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Abstract

Although it has been more than 2 years since the start of the coronavirus disease 2019 

(COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the 

development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases 

remain a major unmet need in medicine. Our study sought to identify drivers of disease severity 

and mortality to develop tailored immunotherapy strategies to halt disease progression. We 

assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized 

patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and 

survival were associated with a stronger antigen presentation and effector T cell signature. In 

contrast, severe disease and death were associated with an altered antigen presentation signature, 

increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells 

that have been previously associated with autoantibody formation. In severely ill patients with 

COVID-19, lung tissue–resident alveolar macrophages not only were drastically depleted but also 

had an altered antigen presentation signature, which coincided with an influx of inflammatory 

monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar 

macrophage pool correlated with patient outcome and that alveolar macrophage numbers and 

functionality were restored to homeostasis in patients who recovered from COVID-19. These data 

suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and 

modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic 

strategy for the treatment of critical inflammatory lung diseases.

Modulation of macrophages
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Understanding why some individuals develop severe disease after SARS-CoV-2 infection remains 

a high priority. Here, Chen et al. evaluated factors associated with disease severity and survival in 

samples from 600 individuals hospitalized with COVID-19 during 2020. The authors found that 

severe disease and death were associated with altered antigen presentation signatures, as well as a 

distinct macrophage profile in the peripheral blood. They also studied lung macrophages, finding 

that those with severe COVID-19 had increased inflammatory monocytes and monocyte-derived 

macrophage infiltration, with a corresponding decrease in the alveolar macrophage population. 

Together, these data suggest that restoring macrophage homeostasis may be a strategy for treating 

COVID-19.

INTRODUCTION

Although there has been unprecedented success with the concurrent development of multiple 

highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), there remains a critical need to develop additional immune therapies for vulnerable 

populations and severely ill patients. This is particularly true as multiple breakthrough 

variants continue to arise. In addition to coronavirus disease 2019 (COVID-19), there is a 

crucial need to characterize, modulate, and treat pathogenic inflammation associated with 

inflammatory illnesses, especially in older adult populations.

We assembled the Mount Sinai COVID-19 Biobank, which collected longitudinal blood 

samples from patients with COVID-19 (COVID+) and COVID-19–negative (COVID−) 

controls, and investigated local immune dynamics in the lungs of infected patients. A 

total of 583 COVID+ patients who were hospitalized at the Mount Sinai Hospital and 

45 COVID− volunteers from the Mount Sinai community were enrolled into the Mount 

Sinai COVID-19 Biobank. Serum and peripheral blood mononuclear cells (PBMCs) were 

collected from patients on time point 1 (T1), on average 14.8 ± 10.6 days post symptom 

onset (PSO). Samples were assigned time points according to approximately how many days 

after hospitalization the sample was collected (for example, 4 days after hospitalization = 

T4). Severely ill patients, who were hospitalized for greater than 2 weeks, had an additional 

sample collected 7 days later (T13). Severity scoring for each patient sample was assigned 

using clinical criteria designated by Mount Sinai Hospital, which overlapped with the World 

Health Organization clinical progression scale (1).

RESULTS

Proteomic characterization of COVID-19 serum samples reveals distinct immune patterns

To characterize the diversity of immune patterns in COVID+ patients, we measured 92 

different cytokines on 1956 COVID+ and 45 COVID− serum samples using the Olink 

inflammation panel. Instead of solely relying on clinical severity to group patients, we 

performed unsupervised clustering to unbiasedly sort serum samples into 15 different 

cytokine clusters (Fig. 1, A to D, and figs. S1 and S2). The majority of patients had one 

to four time points, which were distributed across all cytokine clusters (fig. S3, A to D). 

We found that the immune patterns were associated with clinical severity and final patient 

outcome, leading us to group them (data files S1 and S2 and table S1). Group 1 consisted 
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of clusters 12 to 15 and was enriched in samples from COVID− controls and patients with 

moderate COVID-19; group 2, which included clusters 6 to 9, was our largest and most 

heterogeneous group but was enriched in severe COVID-19 samples. In particular, clusters 

8 and 9 had increased concentrations of interferon-γ (IFN-γ)–responsive and T helper type 

1 (TH1) activation cytokines [such as IFN-γ; C-X-C motif chemokine ligands 9, 10, and 

11 (CXCL9, CXCL10, and CXCL11); and interleukin-2 (IL-2)] compared to clusters 6 and 

7 (2). Group 3, clusters 1 to 5, was enriched in severe COVID-19 with end organ damage 

(EOD) samples, as well as samples from patients who died from COVID-19.

Our unbiased clustering was not driven by sex, body mass index, or smoking status, but 

age and days PSO at time of sampling were higher in group 3 (fig. S3, E to I). Group 2 

and group 3 patients had higher concentrations of C-reactive protein and D-dimer, indicating 

increased inflammation and hypercoagulability (fig. S3, J and K). Hypertension (HTN) and 

diabetes mellitus (DM) were common comorbidities within our cohort, especially in group 3 

(fig. S3L). Clusters 10 and 11 were highly enriched in patients with chronic kidney disease 

(CKD), HTN, DM, and heart failure, leading us to group them into a distinct CKD group. 

Almost all patients received anticoagulation, and patients in groups 2 and 3 were more 

likely to receive steroids (fig. S3M). With the exception of C-C motif chemokine ligand 

23 (CCL23) at the last collected time points of group 3 patients on enoxaparin, we did not 

observe any differences in cytokine concentrations between group 2 and group 3 patients 

who received steroids, norepinephrine, heparin, or enoxaparin at T1 or later time points (data 

file S3). We also found that many patient samples with similar clinical parameters were 

assigned to different clusters, indicating that clinical severity classification was unable to 

fully capture the diversity of immune patterns in COVID-19.

On the basis of the covariance patterns of the Olink cytokines (fig. S4), we identified 

four protein modules and calculated module scores for each group. The antigen-presenting 

cell (APC) module, which included proteins associated with antigen presentation, dendritic 

cells (DCs), and T cell activation [tumor necrosis factor (TNF)–related apoptosis-inducing 

ligand, TNF-related activation-induced cytokine, IL-12β, FMS-like tyrosine kinase 3 ligand 

(Flt3L), and TNF-β], scored higher in COVID− controls and patients with moderate disease 

(3–5). Next, we identified a core group of four cytokines released by activated monocytes 

and neutrophils, [transforming growth factor–α (TGF-α), hepatocyte growth factor (HGF), 

oncostatin M (OSM), and S100 calcium binding protein A12 (S100A12/EN-RAGE)], which 

were enriched in patients with severe or EOD COVID-19 and grouped them into a myeloid 

activation module. Signaling by these cytokines has been associated with proinflammatory 

cytokine secretion, fibroblast activation, and fibrosis (6–11). The mucosal module, which 

included TH17 and barrier defense cytokines (IL-17A, IL-17C, CCL20, CCL28, and IL-33), 

and the hyperinflammation module, which included inflammatory cytokines (TNF, IL-6, 

IL-8, IL-10, IL-18, CXCL10, and monocyte chemo-attractant protein–3), were enriched in 

patients with severe or EOD disease (12, 13). We grouped these analytes into a mucosal 

module and a hyperinflammation module, respectively.

APC module scores were higher in COVID− controls and group 1 but were reduced in 

groups 2 and 3. In contrast, myeloid activation, mucosal, and hyperinflammation module 

scores were higher in groups 2 and 3 (Fig. 1E). Comparison of module scores by outcome 

Chen et al. Page 4

Sci Transl Med. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



showed that patients who survived had higher APC module scores, whereas patients who 

died had higher myeloid activation, mucosal, and hyperinflammation module scores (Fig. 

1F). Many of these observations held even when we compared only the first time points 

for each patient, suggesting that module scores could be used early on during a patient’s 

hospitalization to predict clinical outcome (fig. S5, A and B). Univariate logistic regression 

analysis showed that Olink grouping, APC module, and myeloid activation module scores 

were good predictors of survival (fig. S5C).

To determine the stability of these cytokine patterns, we performed discrete time Markov 

chain analysis on all COVID+ serum samples to determine the probability of transition 

between clusters across successive samples, irrespective of past or future states (fig. S5D) 

(14). Between time points, group 1 patients had the highest probability of transitioning 

to other group 1 clusters and the highest probability of survival. Group 2 patients also 

had a high probability of transitioning to group 1, clusters 13 to 15, but had an increased 

probability of death compared to group 1. Patients with CKD had about 50% probability of 

survival or death between time points. Group 3 patients rarely transitioned to other clusters 

and had the highest probability of dying.

Our proteomic analyses highlight the heterogeneity of immune states in COVID-19 that 

remained stable over time, despite medical intervention, and the value of using our Olink 

grouping and module scores to predict clinical outcome. The averaged cytokine values 

by cluster were highly correlated not only within groups (fig. S6A) but also across time 

points, further supporting the stability of patient immune states (fig. S6, B and C). The 

heterogeneity revealed by our clustering underscores the limitations of solely using clinical 

severity parameters to stratify patients for treatment. For example, whereas CKD and group 

3 patients would likely benefit from broad immune suppression and targeted therapies like 

IL-6 blockade, these same treatments are unlikely to show the same effect in group 2 

patients and may instead hinder protective antiviral adaptive immune responses. On the other 

hand, all patients would likely benefit from therapies to boost their APC response, such as 

administration of Flt3L, to increase the number of DCs for T cell priming and activation.

Myeloid cell dysregulation underlies COVID-19 severity

We performed cytometry by time of flight (CyTOF) on whole blood samples from 

hospitalized COVID+ patients and COVID− volunteers to measure circulating immune cell 

composition and its association with Olink groups (fig. S7 and data file S4). Consistent with 

prior studies, we found that neutrophils and classical monocytes were increased, whereas all 

DC populations were decreased in more severe disease (Fig. 2, A and B). Grouping patient 

samples by outcome showed that patients who died from COVID-19 had increased numbers 

of neutrophils and decreased total conventional DC (cDC), conventional type 2 DC (DC2), 

and plasmacytoid DC (pDC) (Fig. 2, C and D). CyTOF also showed lymphopenia of CD4 

and CD8 T cell populations in group 2 and group 3 patients (fig. S8, A and B) (15, 16).

To dissect the heterogeneity of circulating immune cells in an unbiased manner, we 

performed single-cell RNA sequencing (scRNAseq) on 81 PBMC samples from 39 COVID+ 

patients and 6 COVID− volunteers (table S2 and data file S5). After downsampling, 

integration, batch correction, and removal of doublet cells, unsupervised clustering revealed 
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discrete subsets of circulating immune cells (Fig. 2E). We identified a cluster of classical 

monocytes that highly expressed RAGE ligands S100A12 (EN-RAGE), S100A8, and 

S100A9 but lowly expressed human leukocyte antigen (HLA) molecules. Low expression of 

HLA and CSF1R with concurrent high expression of granulocyte/monocyte precursor genes 

(such as CSF3R, CEBPB, and CEBPD) indicated that this cluster likely represents immature 

cells arising from granulocyte-monocyte progenitors (17–19). This cluster, which we named 

S100A12hi HLA-DRlo classical monocytes, was found at higher relative frequencies in 

group 3 (Fig. 2F).

We identified three clusters of inflammatory immature monocytes that highly expressed 

S100A12, inflammasome protein NLRP3, and oxidative stress marker NAMPT (20, 21). 

We distinguished these three clusters by relative CXCL8 and HLA-DR expression, leading 

us to name them CXCL8+ HLA-DRlo classical monocytes, S100A12hi HLA-DRint classical 

monocytes, and CXCL8+ HLA-DRint classical monocytes. Next, we identified three clusters 

of intermediate monocytes with varying degrees of HLA-DR expression. Among these 

subsets, HLA-DRhi intermediate monocytes were found at higher relative frequencies in 

group 1 patients relative to groups 2 and 3. In accordance with our CyTOF results, DCs 

were decreased in more severely ill Olink groups. Together, our data support previous work 

that immature inflammatory myeloid cells, likely arising from emergency myelopoiesis, are 

associated with increased COVID-19 severity (18, 19).

We also identified a cluster of classical monocytes expressing type I IFN-stimulated genes 

(ISG) (including ISG15, ISG20, and IFITM1 to IFITM3) primarily in group 2 patients (Fig. 

2G). Given the differences that we saw in T cell activation cytokines by Olink, we stratified 

this cluster of ISG-enriched classical monocytes by clusters 6 and 7 versus clusters 8 and 9. 

This group of monocytes was only found in patients in clusters 8 and 9, which could be due 

to transient or delayed IFN signaling captured by the earlier sampling of these patients (Fig. 

2H) (22, 23).

Next, we performed unbiased clustering to identify lymphocyte clusters. Naïve/central 

memory (CM) CD4 and CD8 T cells expressed CCR7, IL7R, LDHB, LTB, LEF1, and 

TCF7 (fig. S8, C to E) (24, 25). Naïve/CM CD4 T cells were found at higher frequencies in 

COVID− and group 1 patients. We identified early effector CD4 T cells by low expression of 

KLRB1, CCL5, and GZMM; a cluster of T regulatory cells (Tregs); and mucosal-associated 

invariant T (MAIT) cells by KLRB1, NKG7, GZMK, GZMA, and CCL5 expression. 

Effector memory (EM) CD4 and CD8 T cells had intermediate expression of IL7R and 

LTB and low expression of LEF1, CCR7, and TCF7. In addition, we identified Granzyme K 

(GZMK+), GZMK− cytotoxic CD8 T cells, and cytotoxic CD4 T cells as well as cytotoxic 

and effector γδ T cells based on granzyme and GNLY expression. Among B cells, we 

identified plasmablasts and plasma cells by CD38, CD27, and MZB1 expression; plasma 

cells were further distinguished by PRDM1 expression (fig. S8F) (26). Naïve B cells were 

identified by high expression of IGHD+ and IGHM+. We also noted higher frequencies of 

CD11c+ immunoglobulin D− (IgD−) CD27lo B cells, which are thought to be extrafollicular 

or polyreactive B cells that produce pathogenic autoantibodies in group 3 patients relative to 

group 1 and group 2 patients (fig. S8G) (27–29).
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Integration of circulating immune cell phenotypes and serum proteomics

To determine how these different immune cell populations might be interacting, we 

performed Spearman correlation analysis on the scRNAseq cell frequencies. We found 

that the frequencies of S100A12hi HLA-DRlo classical monocytes and other HLA-DRlo 

immature monocyte clusters were negatively correlated with the ISG-enriched classical 

monocytes, DCs, and cytotoxic T cells but were positively correlated with CD11c+ IgD− 

CD27lo B cells (Fig. 2I). In contrast, DCs were positively correlated with naïve/CM CD4, 

CD8, and early effector CD4 T cells.

Following this, we correlated scRNAseq cell composition and Olink proteomics and used a 

hierarchical clustering to explore the relationship between cell subsets and serum cytokines 

(Fig. 3). Immature HLA-DRlo myeloid cells, CD11c+ IgD− CD27lo B cells, and nonswitched 

memory B cell frequencies positively correlated with myeloid activation, mucosal, and 

hyperinflammatory module cytokine concentrations and strongly negatively correlated with 

APC module cytokines. This pattern corresponded most closely with group 3 patients, who 

had increased circulating immature myeloid cells and higher serum concentrations of these 

inflammatory cytokines. In contrast, DCs clustered together with naïve/CM CD4 and CD8 

T cells, GZMK+ cytotoxic CD8 T cells, cytotoxic γδ T cells, MAIT cells, and naïve B 

cells. These cell types were positively correlated with APC module cytokines and negatively 

correlated with myeloid activation, mucosal, and hyperinflammation module cytokines. This 

pattern most closely corresponded to group 1 patients, who had higher serum concentrations 

of APC–T cell activating cytokines and greater numbers of circulating effector T cells.

We also identified two other patterns of cell-cytokine profiles. HLA-DRint monocyte 

populations clustered together with nonclassical monocytes, plasmablasts, and IgA/IgG 

memory B cells. These cell types were negatively correlated with IFN-γ, IL-12β, CXCL10, 

and CXCL11. In contrast, ISG-enriched classical monocytes clustered with EM CD4 T 

cells, GZMK− cytotoxic CD8 T cells, and effector γδ T cells. These cell populations were 

positively correlated with IFN-γ, IL-12β, CD8α, IL-2, and Flt3L and negatively correlated 

with myeloid activation and mucosal module cytokines.

This integrated analysis revealed four distinct types of immune response to COVID-19. 

First, group 1 patients, who had higher numbers of more mature HLA-DRhi myeloid 

cells, had correspondingly higher numbers of effector and cytotoxic T cell populations, 

higher serum concentrations of APC and T cell–activating cytokines, and decreased serum 

concentrations of inflammatory, tissue-damaging cytokines. These patients tended to have 

a milder course of COVID-19 and were more likely to survive. On the other end of the 

spectrum, group 3 patients, who had high numbers of immature HLA-DRlo myeloid cells 

with limited antigen presentation capability, were likely unable to mount strong T cell 

responses and were instead likely more reliant on humoral control of infection. Immature 

myeloid cells in these patients may have predominated due to increased inflammatory 

cytokines that drove emergency myelopoiesis (30, 31). These immature myeloid cells may 

have further contributed to hyperinflammation by producing tissue-damaging cytokines 

and reactive oxygen species, leading to a cycle of lymphopenia, suppressed or delayed 

adaptive immunity, poorer control of virus infection, and increased inflammation. This 

inflammation may have been further exacerbated by extrafollicular CD11c+ IgD− CD27lo B 
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cells that produced autoantibodies, leading to autoimmune-mediated inflammation (32, 33). 

Consequently, these patients had the lowest rates of survival. Patients with an earlier type I 

IFN response, as well as those who had higher numbers of mature HLA-DRint/hi monocytes 

and DCs, may have been better protected against disease progression and morbidity, because 

they were able to mount an earlier, more productive adaptive T cell response.

Loss of alveolar macrophages and phenotypic changes in COVID-19 lung 
microenvironment

To characterize immune cell dynamics in the local lung microenvironment, we acquired 

bronchoalveolar lavage (BAL) samples from intubated patients with EOD, COVID− 

controls, and convalescent patients who recovered from COVID-19 and performed 

scRNAseq (table S3 and data file S6). COVID− and convalescent BAL samples were 

acquired from nonhospitalized patients undergoing bronchos-copy as part of cancer or 

lung disease screening. Similar to what we found in circulation, we identified a cluster of 

S100A12hi monocytes that also highly expressed S100A8 and S100A9 (Fig. 4, A and B). 

COVID+ BAL had higher relative frequencies of both inflammatory IL-1β+ monocytes and 

IL-1β+ alveolar macrophages (AMs) that highly expressed IL1B, CCL3, and CCL4. Early-

phase monocyte-derived macrophages (MoMΦ) highly expressed MoMΦ-associated genes 

SGK1, MAFB, TREM2, and GPNMB relative to late-phase MoMΦ and were increased 

in COVID+ patients compared to COVID− and convalescent patients. Late-phase MoMΦ 
had higher expression of AM-associated genes (such as MARCO and FABP4) compared to 

early-phase MoMΦ, indicating further differentiation toward a resident tissue macrophage 

(RTM) phenotype. We found that the relative frequency of AMs, the RTM of the lung, was 

decreased in COVID+ patients compared to COVID− patients but restored to homeostatic 

numbers in convalescent patients. When stratified by age, single-cell analysis of normal 

lung tissue from a cohort of patients with untreated early stage non–small cell lung 

cancer showed decreased AM in older (greater than 70 years old) patients and increased 

inflammatory MoMΦ, therefore indicating baseline differences in lung MNP composition 

in older adults (fig. S9A) (34). At baseline in COVID− and convalescent individuals, the 

relative frequency of AMs was not affected by sex or by presence of malignancy (fig. S9, B 

and C). We did not observe a difference in AM frequency by age among our BAL cohort, 

although this was likely due to our small sample size (fig. S9D).

In addition to the decrease of the AM pool, AMs from COVID+ patients had higher 

expression of inflammatory RAGE ligands [S100A12 (EN-RAGE) and S100A8] and 

monocyte chemokines CCL2 and CCL4, whereas AMs from COVID− individuals had 

higher expression of antigen presentation genes (HLA-DRA, HLA-DRB1, and CD74) and 

canonical AM markers (MARCO, MSR1, and FABP4) (Fig. 4C). These data suggested 

that AMs from COVID+ patients contributed to local inflammation, recruited monocytes 

from circulation, and were less proficient at antigen presentation to T cells. AMs from 

deceased COVID+ patients also had higher expression of neutrophil chemokines (CXCL5 

and CXCL8), monocyte chemokine CCL2, and inflammatory cytokines (IL1B and CCL22) 

compared to AMs from COVID+ patients who survived (Fig. 4D). Previous studies reported 

deficits in AM phagocytosis, antigen presentation, and wound healing ability with increased 

age (35, 36). Comparison of AMs from convalescent and COVID+ patients showed higher 
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expression of class I and II antigen presentation genes after recovery from COVID-19, 

thereby suggesting that AM numbers and functionality were restored to baseline in 

recovered patients (Fig. 4E). We did not find any gene expression differences between 

COVID− and convalescent AMs (fig. S9E).

Spearman correlation of BAL cell population frequencies showed that inflammatory 

myeloid cells, S100A12hi monocytes, IL-1β+ monocytes, MoMΦ, and IL-1β+ AMs were 

positively correlated with each other but negatively correlated with AMs, cytotoxic T cells, 

and Tregs (fig. S9, F and G). COVID+ BAL also had decreased Tregs, indicating that local 

hyperinflammation may be partly due to loss of immunosuppressive regulation (fig. S9H). 

Together, these data suggest that the loss of AMs, due to either excessive inflammation or 

direct SARS-CoV-2 infection, and a decrease in their capacity to present antigen to recruit 

and prime T cells may have contributed to uncontrolled viral replication and tissue damage 

(37). Inflammatory IL-1β+ AMs and IL-1β+ monocytes may have further exacerbated 

lung inflammation by recruiting inflammatory immature myeloid cells from the periphery. 

Furthermore, older patients may be predisposed to severe COVID-19 due to decreased AM 

numbers and functionality, as well as increased infiltration of inflammatory lung MoMΦ at 

baseline.

We confirmed these findings on autopsy lung samples from COVID+ patients obtained 10.1 

± 6.2 hours postmortem using multiplexed immunohistochemical consecutive staining on 

single slide (MICSSS) (table S4) (38). Here, we again saw a depletion of AMs and an influx 

of monocytes, MoMФ, and granulocytes in COVID+ lungs compared to a COVID− organ 

donor lung autopsy control (Fig. 4, F and G, and fig. S9I). Comparison between COVID− 

and COVID+ patients showed increased frequencies of S100A12 (EN-RAGE)+ cells (Fig. 

4H). These changes were not simply due to ventilation, because similar results were found 

in ventilated and nonventilated patients. We also observed a shift in the expression and 

localization of S100A12 from AMs in the alveolar air spaces of COVID− lungs to expression 

by infiltrating monocytes, MoMΦ, and granulocytes in COVID+ lung interstitium (Fig. 4I). 

In line with the BAL scRNAseq, COVID+ lungs from both nonventilated and ventilated 

patients had decreased Tregs compared to control (fig. S9J). These data suggest that the loss 

of AMs and lung Tregs in COVID-19 may have led to an inability to resolve inflammation 

and to initiate tissue repair even after virus clearance, leading to autonomous inflammation 

that contributed to morbidity.

DISCUSSION

In this work, we presented systemic and lung high-dimensional immunophenotyping on 

one of the largest single-center COVID-19 cohorts to date, which was collected during 

the height of the COVID-19 pandemic in New York City. We found that patients with 

moderate disease had increased numbers of circulating DCs and effector and cytotoxic 

T cells, increased serum concentrations of cytokines associated with APC function, and 

reduced concentrations of cytokines associated with myeloid activation, mucosal damage, 

and hyperinflammation. In contrast, severely ill patients had reduced DCs and effector and 

cytotoxic T cells and lower serum concentrations of cytokines associated with APC function 

and were enriched in immature inflammatory monocytes producing S100A12 (EN-RAGE). 
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Severely ill patients also had higher serum concentrations of cytokines associated with 

myeloid activation, mucosal damage, and hyperinflammation.

We found that lung tissue–resident AMs were profoundly altered in numbers and 

functionality in severe COVID-19. AMs from COVID+ patients expressed higher 

concentrations of inflammatory cytokines and had decreased expression of HLA class I/II 

genes compared to AMs from COVID− patients, indicating a decrease not only in AM 

numbers but also in their antigen presentation capability. AMs from deceased COVID+ 

patients were also more inflammatory and expressed higher concentrations of neutrophil 

and monocyte chemokines compared to AMs from surviving patients, thereby implicating 

an additional role for AMs in perpetuating tissue-damaging inflammation and recruitment 

of immature inflammatory myeloid cells from the periphery. Depletion and alteration of 

the AM pool may be a consequence of direct infection by SARS-CoV-2, leading to the 

activation of inflammatory pathways and pyroptosis (39). At the same time, alveolar type II 

(AT2) cells, the primary angiotensin-converting enzyme 2 expressing cells in the lung and 

primary target of SARS-CoV-2, also produce granulocyte-macrophage colony-stimulating 

factor (GM-CSF) and have a nonredundant role in maintaining AMs in the lung (40). Thus, 

AM depletion may be multifactorial due to not only inflammation or virus infection but also 

decreased GM-CSF in the alveolar milieu. In addition to their role as first responders to 

pathogens in the lung, AMs play a key role in lung homeostasis, resolution of inflammation, 

and tissue repair (41). This may explain why older patients, who at baseline have decreased 

AMs and increased inflammatory MoMΦ, are predisposed to increased disease severity.

During development and under homeostatic conditions, RAGE signaling in AT1 cells 

helps maintain alveolar architecture and lung compliance but is also a known activator 

of nuclear factor κB signaling (42). We hypothesize that loss of AM-derived RAGE ligand 

signaling from S100A8/A9 and S100A12 (EN-RAGE) in the AT1 cells that line the alveolar 

air space may lead to defects in physiologic gas exchange. Furthermore, the shift of 

RAGE ligand production from AMs in alveoli to infiltrating monocytes and MoMΦ in 

the lung interstitium may exacerbate lung injury and vascular leakage, thereby leading to 

increased immature myeloid cell recruitment and infiltration. Increased inflammation has 

been implicated in defective transdifferentiation of AT2 to AT1 cells, which may inhibit 

reepithelialization and maintenance of alveolar barrier integrity (43).

Our study had several limitations. First, our Olink and PBMC scRNAseq COVID− 

individuals were younger than our COVID+ patients due to the difficulty of acquiring 

samples from older COVID− individuals during the pandemic. This limited how broadly 

we could apply our conclusions to the population at large and led us to focus our 

analysis mostly on the differences between patient groups while using our COVID− group 

as a technical control. Second, although we did not find many differences in cytokine 

concentrations from various treatments, we cannot exclude the possibility that these 

treatments or combinations of medications affected our Olink clustering. However, because 

our clustering matched closely with clinical severity, it is also to be expected that certain 

standard-of-care therapies such as norepinephrine or anticoagulation would be enriched in 

group 2 or group 3 patients. Our study was not designed or powered to test the effects 

of different medications on the immune response, and such analyses would be further 

Chen et al. Page 10

Sci Transl Med. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confounded, because patients were receiving multiple treatments, many of which were 

experimental, early on in the COVID-19 pandemic. Our cytokine analyses were also limited 

to serum, which does not directly reflect the local tissue immune milieu these treatments 

may have affected. Moreover, we did not have access to completely treatment-naïve patients 

in each group, making it difficult to properly control for the effects of medications on 

circulating cytokine concentrations. Third, we presented immune cell composition as cell 

frequencies rather than raw cell counts due to the technical limitations of cell capture 

and pooled sample acquisition in CyTOF and scRNAseq. Therefore, the changes in cell 

composition should be most appropriately regarded as changes in relative frequency. We 

tried to address this limitation by using orthogonal methods of analyzing immune cell 

composition, but further studies will be required to validate changes in absolute cell number. 

Fourth, although we hypothesized that systemic and local changes in myeloid composition 

as well as decreased expression of antigen presentation genes likely resulted in defective or 

delayed adaptive immunity, our data are correlative and hypothesis generating, as we did not 

have access to antigen-specific T and B cell reagents to validate these conclusions. Fifth, 

our BAL cohort is much smaller than our PBMC cohort. We were only able to collect a few 

samples of BAL from COVID+ patients due to potential exposure of clinical staff during 

sample collection. In addition, COVID− BAL samples were acquired as part of clinical 

screening for diagnosis of cancer or other lung diseases. Several samples from our COVID− 

and convalescent patients were positive for malignancy, which may have affected their 

immune cell populations at baseline. Yet, we also believe that this makes our conclusions 

regarding AM depletion and influx of inflammatory monocytes in COVID-19 even more 

compelling, as we were able to detect these differences even when comparing to a group 

primarily consisting of patients with cancer.

Despite these limitations, our study provides insight into the systemic and local immune 

cytokine and cell dynamics that may contribute not only to COVID-19 severity and recovery 

but also to other infections and inflammatory lung diseases. Our data suggest that preserving 

and restoring AM numbers early during infection, such as through nebulized delivery of 

GM-CSF, may be a valid therapeutic strategy to protect airway integrity and to initiate an 

early innate and adaptive immune response (44). Future work should also focus on limiting 

the expansion and recruitment of immature inflammatory myeloid cells from the periphery, 

as well as depletion of inflammatory MoMΦ to control tissue damaging inflammation in the 

lung.

MATERIALS AND METHODS

Study design

The goal of our study was to identify drivers of COVID-19 severity and death to support 

the identification and development of tailored immunotherapy strategies to halt disease 

progression. We performed high-dimensional immunophenotyping on patients who were 

hospitalized with COVID-19 at the Mount Sinai Hospital from March to December 2020. 

Patients were not randomized or blinded to investigators as their COVID-19 status was 

relevant for analysis. Sample size for power analysis was not predetermined for our study. 

All proteomics, transcriptomics, and imaging data, including outliers, were used for analysis 
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except for measurements of Olink analyte matrix metalloproteinase–1, which were excluded 

because of technical batch effects. In this study, we characterized serum inflammation 

patterns using the Olink platform, which allowed us to detect 92 different proteins in 

583 COVID+ patients (1956 COVID+ and 45 COVID− volunteer serum samples). To 

understand the diversity of immune patterns, we performed an unbiased clustering analysis 

and identified immune patterns that correlated with disease severity, comorbidities, and 

patient outcome. We grouped immune patterns based on these clinical parameters and 

calculated protein module scores based on the covariance patterns of different cytokines. 

Next, we characterized circulating immune cells using CyTOF on whole blood samples 

and scRNAseq on PBMCs. We used unbiased clustering on PBMC scRNAseq to identify 

immune cell populations and compared the relative frequencies across Olink groups. 

Following this, we integrated our proteomics data with scRNAseq to identify four distinct 

patterns of immune response in COVID-19. To characterize local changes to the lung 

immune microenvironment, we obtained BAL samples from COVID+, COVID−, and 

convalescent patients and performed scRNAseq. We further expanded our characterization 

of the lung using MICSSS on lung autopsy samples and quantified changes in myeloid cell 

infiltration.

Statistical analysis

Data analysis was performed using Prism version 9.2.0 (GraphPad software) or in R version 

4.0.2 and presented as stated in the figure legends. Two-way analysis of variance (ANOVA) 

with Tukey’s multiple comparisons correction was used for Olink analysis. Normality was 

determined by quantile-quantile plot. Clinical parameter statistical testing for categorical 

variables was performed using the chi-square test to determine the overall significance 

followed by the two-sided Fisher’s exact test between groups. Statistical significance for 

quantitative clinical parameters was calculated using the Kruskal-Wallis test followed by 

multiple hypothesis correction with Dunn’s test. Effects of different treatments on Olink 

cytokine concentrations at different time points were calculated by multiple Welch’s t 
tests with false discovery rate (FDR) correction [a two-stage step-up (Benjamini, Krieger, 

and Yekutieli) method]. Kruskal-Wallis tests followed by the multiple comparisons test 

with FDR correction (a two-stage linear step-up procedure of Benjamini, Krieger, and 

Yekutieli) were used to calculate statistically significant cell frequency changes for CyTOF 

and scRNAseq. For other cell frequency comparisons with two groups, Mann-Whitney tests 

were performed. For Spearman correlation coefficient calculations, P < 0.05 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Proteomic characterization of COVID-19 serum reveals distinct immune patterns 
associated with disease severity and clinical outcome.
(A) Mount Sinai COVID-19 Biobank serum collection scheme. (B) Histogram of patient 

samples across Olink clusters and Olink group is shown, denoted by clinical severity 

classification (n = 2001). (C) Histogram of first available COVID+ patient samples across 

Olink clusters and Olink group is shown, denoted by final clinical outcome (n = 583). (D) 

An averaged z score heatmap is shown of Olink inflammation panel analytes across Olink 

clusters. Olink clusters were grouped on the basis of clinical severity, projected outcome, 

and comorbidity distribution (n = 2001). (E) The boxplots showing Olink module score 

comparisons of all Olink samples by Olink group (n = 2001). (F) The boxplots show Olink 

module score comparisons of all Olink samples by the final clinical outcome (n = 2001). 

For box plots, each dot represents a patient sample; the center line indicates the median; 
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box limits indicate the 25th and 75th percentile; whiskers indicate 1.5× inter-quartile range. 

The scheme in (A) was created with BioRender.com. COVID− samples were obtained from 

healthy volunteers (B and D to F). Statistical significance in (E) and (F) is determined by 

two-way ANOVA with Tukey’s multiple comparisons correction. ns, not significant; *adj. P 
< 0.05; **adj. P < 0.01; ***adj. P < 0.001; ****adj. P < 0.0001.
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Fig. 2. Immature inflammatory myeloid cells are associated with increased COVID-19 severity.
(A) The frequency of neutrophils (% cells) and classical monocytes (% non-granulocytes) 

in whole blood were measured by CyTOF and separated by Olink group (n = 206). (B) 

DC population frequencies (% non-granulocytes) in whole blood were measured by CyTOF 

and separated by Olink group (n = 206). Conventional DC (cDC), conventional type 1 

DC (DC1), conventional type 2 DC (DC2), and plasmacytoid DC (pDC) are shown. (C) 

Neutrophils (% cells) and classical monocyte frequencies (% non-granulocytes) in whole 

blood are shown on the basis of the final clinical outcome and were measured by CyTOF 

(n = 214). (D) DC population frequencies (% non-granulocytes) in whole blood are shown 

on the basis of the final clinical outcome and were measured by CyTOF (n = 214). (E) The 

heatmap shows unique molecular identifier (UMI) counts of selected genes from myeloid 
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cell scRNAseq clusters from PBMCs. (F) scRNAseq cluster cell frequencies in indicated 

Olink groups are shown as percent of cells by Olink group (G) Frequencies of ISG-enriched 

classical monocytes are shown clustered by Olink group (n = 75). (H) ISG-enriched classical 

monocyte cell frequencies and days PSO are shown separated by clusters 6 and 7 versus 

clusters 8 and 9 (n = 10). (I) The matrix heatmap shows Spearman correlation coefficients 

between identified scRNAseq PBMC cell clusters (n = 81). Monos, monocytes. (*P < 0.05; 

**P < 0.01; ***P < 0.001). For bar graphs (A to D and F to H), each dot represents a 

patient sample. COVID− samples were obtained from healthy volunteers (A to G and I). 

Statistical significance (A to D and F and G) was determined by Kruskal-Wallis followed 

by the multiple comparisons test with false discovery rate correction. ns, not significant; 

*q < 0.05; **q < 0.01; ***q < 0.001; ****q < 0.0001. Statistical significance in (H) was 

determined by the Mann-Whitney test; *P < 0.05; **P < 0.01.
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Fig. 3. Integrated analysis of scRNAseq cluster frequencies and Olink analyte abundance in 
serum reveals distinct immune responses to COVID-19.
Shown is a matrix heatmap of Spearman correlation coefficients between identified 

scRNAseq PBMC cell clusters (y axis) and Olink analyte–normalized concentrations (x 
axis) in serum. Axes are ordered by hierarchical clustering. Monocytes, monos.
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Fig. 4. AM loss and phenotypic changes are associated with COVID-19.
(A) The heatmap shows UMI counts of selected genes from myeloid cell scRNAseq clusters 

from BAL. (B) scRNAseq cluster cell frequencies are shown as percent of mononuclear 

phagocytes (MNP) in COVID−, COVID+, or convalescent patient BAL (n = 18). COVID− 

and convalescent samples obtained from Mount Sinai Hospital patients (C to E). Differential 

gene expression is shown between alveolar macrophages (AMs) from COVID+ and COVID− 

patients (C), AMs from patients that survived versus deceased (D), and AMs from 

convalescent and COVID+ patients (E). (F) Overlaid, pseudo-colored MICSSS images of 

COVID+ and COVID− lungs are shown. Samples were stained for S100A12, CD68, CD14, 

FABP4, and hematoxylin (n = 5). (G) Quantification of myeloid cells in MICSSS images 

is shown as percent of cells. AMs were defined as FABP4+CD68+ cells; monocytes were 
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defined as CD14+ cells; MoMΦ were defined as CD14+CD68+ cells; and granulocyte 

cells were defined as CD66b+ cells or by hematoxylin staining and morphology. (H) 

Quantification of S100A12+ cells in MICSSS images is shown as percent of cells in the 

COVID− patient (n = 1), nonventilated COVID+ patients (n = 2), or ventilated COVID+ 

patients (n = 2). (I) Distribution of S100A12+ cells by cell type in COVID−, nonventilated, 

or ventilated COVID+ lungs is shown. For bar graphs, each dot represents a patient sample 

(B) or quantification of single MICSSS region of interest (G and H). Statistical significance 

in (B) was determined by the Kruskal-Wallis test followed by the multiple comparisons test 

with false discovery rate correction. *q < 0.05; **q < 0.01.
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