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Abstract
Objective: To examine associations between serum micronutrients and neurobe-
havioural function and the mediating role of sleep quality in early adolescents.
Design: In this cross-sectional study, peripheral blood samples were analysed for
Fe and Zn levels. The Pittsburgh Sleep Quality Index and Penn Computerized
Neurocognitive Battery were used to assess sleep quality and neurobehavioural
function, respectively. The logistic/linear regressions and generalised structural
equation modelling were performed to estimate the associations.
Setting: Jintan, China
Participants: In total, 226 adolescents (106 females) from the Jintan Child Cohort
study.
Results: Adolescents with low Fe (<75 μg/dl) (OR= 1·29, P= 0·04) and low Zn
(<70 μg/dl) (OR= 1·58, P< 0·001) were associated with increased odds for poor
sleep quality. Adolescents with low Fe and Zn were associated with fast (Fe:
β= –1353·71, P= 0·002, Zn: β= –2262·01, P= 0·02) but less-accurate (Fe: β=
–0·97, P = 0·04; Zn: β= –1·76, P = 0·04) performance on non-verbal reasoning task
and poor sleep quality partially mediated the associations between low Fe/Zn and
non-verbal reasoning (P < 0·05). Additionally, low Fe was associated with a slower
reaction on spatial processing task (β= 276·94, P= 0·04), and low Zn was associ-
ated with fast (β= –1781·83, P= 0·03), but error-prone performance (β= –1·79,
P= 0·04) on spatial processing ability and slower reaction speed (β= 12·82,
P= 0·03) on the attention task. We observed similar trends using a cut-off point
of 75 μg/dl for low serum Zn, except for the association with attention task speed
(P > 0·05).
Conclusion: Fe and Zn deficiencies may possibly be associated with poor sleep
and neurobehavioural function among early adolescents. Poor sleep may partially
mediate the relationship between micronutrients and neurobehavioural function.
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Although severe micronutrient deficiencies are consid-
ered rare, children and adolescents from developing
countries are among the most vulnerable groups for
mild-to-moderate micronutrient deficiencies, particularly
Fe and Zn deficiencies(1). Approximately 8–40 % of chil-
dren and adolescents (<18 years) suffer from Fe defi-
ciency, and 10–50 % of adolescents aged 11–16 years
report Zn deficiency in China(1,2). Micronutrients are
known as cofactors essential for neurotransmitter synthe-
sis and brain function(3). Prior research has linked Fe defi-
ciency with diminished verbal memory, attention and
executive function in children(4) and adolescents(5,6).

However, a systematic review suggests that Fe supple-
mentation improves attention and concentration but no
other cognitive domains(7). Regarding the role of Zn, a
consensus on the relationship between Zn and neurobe-
havioural function in adolescents remains elusive.
Children and adolescents who took Zn supplementation
have shown improvement in psychomotor development,
reasoning and executive function in some(8,9), but not
all(10) studies. Neurobehavioural function is essential for
learning, academic achievement, behavioural control
and stress coping in adolescents(11,12). Early neurobeha-
vioural deficits in childhood are associated with
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internalising and externalising psychopathology during
adulthood(13), suggesting a long-lasting detrimental effect
of neurobehavioural dysfunction. Thus, elucidating the
relationship between micronutrient deficiencies and neu-
robehavioural domains has significant public implications
for health promotion during adolescence and beyond.

In addition to micronutrient deficiencies, sleep deficien-
cies and sleep disturbances have been public health con-
cerns for adolescents. More than half of adolescents
worldwide report insufficient sleep duration, poor sleep
quality and excessive daytime sleepiness(14). Impaired
sleep may exponentially increase the risk for depres-
sion(15), neurobehavioural dysfunction(16) and cardio-
vascular risk factors(17) in adolescents. Micronutrient
deficiency may be an understudied risk factor for impaired
sleep(18). Experimental studies show the impact of micro-
nutrients on nerve-signalling chemicals or neurotransmit-
ters essential to intrinsic sleep regulation(19,20), indicating
that the link between micronutrients and sleep is biologi-
cally plausible. Most clinical trials and epidemiological
studies in this area are based on samples of infants, children
and adults(18,21–23). Fe deficiency anaemia is associatedwith
more night waking and shorter sleep duration than better-
nourished infants(21), and Fe supplement increases noctur-
nal and total sleep duration among Fe deficiency anaemia
infants(22). In the general adult population, there is an asso-
ciation between low Zn intake and short sleep duration(23).
Very few studies have examined the relationship between
micronutrient status and sleep quality among adolescents
who are at high risk of sleep impairment. Our previous
work suggests that serum Zn concentrations in 3–5-year-
olds and 11–14-year-olds predict multiple sleep domains
measured by the Pittsburgh Sleep Quality Index (PSQI)
during adolescence(24). However, the role of Fe deficiency
and Zn deficiency in sleep quality remains less clear in this
vulnerable population.

The primary aim of this studywas to investigate the asso-
ciations of serum micronutrient status (Fe and Zn) with
sleep quality and multiple neurobehavioural domains in
a healthy adolescent sample. We hypothesised that adoles-
cents with low Fe/Zn would exhibit an increased risk for
poor sleep quality and poor performance on neurobeha-
vioural tasks. Additionally, although experimental studies
suggest the role of micronutrients in brain function on a
molecular level(3), the mechanism through which micronu-
trient deficiencies alters neurobehavioural performance in
adolescents remains unclear. There is extensive evidence
demonstrating the neurocognitive and behavioural conse-
quences of experimental sleep restriction, including
declined vigilance, executive function and working
memory, as well as longer reaction time(16). Given the cog-
nitive effect of sleep, micronutrient deficiencies may affect
sleep quality(18), thereby leading to poor neurobehavioural
function. Thus, we also tested whether sleep quality medi-
ated the relationship between low Fe/Zn and neurobeha-
vioural function. The findings from this study will help

understand the role of intertwined health issues of nutrition
and sleep in predicting neurobehavioural function, and
ultimately inform tailored nutritional interventions for
health care professionals to improve sleep and neurobeha-
vioural development in adolescents.

Methods

Study design and participants
The present study is part of the China Jintan child cohort
study that aims to investigate early health risk factors and
neurobehavioural development throughout childhood
and adolescence(25,26). The Jintan research team used a
multi-stage sampling method and enrolled 1656 children
(3–5 years old) who represented preschoolers from each
school district (urban, suburban and rural) in Jintan in
2004 (Wave I). According to their year (1st, 2nd and 3rd)
in preschool, children were classified into the lower,
middle and upper cohort. When participants were in their
last month of sixth grade in 2011–2013 (approximately 12
years old), they were invited to Wave II data collection. A
total of 1110 participants participated in the Wave II study.
Of them, 343 participants had blood drawn for Zn/Fe test-
ing in the same period for sleep measurement and neuro-
behavioural tasks. Sleep-related questionnaires were
completed under the supervision of a research assistant
in student classrooms. Also, paediatric nurses collected
fasting blood samples and conducted physical examina-
tions (e.g. height/weight measurement) for participants
in each school. Regarding neurocognitive assessment,
trained research assistants instructed participants to per-
form the Penn Computerized Neurocognitive Battery in
the Children’s Health Laboratory, Jintan Hospital. This
cross-sectional study used a subsample (n 226) who had
complete data on serum micronutrient concentrations
(Fe and Zn), sleep and neurobehavioural test scores.
There were no differences in social and demographic var-
iables (i.e. age, sex, home location, parent education, BMI
z-scores) between the subsample (n 226) and the whole
sample in Wave II (n 1110) (P> 0·05). Detailed sampling
and research procedures of this cohort study have been
described in Liu et al.(25,26).

Measures

Micronutrient Status
Peripheral blood specimens (fasting) were drawn at 07.00–
08.00 in each school by paediatric nurses from the Jintan
Hospital. Research assistants provided fasting instructions
to participants the day before the blood draw.
Approximately 0·5 ml of blood samples were collected in
a lead-free ethylenediaminetetraacetic acid tube, stored
at –40°C and shipped to Xin Hua Hospital, Shanghai,
China. Micronutrient concentrations were analysed using
inductively coupled plasma MS. The detailed analytical
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procedure was reported elsewhere(25,26). The lower cut-off
point of <75 μg/dl was used to classify individuals as on
low Fe status(27). Low Zn status was identified by fasting
serum concentrations below 70 μg/dl, as proposed by
the International Zinc Nutrition Consultative Group(28).
This cut-off has been used in a nationally representative
sample in China(2), thus enhancing the comparability of
our results. Due to the small number of participants who
had Zn concentrations below 70 μg/dl, we conducted sen-
sitivity analyses using 75 μg/dl(29) and 76·5 μg/dl(27) as cut-
off points for low Zn to examine the stability of estimations.
Of them, the threshold serum Zn concentration of <75 μg/
dl was selected because it was reported to be more respon-
sive to nutritional treatment than other thresholds in under-
nourished children(29).

Sleep quality
Adolescents completed the Chinese version of the
Pittsburgh Sleep Quality Index (PSQI) and questions
about sleep schedules in their classrooms in June–July
2013. The PSQI comprises nineteen items categorised into
seven sleep domains: subjective sleep quality, sleep effi-
ciency, sleep latency, sleep duration, sleep disturbances,
use of sleeping medication and daytime sleepiness and
dysfunction(30). Sleep duration was calculated by bedtime
and wake-time and classified into 0–3 levels according to
the adolescent cut-off used in the National Sleep
Foundation(31). The PSQI global score ranged from 0 to
21 (sub-domains range = 0–3), with poor sleeper defined
as total scores>5(30). The PSQI is a widely used instrument
in measuring sleep quality in diverse groups, including
adolescents(30,32). In the adolescent population, the inter-
nal consistency for the Chinese version of PSQI was
reported to be 0·87, with Cronbach’s alpha ranged from
0·46 to 0·85 for sub-domains(32). The internal consistency
in the current study was 0·78.

Neurobehavioural Function
Adolescents performed the Penn Computerized
Neurocognitive Battery, including tests on attention,
abstraction and mental flexibility, episodic memory, spatial
processing ability, and non-verbal reasoning. The Penn
Computerized Neurocognitive Battery has been validated
with functional neuroimaging to define the recruitment
of specific brain systems and has shown good psychomet-
ric properties among children and adolescents aged 8–21
years(33). In a subsample (n 122) of the Jintan child cohort,
the Cronbach’s alpha coefficients for the overall test and
each domain of the Penn Computerized Neurocognitive
Battery were reported to be greater than 0·8, suggesting
adequate internal consistency.

Executive control: (1) In the short Penn Conditional
Exclusion Test (sPCET), participants needed to decide
which object did not belong with the other three based
on sorting principles, such as shape, size, and line thick-
ness. The sPCET assessed abstraction ability and mental

flexibility. (2) The Penn Continuous Performance Test mea-
sured the ability to focus and sustain attention. Participants
pressed the space bar on a computer keyboard whenever
the display formed a digit (for the first half of the test) or a
letter (for the second half of the test). Episodic memory:
The Short Visual Object Learning Test (sVOLT) measured
spatial memory for shapes. Participants were asked to
memorise a series of three-dimensional shapes (two-
dimensional shapes and their locations), at a rate of 1
shape/second, to correctly answer test trials. During the
immediate recognition phase, participants were shown
twenty shapes, one at a time, and asked to choose whether
a shape was included in the original list on a scale of 1–4
(1= ‘Definitely yes’ to 4 = ‘Definitely not’). While ten
shapes were those participants were asked to memorise,
the other ten were distractors. The accuracy score indicates
the number of correctly recognised shapes and distractors.
Complex cognition: (1) The short Penn Line Orientation
Test (sPLOT), which measured spatial processing ability,
showed two lines at an angle and asked participants to click
on the button to rotate one of the lines until it matched the
same angle as the other. (2) The Penn Matrix Reasoning
Test (PMRT) showedmatrices that required geometric anal-
ogy and contrast principles reasoning skills, thus assessing
the ability of non-verbal reasoning.

Tests were approximately 30 min in length depending
on individual performance. Each test yields measures of
accuracy (number of the correct response) and speed
(median response time for correct responses with a
unit of a millisecond), thereby allowing evaluation of
individual differences in cognitive strategy for the speed-
accuracy tradeoff. Poor function in the present study was
defined as: (1) slow and/or inaccurate performance, or
(2) fast but inaccurate performance.

Covariates
Social and demographic characteristics such as age, sex,
parental education (years of formal education from elemen-
tary school to thepresent day) andhome location (urban, sub-
urban, and rural areas) were assessed and treated as
covariates in this study. These covariates were selected since
they have been linked to micronutrient intake(1,2), sleep pat-
terns(14,34), and/or cognition(35) in the literature. Pediatric
nurses performed physical examinations for participants in
each school, including height and weight assessment. BMI
was then calculated using the formula weight (kg) divided
by height in meters squared (m2). Gender-specific BMI-
for-age z-scores were calculated using the WHO
AnthroPlus software(36). Neurobehavioural testing perfor-
mance may be confounded by heritable cognitive traits such
as general intelligence quotient (IQ)(37). Thus, the Chinese
version of the Wechsler Intelligence Scale for Children-
Revised (WISC-R) was used to assess IQ in adolescents.
Additionally, given the potential diurnal variation in cognitive
performance, we recorded the time of day when neurobeha-
vioural tests were performed.
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Statistical methods
Sample characteristics were summarised using descriptive
statistics. We performed logistic regression models to
examine the relationship between micronutrient status
(normal Fe/Zn as the reference category) and sleep quality,
controlling for age, sex, parental education, home location,
BMI z–scores. The distributions of continuous variables
were tested for normality using the Shapiro-Wilk test as
well as the standardised normal probability (pnorm) and
quintile-normal (qnorm) plots. Gender-specific BMI-for-
age z-scores (P = 0·39), mother education years
(P = 0·88), father education years (P= 0·92), but not age,
WISC-R IQ scores and neurobehavioural testing scores
(P < 0·05), were normally distributed. A series of linear
regressions were then conducted to estimate the associa-
tions between micronutrient status and neurobehavioural
performance. Accuracy and speed scores of each neurobe-
havioural domain entered themodel separately as a depen-
dent variable. For each neurobehavioural domain, the
predictive effect of micronutrient status on neurobehaviou-
ral testing scores (accuracy and speed) was first modeled,
while controlling for age, sex, parental education, home
location, BMI z-scores, WISC IQ score, and time of neuro-
behavioural tests (Model 1). Sleep quality was then addi-
tionally adjusted for in Model 2. Because of the
multicollinearity between mother and father education,
only father education was included in models. The nesting
of assessment within each cohort (low, middle, and upper)
was clustered in each model. The normality in the residuals
of linear regression models (Table 4) were tested using
pnorm and qnorm plots.

We used the generalised structural equation modelling
with bootstrap approaches to test the direct and indirect
pathways among micronutrient status, sleep quality and
neurobehavioural scores. A generalised structural equation
modelling is a preferred method for mediation models fea-
turing categorical variables(38), as is the case with micronu-
trient status and sleep quality in this study. Age, sex,
parental education, home location, BMI z-scores, WISC
IQ score, and time of neurobehavioural tests were entered
into models as covariates. The 95 % bias-corrected and
accelerated (BCa) CI for direct, indirect and total effects
were estimated from 5000 random bootstrap samples.
The 95 % CI (BCa) that does not cross zero indicates a sig-
nificant mediating (indirect) effect. Sensitivity analyses
were conducted to assess whether the threshold for low
Zn (70 v. 75 v. 76·5 μg/dl) affected results. Statistical tests
were two-tailed with a significance level of 0·05. All analy-
ses were performed in Stata 16.

The final sample composed of 226 early adolescents aged
11–14 years, 53·10% (n 120) were boys. Demographic char-
acteristics, BMI, IQ and time of neurobehavioural tests are
summarised in Table 1. A total of sixty-three participants
(27·88%) were classified as poor sleepers (PSQI> 5)
(Table 2). The mean serum Fe concentration was 100·32
(SD= 30·21) μg/dl, with forty-one participants (18·14%)

having low serum Fe. In terms of serum Zn, thirteen
(5·86%) had serum Zn concentrations below 70 μg/dl, thirty
five (15·49%) had serum Zn concentrations <75 μg/dl and
forty one (17·70%) had serumZn concentrations<76·5 μg/dl.

Table 2 summarises serum Fe and Zn status of partici-
pants with normal and poor sleep quality. The proportion
of poor sleepers was higher in individuals with low Fe
(32 % v. 27 %) and low serum Zn (38 % v. 27 %) compared
with those who had normal micronutrient levels. After con-
trolling for influences of age, gender, parental education,
home location and BMI z-scores, low Fe status
(OR = 1·29, P= 0·04) predicted a 29 % increase in odds
for poor sleep compared with normal Fe status.
Adolescents with low Zn (<70 μg/dl) were estimated to
have a 58 % increase in odds for poor sleep (OR= 1·58,
P < 0·001). We repeated analyses using a cut-off value of
75 μg/dl for low serum Zn and consistently found a signifi-
cant association between low serumZn and increased odds
of poor sleep quality (OR= 1·29, P= 0·04). However, there
is no association between low Zn defined as serum concen-
trations below 76·5 μg/dl and poor sleep (P > 0·05), andwe
did not repeat mediation analyses using this cut-off.

The descriptive statistics of neurobehavioural scores by
micronutrient status are summarised in Table 3. In adjusted
models, individuals with low Zn status (<70 μg/dl) were sig-
nificantly associated with fast (t= 2·17, P= 0·03) but less
accurate (t= 2·34, P= 0·03) performance on spatial process-
ing (sPLOT) task compared with those who had normal
serum Zn. The associations of low Zn with sPLOT accuracy
(β= –1·79, P= 0·04) and speed (β= –1781·83, P= 0·03)
remained significant in linear regression models after adjust-
ing for covariates (Table 4). Adolescents with low serum Zn
tended to have similar performance patterns on task for non-
verbal reasoning (PMRT): shorter reaction time (β= –

2262·01, P= 0·02) but lower accurate scores (β= –1·76,

Table 1 Sample characteristics (n 226)

Mean SD n %

Sex
Male 120 53·10
Female 106 46·90

Age 12·14 0·55
Mother’s education years 13·35 2·99
Father’s education years 12·70 3·16
Home location
Rural 32 14·16
Suburb 94 41·59
Urban 100 44·25

Time of neurobehavioural test*
AM (08:00–11:59) 18 8·11
PM (12:00–17:00) 204 91·89

WISC-R IQ 104·92 12·19
BMI 19·44 3·23
BMI z-score 0·38 1·11
Iron concentrations, μg/dl 100·32 30·21
Zinc concentrations, μg/dl 87·95 12·49

BMI , body mass index; WISC-R IQ, Wechsler Intelligence Scale for Children-
Revised, intelligence quotient.
*There were missing data in testing time (n 2).
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P= 0·04) (Table 4, Model 1). The associations between low
serum Zn and PMRT scores were attenuated but remained
significant with the addition of sleep quality into analyses
(Table 4, Model 2). Additionally, compared with those with
normal Zn, the low Zn group was significantly associated
with longer reaction time (β= 12·82, P= 0·03) on Penn
Continuous Performance Test that reflected sustained atten-
tion.We found similar results using a cut-off point of 75 μg/dl
for low serum Zn, except for the association with Penn
Continuous Performance Test speed (P> 0·05) (Table 4).
In terms of Fe status, low serum Fe was significantly associ-
ated with faster (β= –1318·60 and –1353·71, P’s= 0·002) but
error-prone performance (β= –0·92, P= 0·05; and P= –

0·97, P= 0·04) on non-verbal reasoning (PMRT) in models
with and without adjusting for sleep quality. Furthermore,
adolescents with low Fewere estimated to be 270-ms slower

in reaction speed on spatial processing (sPLOT) task
(β= 269·65, P= 0·04), while accuracy scores did not sta-
tistically differ between the normal and low Fe groups
(β= 0·79, P= 0·39). Neither low Fe nor low Zn was predic-
tive of task performance on abstraction andmental flexibility
(sPCET) and spatial memory (sVOLT) (ps> 0·05) in the
adjusted regression models.

As shown in Table 5, among neurobehavioural domains,
the indirect effects of low Fe and low Zn on non-verbal rea-
soning (PMRT) function were statistically mediated by sleep
quality. Poor sleep quality accounted for 17·16% of the total
effect of low Zn (<70 μg/dl) on non-verbal reasoning accu-
racy and 11·46% of the total effect on performance speed.
The mediation pathway remained significant when low Zn
was defined as concentrations <75 μg/dl, with 22·14% of
the total effect on PMRT accuracy and 13·05% of the total

Table 2 Association between serum iron/zinc and sleep quality (logistic regression)†

Total (n 226)
Normal sleep

(n 163) Poor sleep (n 63) Regression*

Serum micronutrients n % n % n % OR SE

Iron (cut-off:75 μg/dl)
Normal 185 81·85 135 72·97 50 27·03
Low 41 18·14 28 68·29 13 31·71 1·29** 0·14

Zinc (cut-off:70 μg/dl)
Normal 213 94·24 155 72·77 58 27·23
Low 13 5·86 8 61·54 5 38·46 1·58*** 0·10

Zinc (cut-off:75 μg/dl)
Normal 191 84·51 140 73·30 51 26·70 1·29** 0·15
Low 35 15·49 23 65·71 12 34·29

Zinc (cut-off:76·5 μg/dl)
Normal 185 82·38 135 72·97 50 27·03
Low 41 17·70 28 68·29 13 31·71 1·12 0·35

**P< 0·05,
***P< 0·01.
†Logistic regression models adjusted for age, sex, parental education, home district, full WISC IQ score, time of CNB tests and BMI z-score.

Table 3 Description of neurobehavioural scores by serum iron/zinc status

CNB Test

Zinc Iron

Normal Low (<70 μg/dl) Normal Low (<75 μg/dl)

Mean SD Mean SD Mean SD Mean SD

sPCET
Speed, ms 1687·25 441·35 1538·42 404·85 1668·51 433·36 1724·65 470·97
Accuracy 26·04 6·64 25·15 5·38 25·76 6·66 27·00 6·10

PCPT
Speed, ms 518·23 139·94 527·95 162·43 508·46 127·03 523·95 148·03
Accuracy 77·71 36·87 83·94 41·38 79·38 36·33 71·63 41·94

sVOLT
Speed, ms 1570·23 572·98 1492·24 440·74 1609·95 671·88 1598·33 577·08
Accuracy 14·72 3·07 14·88 3·14 14·70 3·03 15·36 3·03

PMRT
Speed, ms 7567·37 5274·61 5971·46 3813·03 7846·59 5470·10 6707·83 5152·43
Accuracy 11·63 4·35 10·82 5·71 11·74 4·38 11·05 4·82

sPLOT
Speed, ms 7925·45 2536·93 6386·35 1087·37 7799·99 2461·89 7997·87 2700·58
Accuracy 9·85 3·76 7·25 3·05 9·23 3·97 10·41 3·89

PCPT , Penn Continuous Performance Test; PMRT , Penn Matrix Reasoning Test; sCTAP, short Computerised Finger-Tapping Task; sPCET, short Penn Conditional
Exclusion Test; sPLOT, short Penn Line Orientation Test; sVOLT, short Visual Object Learning Test; ms, milliseconds.
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Table 4 The associations between zinc/iron status and neurobehavioural performance (linear regression)†

CNB Test

Low Zinc (<70 μg/dl) Low Zinc (<75 μg/dl) Low Iron (<75 μg/dl)

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

B SE B SE B SE B SE B SE B SE

sPCET
Speed, ms −142·72 23·27 −157·86 22·35 −17·87 90·12 −17·01 80·59 53·78 23·27 48·86 19·38
Accuracy −0·60 1·61 −0·88 1·63 0·13 0·74 0·15 0·54 1·19 1·10 1·09 1·15

PCPT
Speed, ms 12·82* 2·19 13·27* 2·51 12·04 13·24 12·94 14·19 15·70 6·88 16·39 7·10
Accuracy 10·96 2·93 11·28 3·16 6·50 4·90 6·44 4·39 −4·93 5·42 −4·69 5·65

sVOLT
Speed, ms −232·27 40·46 −232·03 49·63 −224·45 118·64 −224·82 118·91 11·74 11·45 14·05 15·59
Accuracy 0·64 0·13 0·80 0·12 −0·11 0·32 −0·13 0·21 0·54 0·41 0·58 0·45

PMRT
Speed, ms −2262·01* 328·73 −2209·48* 333·09 −1916·01* 277·88 −1904·72* 294·64 −1353·71** 58·87 −1318·60** 73·63
Accuracy −1·76* 0·37 −1·69* 0·38 −1·02* 0·25 −1·01* 0·26 −0·97* 0·20 −0·92* 0·22

sPLOT
Speed, ms −1781·83* 92·97 −1858·08* 98·88 −634·85* 17·78 −666·75* 25·58 269·65* 10·25 234·20† 21·73
Accuracy −1·79* 0·14 −1·83 0·15 −1·13* 0·21 −1·13* 0·22 0·79 0·58 0·77 0·58

PCPT, Penn Continuous Performance Test; PMRT, Penn Matrix Reasoning Test; sCTAP, short Computerized Finger-Tapping task; sPCET, short Penn Conditional Exclusion Test; sPLOT , short Penn Line Orientation Test; sVOLT, short
Visual Object Learning Test; ms, milliseconds.
Reference level: normal iron or zinc level.*P≤ 0·05, **P< 0·01.
†Model 1 adjusted for age, sex, parental education, home district, full WISC IQ score, time of CNB tests and BMI z-score; the model set 2 adjusted for covariates in the model 1 and sleep quality.
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effect on PMRT speed mediated by sleep quality. In terms of
serum Fe, sleep quality was also a significant mediator
between the association between low Fe and fast but error-
proneperformanceon thePMRT.Althoughpoor sleepquality
was also associated with longer reaction time on task for
abstraction/mental flexibility (sPECT) (β= 102·46, P= 0·02)
and declined accuracy on episodic memory task (sVOLT)
(β= –1·16, P= 0·001) (Supplement Table 1), sleep quality
did not significantly mediate the association between serum
micronutrient status and these neurobehavioural domains.
Supplemental Figure 1 shows thedirect and indirect pathways
between micronutrient deficiencies and PMRT scores.

Discussion

Eighteen percent of participants had low serum Fe and up
to 17 % had low serum Zn depending on the lower cut-off
points of Zn. Adolescents with low serum Fe and low Zn
tended to have a fast but error-prone performance on
non-verbal reasoning task. Low serum Zn and Fe status
were associated with increased odds for poor sleep quality,
which in turn partially mediated the relationship between
micronutrient deficiencies and non-verbal reasoning.
Additionally, adolescents with low serum Zn were esti-
mated to have faster but less accurate performance on spa-
tial processing task and slower reaction speed on sustained
attention task than the group with normal Zn. We also
observed an association between low serum Fe and slower
reaction speed on spatial processing task. However, the
indirect effect through sleep quality on spatial processing
and attention was not statistically significant. To our knowl-
edge, this is one of the first studies that examine the com-
plex relationship betweenmicronutrient deficiencies, sleep
and neurobehavioural function in an adolescent sample.

Despite improvements in nutritional status over the past
decades, mild-to-moderate micronutrient deficiencies,

mainly from insufficient dietary intake and poor bioavail-
ability, remain a public health concern in China(2,39).
There were 28 % of school-age children reporting insuffi-
cient Fe intake and 38 % reporting insufficient Zn intake
based on the estimated average requirements in China(2).
Compared with rates not meeting the estimated average
requirements, we observed lower rates of Fe and Zn defi-
ciencies defined by fasting serum concentrations in our
sample. Following the decreasing trend of micronutrient
deficiencies in China, the prevalence of low serum Fe in
our sample (18 %) decreased as relative to the rate at base-
line (24 %) when participants were at 3–5 years old(27). The
prevalence rates of serum concentrations below 76·5 μg/dl
(17 %) and low Zn <75 μg/dl (15 %) were half of the rate at
baseline (3–5 years old)(27). In data analysis, we used a cut-
off value of <70 μg/dl for Zn deficiency to ensure compa-
rability with other studies(2). The prevalence of low Zn <70
μg/dl (6 %) in our sample was similar to that in Iranian ado-
lescents aged 12–18 years (5·4 %) but lower than the preva-
lence (10 %) reported in a large rural sample of children in
China(2). Given that this study included participants from
urban, suburban and rural areas, the discrepancy may be
attributed to the geographic disparity in nutritional status.

The relationship between micronutrient deficiencies
and neurobehavioural function was most pronounced in
the domain of non-verbal reasoning. We observed a fast
but error-prone pattern on task for non-verbal reasoning
among individuals with low serum Zn and low Fe.
Specific areas of the brain involved in higher-order cogni-
tive function, such as logic and reasoning, continue to
develop and mature until mid-teenage years(40). The
speed-accuracy trade-off reflects an impulsive problem-
solving pattern, thus indicating less cognitive maturity in
adolescents with micronutrient deficiencies than their
counterparts(41). Our findings are congruent with a cross-
sectional study showing a trend towards increasing abstract
reasoning intelligence with increasing plasma Zn

Table 5 Mediating role of sleep in the relationship between micronutrients and Penn Matrix Reasoning Test (PMRT) scores (GSEM)*

PMRT accuracy PMRT speed

B 95% CI (BCa)† B 95% CI (BCa)†

Low zinc (<70 μg/dl)
Direct effect −1·69 −1·99, –1·45 −2209·48 −2431·22, –2032·80
Indirect effect‡ −0·35 −0·42, –0·29 −286·11 −343·08, –238·12
Total effect −2·04 −2·41, –1·74 −2495·58 −2495·58, –2270·91

Low zinc (<75 μg/dl)
Direct effect −1·01 −1·02, –0·81 −1904·72 −1950·92, –1709·95
Indirect effect −0·29 −0·32, –0·27 −285·75 −316·74, –253·98
Total effect −1·31 −1·56, –1·13 −2190·47 −2435·12, –2075·83

Low Iron (<75 μg/dl)
Direct effect −0·92 −1·11, –0·72 −1318·60 −1364·55, –1252·05
Indirect effect −0·22 −0·27, –0·18 −180·59 −220·62, –140·56
Total effect −1·14 −1·35, –0·94 −1499·19 −1522·65, –1478·97

GSEM, generalised structural equation modelling.
*Models adjusted for age, sex, parental education, home district, full WISC IQ score, time of neurobehavioural tests and BMI z-score.
†BCa: bias-corrected accelerated CI from 5000 bootstrap samples.
‡Indirect effect was through sleep quality.
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concentrations among adolescent girls in India(42). A sys-
tematic review consistently shows a selective response in
non-verbal fluid intelligence following micronutrient
supplementation among children and adolescents with
micronutrient deficiencies, particularly Fe deficiency(40).
Non-verbal cognitive ability, which comprises reasoning,
logical thinking and problem-solving, may bemore directly
related to biological function, thus sensitive to micronu-
trient-related brain biochemistry(40,43). We also observed
worse performances on spatial processing task among
those with low Zn or low Fe. These findings, to some
extent, converge with the neuroimaging research showing
a positive association between Fe concentrations in the
basal ganglia and visuospatial intelligence in children aged
7–11 years(44). The associations of low Fe and Zn with sus-
tained attention did not follow a consistent pattern. Our
finding that adolescents with low serum Zn were estimated
to have worse sustained attention parallels with prior
research suggesting enhanced attention after Zn supple-
mentation among Chinese and Mexican-American low-
income children(9). However, we did not find variation in
attention scores between Fe groups, which is contradictory
to previous work that suggests the Fe-attention relation-
ship(7,40). The disparity may result from different neurobe-
havioural measures or the time for attention test. Future
studies are needed to examine the generalisability of our
findings.

More than one-fourth of our samples were classified
as poor sleepers. Our findings that the odds of poor sleep
were higher in adolescents with low serum and Fe both
support and extend previous work. Several lines of evi-
dence have suggested the importance of optimal micro-
nutrient status to sleep health in other age groups(23,45,46).
As compared with the healthy control, infants with Fe
deficiency anaemia showed more awake times, shorter
sleep duration and delayed sleep-spindle patterns in
non-rapid-eye-movementPFA at night(45). Research also
shows that short sleep duration was associated with
insufficient dietary Zn intake(23) and low serum Zn con-
centrations(46) in adults. Not previously shown is our
finding that poor sleep may act as a mediator in the rela-
tionship between micronutrient deficiencies and neuro-
behavioural deficits, particularly the fast but error-prone
performance on non-verbal reasoning task. This path-
way is partially supported by an actigraphy study show-
ing an association between reduced sleep quality and
fast but less accurate cognitive performance among ado-
lescent boys(37). However, very few studies have exam-
ined micronutrient deficiencies, poor sleep and
neurobehavioural deficits together in one study. Given
the pubertal changes in intrinsic sleep regulation (e.g.
delayed melatonin onset phase)(47) and brain function-
ing(40), understanding the neurobehavioural function in
response to intertwined risk factors of micronutrient defi-
ciencies and poor sleep has substantial clinical implica-
tions to this vulnerable population.

Sleep quality did not mediate the association between
micronutrient deficiencies and worse spatial processing
ability and sustained attention, although the direct effects
of micronutrient status were significant. This may be parti-
ally explained by the absence of association between poor
sleep quality and these neurobehavioural domains. Our
findings converge with a prior observational study sug-
gesting no associations between PSQI total score and atten-
tion task performance(48) but contradict the findings from
experimental studies, which showed declined vigilance fol-
lowing experimental sleep restrictions(16). The immediate
effect of experimentally imposed sleep restriction may
not be comparable to our findings, which probably reflect
a long-term association between chronic poor sleep quality
and neurobehavioural function in naturalist settings.

The mechanisms underlying the complex relationships
among micronutrients, sleep modulation and neurobeha-
vioural function remain unclear. Fe and Zn have been doc-
umented as an antagonist of excitatory neurotransmitters,
such as the N-methyl-d-aspartate receptor(19) and dopami-
nergic neurons(20) and an agonist of inhibitory neurotrans-
mitters, such as gamma-aminobutyric acid receptors(19),
thereby potentially influencing intrinsic sleep regulation
process. We also conducted an exploratory analysis to
examine the threshold concentrations of low serum Zn
for predicting poor sleep quality. While we did not find
the association between serum Zn below 76·5 μg/dl and
sleep quality, low serum Zn defined by cut-off points of
70 and 75 μg/dl was associated with increased odds of poor
sleep quality. Poor sleep quality may further predict non-
verbal reasoning ability through its detrimental effect on
frontoparietal networks. Of note, both direct and indirect
effects of low Fe and Zn on non-verbal reasoning were sig-
nificant inmediationmodels, suggesting a partial mediating
role of sleep quality. Animal models suggest that impaired
neuronal growth, myelination and synaptogenesis are
potential mechanisms that explain the direct effect of Fe
and Zn deficiencies on cognitive impairment(49,50).

Collectively, our data show that while micronutrient
deficiencies and poor sleep are individual risk factors
for impaired neurobehavioural performance, low serum
Fe and Zn may be novel risk factors for habitually poor
sleep, which in turn predicts poor non-verbal reasoning
ability. Several potential limitations should be consid-
ered in the interpretation of results. First, habitual day-
time napping and weekend compensatory sleep may
obscure brain responses to sleep quality. Because of
missing data and insufficient statistical power, napping
behaviours and weekend catch-up sleep were not
adjusted for in data analyses. Additionally, self-reported
sleep measures may pose a potential risk for recall bias.
Thus, future research should employ an objective sleep
measurement (e.g. actigraphy) and consider daytime
naps and day-to-day variability in sleep patterns.
Second, moderating and mediating effects may not be
mutually exclusive. Due to the lack of statistical power,
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the regression models were not stratified by sleep groups
to further examine the moderating effect of sleep quality.
Future research is warranted to test more complex mod-
els, such as moderator mediation and mediator modera-
tion. Third, the prevalence of low Zn in our sample may
not represent the micronutrient status in Chinese chil-
dren and adolescents(1). Since prior epidemiological
findings primarily relied on dietary Zn intake, the dis-
crepancy may result from different indicators for micro-
nutrient deficiencies at the population level. Due to the
lack of dietary assessment, particularly Zn and Fe intake,
we did not conduct sensitivity analysis using dietary Zn
or Fe levels as independent variables or covary out
dietary intake in the test of the associations of serum
Zn and Fe with sleep and neurobehavioural function.
Nevertheless, the associations between low Zn/Fe and
neurobehavioural domains achieved statistical signifi-
cance in this small sample, indicating a substantial differ-
ence in sleep quality and neurobehavioural function
between adolescents with and without micronutrient
deficiencies. Fourth, although participants were from a
healthy school population, we did not assess their health
status, especially emotional and behavioural health,
which may potentially confound the results. Finally,
the causal relationship among micronutrients, sleep
and neurobehavioural function is not conclusive due
to the observational design. Future experimental studies
are needed to illustrate the nature of these relationships.

Conclusion

In summary, low serum Fe and Zn were not highly preva-
lent in our sample. Adolescents with low serum Fe and low
serum Zn were more likely to have poor sleep quality and
worse performance on selective neurobehavioural
domains, including non-verbal reasoning, attention and
spatial processing. Poor sleep quality partially mediates
the association between lowZn/Fe and fast but error-prone
performance on non-verbal reasoning. Our findings pro-
vide preliminary evidence to suggest that optimal sleep
promotes brain health, and this process may be enhanced
by adequate micronutrient status. The elucidation of the
role of micronutrient deficiencies has significant public
health implications for adolescents during developmental
transitions. Community and public health providers may
consider includingmicronutrient deficiencies in risk assess-
ment, risk management and health promotion for poor
sleep health and neurobehavioural dysfunction in adoles-
cents. Further work in this area is needed to determine
whether dietary micronutrient intake and biological micro-
nutrient levels are predictive of objectively assessed sleep
metrics in a diverse sample across countries and whether
improving micronutrient status promotes sleep health
and subsequent neurobehavioural function.
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