis have allowed for the development 

of targeted therapies, which has improved survival in relapsed and refractory AML. 

Unfortunately, despite these advancements, long-term survival after targeted therapy remains 

poor with refractory disease in at least one fourth of patients and eventual relapse in most 

cases. This review will discuss our current understanding of the mechanisms of resistance to 

targeted therapies in relapsed or refractory AML.

FMS-Like Tyrosine Kinase 3

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that has been implicated 

in signaling pathways for hematopoietic stem cell (HSC) differentiation, cell survival and 

proliferation11. FLT3 mutations arise from internal tandem duplications (ITD) or point 

mutations in the tyrosine kinase domain (TKD)12. FLT3 mutations are estimated to occur 

in approximately 30% of de novo AML cases, but at relapse, can be acquired or lost 

in approximately 20% of cases11,13,14. FLT3 ITD and TKD mutations lead to increased 

FLT3 tyrosine kinase activity and activation of downstream signaling pathways mediated by 

phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) as well as 

direct phosphorylation of transcription factor STAT5, which provides a survival advantage 

and contributes to leukemogenesis12,15 (figure 1a). Several tyrosine kinase inhibitors 

(TKI) have been developed and tested in clinical trials as induction, consolidation, and 

maintenance therapy12,16,17. As monotherapy in relapsed or refractory AML, first generation 

inhibitors midostaurin and sorafenib have limited response11,12 while second generation 

inhibitors gilteritinib, crenolanib, and quizartinib have greater activity11,18,19(table 1 and 
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figure 1b). Gilteritinib increased median overall survival to 9.3 months compared to 5.6 

months with salvage chemotherapy in a randomized phase 3 trial in patients with relapsed 

or refractory FLT3-mutated AML and received FDA approval in this setting18. Despite these 

advances, approximately one fourth of patients had no response to gilteritinib treatment and 

the median duration of response remains less than one year in responders.

Mutational Evolution

The acquisition of clones with additional mutations has been proposed as a mechanism of 

resistance in targeted therapy. Initial studies found that TKI monotherapy is more effective 

in relapsed AML or in samples with a high allelic burden, suggesting that selection of clones 

with a FLT3 driver mutation and total clonal heterogeneity plays a role in responsiveness to 

TKI monotherapy20. Initially, there was concern that acquisition of secondary FLT3-TKD 

mutations could drive relapse, especially in patients treated with type II inhibitors which can 

have decreased activity against constitutively active TKD mutations21–25. A retrospective 

analysis comparing targeted next generation sequencing (NGS) panels at relapse in patients 

treated with type I versus type II TKIs identified the emergence of secondary FLT3D835 

mutations in approximately 30% of patients treated with type II inhibitors, but not patients 

treated with type I inhibitors26. Additional secondary mutations at FLT3N676, FLT3F691, or 

FLT3N841 have been reported in approximately 1–12% patients following treatment with 

both type I and type II inhibitors26–29. While the acquisition of secondary FLT3 mutations 

represents a possible mechanism of resistance to TKI therapy, they appear less common with 

type I inhibitors and in some cases may be present but may not act as the driver mutation 

associated with relapse27.

Selection of clones with activating mutations of RAS/MAPK signaling pathway is 

frequently observed at disease progression in patients who received frontline TKI 

combination therapy27 or monotherapy for relapsed/refractory AML26,28,30. A recent study 

comparing NGS panels pre- and post-gilteritinib treatment in relapsed/refractory AML 

found that activation of the RAS/MAPK pathway was present in 15/41 (36.6%) patients 

at disease progression28. Mutations in NRAS, KRAS, PTPN11, CBL and BRAF have been 

reported in resistant cells in patients with relapsed or refractory AML treated with either 

type I or type II inhibitors26,28,31 and following induction therapy with midostaurin in 

combination with chemotherapy in de novo AML (figure 1c)27. These studies suggest that 

the RAS/MAPK pathway provides a survival advantage in the presence of TKI therapy and 

RAS-driven clonal evolution at relapse or progressive disease can occur independent of TKI 

type or initial mutational status.

While secondary FLT3-TKD and RAS/MAPK pathway mutations account for about 39–

49% of mutations in resistant samples to FLT3 inhibitors26,28, alternative mutations have 

been identified in retrospective NGS analysis of paired patient samples at relapse. Mutations 

in WT1, CEBPA, IDH1/2, RUNX1, TET2, GATA2, TP53, chromatin-cohesion/splicing have 

been identified in a smaller percentage of relapsed or refractory diseases (figure 1c)26–28. 

Rare mutations resulting in BCR-ABL1 fusion have been identified in resistant cases of 

relapsed/refractory disease treated with TKI28,32. These analyses highlight the heterogeneity 

of mutations that may lead to treatment resistance.

Kropp and Li Page 3

Exp Hematol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dysregulation of Signaling Pathways and Gene Expression

In addition to somatic mutations that activate downstream signaling of FLT3, mechanistic 

studies revealed that dysregulation of MAPK and STAT5 can contribute to cell survival 

and TKI resistance (figure 1d). An in vitro CRISPR mutagenesis screen observed that loss 

of function mutations in SPRY3 and GSK3 led to drug resistance through downstream 

activation of RAS/MAPK and increased WNT signaling33. Activation of alternative 

signaling pathways mediated by AXL34 and SYK35 are associated with resistance to 

TKI in FLT3-ITD mutated cells. Increased cyclin D3 expression was identified in a 

subset of FLT3-ITD mutated AML patient samples which is associated with enhanced 

proliferation in the presence of TKI36. Additionally, upregulation of anti-apoptotic genes 

MCL-137, BCL-xL38, BCL2A139 and PIM-140,41 has been associated with resistance in pre-

clinical models. Upregulation of BCL-xL and RAD51 are associated with hyperactivation 

of STAT5 and TKI resistance in FLT3 dual ITD-TKD mutated in vitro cell models38. 

Resistance from increased anti-apoptotic protein expression can be reversed by co-treatment 

with rapamycin or BH3 mimetic inhibitors38,42. Alternatively, combination therapy with 

inhibitors of the MAPK pathway39 or targeting STAT5 activation43,44 have been proposed in 

pre-clinical studies to overcome activation of downstream pathways that provide a survival 

advantage and therapeutic resistance to TKIs. These studies suggest a complex relationship 

between dysregulated gene expression and modulation of downstream signaling pathways 

that control cell proliferation, apoptosis, and differentiation, which ultimately can induce 

resistance to TKI therapy.

FLT3-ITD mutated protein may alter protein homeostasis in leukemic cell lines as it is 

retained in the endoplasmic reticulum in a hypoglycosylated form where it associates 

with chaperones including HSP90 and calnexin41. This process is associated with aberrant 

STAT5 activation and increased PIM-1 expression. Mechanistic studies suggest that PIM-1 

phosphorylates FLT3-ITD, which stabilizes the protein and induces a positive feedback loop. 

Inhibition of glycosylation or PIM-1 alters downstream signaling pathways and increases 

sensitivity to TKI treatment40. These studies raise the interesting hypothesis that protein 

quality control systems in endoplasmic reticulum may play an important role in modulating 

the activity of mutant oncoproteins and impact the response to targeted therapies.

Chemokine and cytokine signaling mediated by the leukemic microenvironment have also 

been implicated in TKI resistance. Granulocyte-macrophage colony-stimulating factor (GM-

CSF) and interleukin-3 (IL-3) restore colony formation, viability and proliferation in FLT3 

mutated cells treated with crenolanib, an effect dependent on the activation of STAT5 and 

PIM-145. Exogenous FLT3 ligand and stromal cells have been shown to decrease sensitivity 

to TKI in vitro through increased cytokine signaling and persistent activation of ERK46. 

Increased levels of fibroblast growth factor (FGF) are observed in samples of AML patients 

following initiation of therapy47 and addition of FGF1 induces resistance to TKI therapy in 
vitro while FGF inhibition sensitizes cells33. Enhanced CXCL12-CXCR4 has been shown to 

induce leukemic cell migration with TKI resistance with aberrant expression of ROCK1 and 

altered chemotaxis48.

While metabolic alterations have been extensively studied in AML and chemotherapy 

response49–51, there are limited studies in relapsed or refractory disease after TKI 
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treatment. Sorafenib resistant AML cell lines have decreased oxidative phosphorylation and 

increased expression of glycolytic enzymes with enhanced glucose uptake52. Treatment with 

glycolytic inhibitors increases sensitivity to sorafenib and induces cell death in resistant 

cells, suggesting that metabolic regulation may represent another target for novel therapies 

in treatment resistance49,52,53.

Many of these mechanistic findings have been described with in vitro cell models or cultured 

patient samples, which requires further validation with in vivo models. However, these 

studies begin to suggest a complex network in which resistance to FLT3 inhibition may 

be a consequence of altered gene expression, activated signaling pathways, dysregulated 

proteostasis, microenvironmental factors and metabolic reprogramming. Modulation of these 

pathways in concert with TKI treatment may increase sensitivity in vitro but further study is 

required to evaluate their therapeutic potential.

Isocitrate Dehydrogenase 1/2

IDH1 and IDH2 mutations were identified with DNA sequencing in AML samples and are 

estimated to occur in up to 15–30% of cases54,55. Mechanistic studies in IDH1/2 mutated 

leukemic cells identified the pathogenesis occurs through the production of oncometabolite 

2-hydroxyglutarate (2-HG), which leads to TET inhibition, histone hypermethylation, 

and impaired hematopoietic differentiation55–57. IDH1 inhibitor ivosidenib received FDA 

approval based on phase 1/dose expansion study in 125 patients with IDH1 mutated relapsed 

or refractory AML which reported a composite response with complete remission with full 

(CR) or partial hematologic response (CRi) of 30.4% and median duration of remission 

lasting 8.2 months58 (table 1). IDH2 inhibitor enasidenib received FDA approval for use in 

relapsed IDH2 mutated AML based on a phase 1/2 study which reported an overall response 

rate (ORR) of 40.3% (CI 29.4–48.3) with median response duration of 5.8 months59 (table 

1). Resistance to both IDH1 and IDH2 inhibitors have been reported.

Resistance to IDH1 Inhibitors

Mutational analysis by NGS of samples from 101 patients with IDH1-mutated relapsed or 

refractory AML treated with ivosidenib found that baseline mutations in receptor tyrosine 

kinases, NRAS, KRAS, PTPN11, KIT are associated with a lower likelihood of achieving 

a complete response60,61. De novo RAS/MAPK and FLT3 mutations were identified at 

relapse, which suggests acquisition of additional mutations or expansion of a rare sub-clone 

that was below the limits of detection at diagnosis60,61. Secondary IDH1/2 mutations were 

another common driver mutation detected at relapse. IDH1S280F was initially identified in a 

case study of ivosidenib resistance and is predicted to sterically hinder ivosidenib binding 

to IDH162. Since this study, 5 additional IDH1 mutations have been identified, all of which 

are predicted to alter drug/cofactor binding or lead to conformational change in active 

sites60. Second site IDH1 mutations were present in 17/74 and de novo IDH2 mutations 

were present in 9/74 samples60. The presence of these mutations was associated with an 

increase in 2-HG in 15/16 available samples60. While activation of RAS/MAPK pathway 

or secondary IDH1/2 mutations have been implicated in the development of resistance with 

ivosidenib, single cell DNA sequencing revealed significant clonal heterogeneity at relapse 
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with multiple clonotypes carrying different mutations60. These findings suggest again that 

relapse may be attributed to expansion of heterogenous clones.

Resistance to IDH2 Inhibitors

Mutational analysis with NGS in patients treated with enasidenib for relapsed and refractory 

AML identified FLT3 and NRAS mutations in primary refractory disease. Capture-based 

NGS studies found that co-occurring mutations known to activate RAS signaling led 

to decreased response rate and were associated with a higher mutational burden61,63. 

In addition, SRSF2, DNMT3A, ASLX1, RUNX1 and BCOR were also associated with 

non-response61,63,64. At relapse, a retrospective cohort analysis found 2-HG remained 

suppressed in 14/16 patients65. NGS mutational analysis found clonal evolution with new 

mutations including CSF3R, FLT3, U2AF1, NFKB1, RUNX1, BCROL1, BCL11A and 

GATA2 in these patients. In the two patients with rising 2-HG levels, an IDH1 mutation 

was detected65. Furthermore, secondary IDH2 mutations IDH2Q316E and IDH2I319M have 

been reported at hematologic progression65,66. In these cases, second site mutations in IDH2 
allele emerged in a clone without the initial IDH2R140Q mutations66. Structural modeling 

predicted decreased binding of enasidenib to these mutant IDH2 proteins. Similar to IDH1, 

resistance to IDH2 may be mediated through secondary IDH1/2 mutations in a subset 

of patients, although a majority may occur through clonal evolution and activation of 

alternative signaling pathways.

Evaluation of cytosine methylation profiling and RNA sequencing in a longitudinal 

cohort analysis from 60 IDH1 or IDH2 mutated patient samples reports that differential 

regulation of genes associated with hematopoietic differentiation and increased stemness 

are present in relapsed or refractory disease61. This suggests that acquisition of stem cell 

features may drive resistance to IDH1/2 directed therapies. Stuni et al report increased 

oxidative phosphorylation and fatty acid beta oxidation in IDH1/2 mutated leukemic cells67, 

suggesting that metabolic compensation and altered mitochondrial regulation can mediate 

resistance, which may be abrogated by cotreatment with mitochondrial inhibitors. These 

studies provide a strong foundation for further mechanistic studies to understand how 

relapse after targeted therapy modulates downstream cellular process and provides a basis 

for potential clinical trials with novel targets or therapeutic combinations to overcome 

resistance.

B-Cell Lymphoma 2 (BCL-2)

Apoptosis is a carefully regulated process with a balance between pro-apoptotic proteins 

(BAX, BAK,) and anti-apoptotic proteins (BCL-2, BCl-xL, MCL-1). These proteins form 

a tight regulatory network which ultimately control cytochrome C release and oligomeric 

pore formation, two essential processes for initiating apoptosis. BCL-2 overexpression has 

been implicated in impaired apoptosis and increased survival of LSCs68,69. An BCL-2 

inhibitor, venetoclax which tips the balance toward pro-apoptotic proteins (figure 2A), 

was recently FDA approved for treatment of newly diagnosed AML in patient ineligible 

for intensive induction or over 75 years old. It was initially tested as a single agent in 

a phase 2 study in relapsed/refractory AML which reported a composite response rate 
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(CR or CRi) of 19%70. Improved composite responses were noted when combined with 

a hypomethylating agent (HMA) (CR or CRi 64.7–84%) or low dose cytarabine (LDAC) 

(CR or CRi 48%) for frontline induction therapy in patients not eligible for intensive 

chemotherapy71–73, which has since been applied in relapsed or refractory disease. Survival 

data from several retrospective analysis for venetoclax with HMA or LDAC in relapsed or 

refractory AML report median overall survival of 3–7.8 months with composite response 

rate of approximately 21–51%, which suggests worse outcomes when used in the relapsed 

or refractory setting73–79 (table 1). Retrospective analysis of 41 patients found median 

overall survival was limited to 2.4 months in patients with primary refractory or relapsed 

disease following frontline venetoclax and HMA therapy80. While combination therapy with 

venetoclax offers an effective frontline therapy in patients not eligible for intensive therapy, 

poor outcomes after progression and decreased efficacy in relapsed and refractory disease 

remain a significant concern.

Mutational Evolution

Retrospective analysis of paired samples from 81 patients treated with venetoclax and HMA 

or LDAC as front line therapies identified mutations associated with durable remission 

or refractory/relapsed disease81. Durable remission is associated with baseline NPM1, 

DNMT3A, IDH1, and IDH2 mutations. Primary resistance correlates with TP53, RUNX1 
and signaling mutations including FLT3, RAS, MPL and PTPN11. At relapse, FLT3-ITD 
and TP53 mutations are most frequently identified. A retrospective analysis in 86 patients 

with relapsed or refractory AML treated with venetoclax plus HMA or LDAC reports 

similar associations with treatment response75. At relapse, novel mutations in NRAS, FLT3, 

ASXL1, BCOR, TET2 and DNMT3A were identified. These findings support the notion 

that treatment resistance and relapse is associated with mutations that activate alternative 

signaling pathways, regulate differentiation, or overcome pro-apoptotic signaling.

Dysregulation of Gene Expression

Several studies have reported that venetoclax sensitivity can be hindered by utilization of 

other anti-apoptotic proteins (figure 2B). Retrospective review of patients with relapsed and 

refractory AML treated with venetoclax therapy found that BCL-2 sensitive protein index 

correlates with a longer duration of therapy, whereas dependence on other anti-apoptotic 

proteins such as BCL-xL or MCL1 had a negative correlation with therapy duration70. 

Studies from in vivo PDX models from samples resistant to venetoclax showed that 

resistance can emerge by displacing BIM to MCL-1 leading to survival dependency on 

MCL-1 instead of BCL-282. High levels of MCL-1 or phosphorylated BCL-2 can result in 

BAX displacement from pBCL-2 and BCL-xL leading to treatment resistance83. A genome 

wide CRISPR/Cas9 in vitro screen reported that deletion of pro-apoptotic BAX, TP53 

and MAIP1 proteins led to resistance whereas knockout of anti-apoptotic proteins MDM2 

and MCL1 sensitized cells to venetoclax84,85. Resistance mediated by TP53 knockout 

correlated with protection from mitochondrial stress and altered metabolic properties85. 

Similarly, inhibiting BCL-2 phosphorylation or decreasing MCL-1 and BCL-xL levels 

sensitizes cells to venetoclax treatment69. While studies have shown modulating activity 

or expression of regulatory proteins for apoptosis can lead to venetoclax resistance, others 

report variable expression of these proteins in resistant cells raising the possibility for other 
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mechanisms of escape independent of apoptosis regulatory pathways84. Clinical trials with 

novel combination therapies including MCL-1 inhibitors are ongoing, which may mitigate 

resistance and relapse with venetoclax therapies87.

Metabolic and Mitochondrial Regulation

Preliminary studies reported metabolism is dysregulated in LSCs with a high dependence 

of oxidative phosphorylation but have relatively lower basal metabolic rate as compared to 

the leukemic bulk88. Venetoclax and azacitidine treatment decreases amino acid uptake 

and oxidative phosphorylation in patient derived LSCs, suggesting downstream effects 

on metabolism contribute to cellular toxicity88,89. Decreased oxidative phosphorylation 

is circumvented in resistant LSCs by increasing fatty acid metabolism, which provides 

alternative substrate for the TCA cycle89–91. Knockdown of acyl-CoA dehydrogenase 

restores venetoclax sensitivity in resistant LSCs92. In addition to altered amino acid 

metabolism, metabolomic analysis of 6 paired patient samples with venetoclax resistance 

found increased nicotinamide in resistant LSCs93. Treatment of cells with nicotinamide, 

a precursor required for nicotinamide adenine dinucleotide (NAD+) synthesis, negated 

the cytotoxic effect of venetoclax plus azacitidine. These effects could be reversed by 

limiting NAD+ synthesis with an inhibitor of nicotinamide phosphoribosyltransferase 

(NAMPT), which decreased LSC engraftment and oxidative phosphorylation. Similarly, 

TP53 insufficiency induces venetoclax resistance and increases mitochondrial oxidation with 

altered levels of amino acids and intermediates in glycolysis, pentose phosphate pathway, 

nucleotide synthesis and the urea cycle85. These studies suggest that restoration of oxidative 

phosphorylation either through increasing fatty acid metabolism, altered NAD+ synthesis, or 

utilization of alternative metabolic pathways can mediate resistance to venetoclax therapy 

(figure 2C).

Venetoclax has been reported to cause abnormal mitochondrial ultrastructure with lower 

numbers of cristae, increased cristae lumen width and loss of TMRM staining84. There is 

also a loss of long optic atrophy 1 (OPA1) forms suggestive of increased proteolysis, which 

allows for opening of cristae junctions and cytochrome c redistribution for caspase activation 

and induction of apoptosis. Resistant clones have a higher number of cristae with tighter 

cristae morphology and increase in OPA1 expression, all of which can be protective against 

apoptosis. RNA sequencing analysis in resistant cells identified differential expression of 

genes involved in mitochondrial membrane organization, potential and depolarization84. 

Single guide RNA targeting identified genes involved in mitochondrial transcription, such as 

DAP3, MRPL54, MRPL17, RBFA are associated with venetoclax resistance89. Cotreatment 

with tedizolid, an inhibitor of mitochondrial translation, increases sensitivity to venetoclax. 

These studies indicate modulation of mitochondrial structure and function may provide a 

survival advantage and lead to resistance to venetoclax therapies.

Cellular Heterogeneity: A Challenge to Targeted Therapies

There is growing evidence that treatment resistance and relapse in AML can occur 

through heterogenous mechanisms of clonal evolution94–97. Recent large scale single cell 

DNA sequencing on 123 AML patients found that branching clonal evolution occurs in 
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approximately 45% of cases and in some cases convergent evolution can lead to multiple 

subclones with leukemia initiating capabilities95. This likely reflects recent reports in 

which several scenarios for clonal expansion at disease progression have been observed. 

In refractory disease, the primary clone with a driver mutation may respond to targeted 

therapy, but disease progression is associated with the outgrowth of subclones carrying 

treatment resistant mutations (RAS/MAPK/FLT3)27,95. However, in other cases, persistent 

and continued outgrowth of the primary clone with or without resistant co-mutations 

is thought to cause disease progression27. These instances cannot always be identified 

with bulk NGS alone, highlighting the need for single cell analysis to dissect the clonal 

architecture and evolution during disease progression.

At relapse, several scenarios of clonal expansion have been reported. Analysis of clonal 

evolution at relapse in FLT3-ITD AML patients treated with frontline midostaurin found 

persistence and expansion of the original clone, loss of the original FLT3-ITD clone with 

expansion of subclones with different mutational profiles, or persistence of FLT3-ITD 

clone with novel co-occurring mutations27. Multiple instances of polyclonal expansion at 

relapse have been reported in venetoclax combination therapy, FLT3, and IDH1 directed 

therapies25,27,60,61,65,75,81. In one case, polyclonal relapse after frontline venetoclax therapy 

was associated with clones carrying 6 different activating receptor kinase or RAS mutations 

(FLT3-ITD, FLT3N676K, FLT3D835H, NRASG12A, NRASQ61K, NRASG13R)81. Additional 

genetic alterations have been noted with single cell sequencing following quizartinib 

treatment in FLT3-ITD disease, which reported a high degree of heterogeneity within the 

FLT3 locus, approximately 3–7 new coding mutations by whole exome sequencing and 

cytogenetic changes in one out of four patients25. Alternatively, loss of heterozygosity of 

FLT3-ITD was associated with amplification of FLT3-ITD signaling, which may provide a 

survival advantage for clonal expansion95. This suggests that genomic alterations may be 

more complex within individual clones and highlights the importance of single cell analysis 

and cytogenetic microarray at relapse94,98. Expanding these genomic studies to a broader 

patient population may allow for a better understanding of clonal hierarchy. Further studies 

are required to test whether defining clonal hierarchy in AML patients can predict treatment 

response or provide prognostication at relapse. Given the concern for polyclonal expansion 

and heterogenous mutations at relapse, developing therapies directed towards commonly 

shared downstream signaling pathways or unique features of LSCs may have a broader 

therapeutic potential.

RAS Mutations: A Common Mechanism of Treatment Resistance

RAS genes encode a group of signaling GTPase proteins that regulate pathways implicated 

in cell survival, proliferation, and differentiation. RAS proteins are recruited to activated 

receptor tyrosine kinases and serve to transduce signals to downstream mediators including 

the MAPK and PI3K/AKT/mTOR pathways99. RAS mutations at codon 12, 13, and 61 

lead to decreased b inactivation due to defective intrinsic GTPase activity and impaired 

responsiveness to GTPase activating proteins (GAP), which results in activation of 

downstream signaling pathways99. Although recent meta-analysis and cohort studies suggest 

limited prognostic value of RAS mutations for de novo AML in adults, the frequent 

identification of RAS/MAPK mutations in relapsed/refractory AML highlights the need 
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to better understand the mechanisms by which RAS mediate leukemogenesis and treatment 

resistance100–102.

As described above, despite different cellular targets for FLT3, IDH1/2, and BCL-2 

directed therapies, RAS/MAPK mutations represent a common pathway of resistance. The 

mechanism by which RAS/MAPK mutations provide a survival advantage and treatment 

resistance remains unclear and is an active area of study. Initial studies characterizing 

NRAS in treatment resistance to targeted therapies implicate activation of MAPK or PI3K, 

the canonical RAS effector pathways103,104. NRAS mutated cell lines display gilteritinib 

resistance with sustained ERK phosphorylation, cell growth and decreased apoptosis 

despite continued STAT5 and AKT suppression28. Trametinib, a MEK inhibitor, abrogated 

resistance to gilteritinib in vitro28. In vitro screens in cell lines identified that RAF1, SOC2 

and PREX1 are required for MAPK activation in RAS mutated cells105. Given implications 

of MAPK pathway mediated signaling in RAS activating mutations, several studies have 

tested RAF and MEK inhibitors alone or as combination therapy in both pre-clinical models 

and phase 1/2 clinical trials103,106–109.

While a clear association of RAS activating mutations with disease resistance and relapse 

has been reported; it is unclear if this association will result in shared mechanism by which 

RAS promotes a survival advantage and clonal expansion in LSCs. Since evidence suggests 

FLT3 mutations transform cells by activating RAS/MAPK signaling, RAS activating 

mutations are believed to render resistance by activating downstream signaling to bypass 

FLT3 inhibition. Other reports, however, suggest alterative mechanisms by activation of non-

canonical signaling or alteration of oxidative stress and mitochondrial programs. AML cell 

lines harboring a PTPN11 mutation were resistant to venetoclax and azacitidine treatment 

In vitro, which was in part mediated through increased oxidative phosphorlyation92. These 

protective effects can be ameliorated through MCL1 inhibition, suggesting that hyperactive 

RAS signaling may promote survival benefit and treatment resistance via modulating 

oxidative stress and mitochondrial programs.

The importance of hyperactive RAS signaling in leukemogenesis and treatment response has 

been recapitulated in mouse models. Hyperactive Nras or Kras mutations have been shown 

to induce development of myeloproliferative neoplasms, HSC proliferation and competitive 

advantage in mouse models109–113. Mice harboring Ras mutations alone typically develop 

myeloproliferative disorders reminiscent of human juvenile or chronic myelomonocytic 

leukemia (JMML or CMML), however, the presence of co-mutations promoted the 

development of AML114–120, which suggests Ras mutations may act cooperatively with 

other mutations in AML development.

Using these mouse models, our recent studies showed that NrasG12D confers a survival 

benefit to HSCs and progenitors following metabolic and genotoxic stress121. This effect 

was not affected by inhibition of the canonical RAS effectors, such as MEK and PI3K. 

Inhibition of the non-canonical RAS effector pathway protein kinase C (PKC) however, 

ameliorated the protective effects of NRASG12D. Mechanistically, N-RasG12D lowers levels 

of reactive oxygen species (ROS), mitochondrial membrane potential and ATP levels. 

Inhibition of PKC, importantly, restored the levels of ROS and abrogated the protective 
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effects granted by N-RasG12D. Interestingly, a recent study showed that hyperactive Ras 

signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis122. 

Studies in KrasG12D knock-in mouse models have implicated NOTCH signaling and 

increased oxidative phosphorylation in development of MPN, which was abrogated by 

induction of DUSP, a phosphatase that inactivates MEK/ERK pathway123. Collectively, 

these studies suggest resistance may be mediated by activation of non-canonical Ras 

signaling pathways, altered mitochondrial regulation and dysregulated cellular metabolism. 

Further studies are required to establish the pathogenic and mechanistic role of RAS in 

refractory and relapsed AML treated with targeted therapy, which may be instrumental in 

identifying novel therapeutic targets to overcome treatment resistance.

Conclusion

The development of targeted therapies has increased therapeutic options and offers 

survival benefit in relapsed/refractory AML. Despite these advances, primary resistance 

and relapse remain a major barrier to long-term survival. Mutational analysis has provided 

insight into common pathways associated with resistance and mechanistic studies have 

started to characterize how modulation of signaling pathways, metabolism, proteostasis, 

and mitochondrial regulation contribute to treatment resistance and provide a survival 

advantage in leukemic stem cells. Among these, RAS activating mutations have emerged 

as a commonly shared mechanism of resistance to targeted therapies. Although it 

remains unclear how hyperactive RAS signaling provides resistance and whether common 

downstream pathways are induced in refractory cases after therapies targeting FLT3, IDH 

and BCL-2, both canonical and non-canonical RAS pathways are likely involved. Future 

studies are required to characterize the signaling and cellular processes altered by the 

RAS pathways and to guide strategies to overcome the diverse mechanisms of resistance. 

Given the clonal diversity of relapsed refractory AML, combination therapies targeting 

downstream signaling pathways, anti-apoptotic proteins, or metabolic regulation in LSCs 

may have a broader impact on treating the disease rather than targeting driver mutations 

individually. Several clinical trials have started to test this approach, which may help to 

provide improved response and survival in relapsed and refractory AML12,55,124.
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Figure 1: 
Mechanisms of Resistance to tyrosine kinase inhibitors in FLT3 mutated AML. A. Altered 

signaling in previously untreated newly diagnosed or relapsed AML with mutated FLT3. 

B. Decreased FLT3 mediated signaling and induction of apoptosis with tyrosine kinase 

inhibitor treatment in sensitive cells carrying FLT3 mutations. C. Mutations associated 

with resistance in relapsed refractory FLT3 mutated AML treated with tyrosine kinase 

inhibitors. Star indicates reported mutations. D. Altered cellular regulatory processes that 

allow for improved survival in treatment resistant cell lines or relapsed or refractory AML 

samples. Increased survival can be mediated through upregulation of alternative cell surface 

receptors or ligand-mediated signaling (1), expression of anti-apoptotic proteins (2), and 

STAT5 activation by mutated FLT3 in the endoplasmic reticulum (ER) (3).

Kropp and Li Page 20

Exp Hematol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Mitochondrial regulation relapsed or refractory AML cells. A. Venetoclax inhibits anti-

apoptotic protein BCL-2, which leads to increased cytochrome C release and induction 

of intrinsic apoptosis in sensitive cells. B. In resistant relapsed or refractory AML cells, 

increased expression of anti-apoptotic proteins (MCL1, BCL-xL) leads to a decrease in 

intrinsic apoptosis. C. In relapsed or refractory AML cells resistant to venetoclax, increased 

oxidative phosphorylation can be supported by amino acid uptake, beta oxidation of fatty 

acids, and nicotinamide adenine dinucleotide (NAD+) synthesis.
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