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The worldwide prevalence of gestational hypertension and pree-
clampsia is estimated at 10% and 2%–8%, respectively.1 In the
United States alone, the incidence of preeclampsia—a leading
cause of maternal mortality—increased by 25% between 1987
and 2004.2 Despite the prevalence and severity of these condi-
tions, definitive causes remain elusive, hindering risk reduction
interventions.3 There has been increasing attention to the role of
environmental chemicals, including toxic metals, in the develop-
ment of gestational hypertension and preeclampsia (together
termed hypertensive disorders of pregnancy).4,5 The recent study
by Borghese et al. significantly contributes to the growing litera-
ture establishing associations between toxic metal exposure and
these disorders.6

The authors examined mixture effects, highlighted modifica-
tion of toxic metal effects by essential metals, evaluated exposure
windows of susceptibility, measured various species of toxic met-
als (e.g., arsenic), and assessed confounding by seafood con-
sumption and air pollution, all within one of the largest study
populations to address this topic. They found an increased risk of
preeclampsia with elevated third-trimester blood lead levels.
They also observed an increased risk of preeclampsia and gesta-
tional hypertension with elevated first-trimester blood arsenic
concentrations. These data underscore arsenic and lead as perina-
tal toxicants that remain an urgent public health concern. Lead
has been previously found to increase the risk of preeclampsia7;
however, there is more mixed evidence with regard to arsenic’s
contribution to hypertensive disorders of pregnancy.4 The find-
ings by Borghese et al. expand upon prior work that has also
documented other metals of concern, including cadmium, as
potential etiologic factors underlying hypertensive disorders of
pregnancy.4,8

Although toxic metals have been studied for hundreds of years,
these chemicals have received relatively less research attention
than newer, engineered chemicals in relation to hypertensive disor-
ders of pregnancy—which is unfortunate given their omnipre-
sence. Exposure to toxic metals, such as arsenic and lead,
predominately occurs via contaminated drinking water,9,10 geo-
genic and industrial sources,11–13 and contaminated food sour-
ces.14,15 Despite the established toxicity of lead and governmental
efforts to reduce exposure,16 measured biomarker levels remain
concerningly high among reproductive-age women around the
world.17–21 In fact, >500,000 pregnant women in the United States

were predicted to have blood lead levels >5 lg=dL between 2011
and 2017.19 This is particularly salient when considering that the
median lead levels in the study by Borghese et al. were orders of
magnitude lower (0:52–0:64 lg=dL).6

Arsenic also continues to be a contaminant of concern, particu-
larly in federally unregulated private well water, but also in public
community water systems. In the United States, concentrations
hundreds of times over the maximum contaminant level (MCL) set
by the U.S. Environmental Protection Agency (EPA; 10 lg=L)
have been reported in privatewellwater.22Although public commu-
nity water systems are regulated by the Safe Drinking Water Act,23

evidence shows that arsenic remains a problem in these systems as
well, with exceedances especially likely in the Southwestern United
States, in communities that are smaller or predominantly Hispanic
and systems that rely on groundwater.24 However, placing the find-
ings of blood arsenic from this study in the broader public health
context is slightly more challenging than with lead given that there
were inconsistent findings across the different arsenic biomarkers
evaluated. In addition, the half-life of blood arsenic is several hours
(thereby reflecting recent exposure that may or may not be chronic)
and there are no specific public health guidelines on arsenic expo-
sure for pregnant women, as exist for lead.25 Thus, more research is
needed to validate the findings on arsenic from the study by
Borghese et al.6 and tomore fully grasp the clinical and public health
implications.

Currently, it is not standard prenatal clinical care to test for
maternal body concentrations of toxicmetals or assess for potential
exposure sources, although movement in this direction is endorsed
by the American College of Obstetricians and Gynecologists and
the International Federation of Gynecology and Obstetrics.26–28

With studies such as Borghese et al. bolstering the evidence that
these toxicants contribute to hypertensive disorders of pregnancy,6

the foundation is strong for motivating change. Cultural shifts,
such as clinicians asking patients about their drinking water sour-
ces and providing information on effective, low-cost water testing
and filters,29,30 could improve outcomes for women at high risk of
exposure. Clinics could incorporate biomonitoring of arsenic, lead,
cadmium, and mercury, among other metals, and offer interven-
tions as needed. Moving forward, health insurance companies
should consider environmental health as preventative care, includ-
ing covering the costs of biomonitoring and water/air filters.
Achieving these changes may require evidence from clinical trials
that evaluate the impact of such interventions on perinatal out-
comes. Of course, action at the patient–provider level must be
coupled with continued pressure to improve and tighten environ-
mental regulations to reduce water, food, and air contamination in
the first place.31,32 In fact, tighter federal regulations have been
documented to reduce body burdens and disease incidence for both
lead and arsenic.10,33 For example, the U.S. EPA’s more stringent
MCL for arsenic implemented in 2006 reduced urinary arsenic lev-
els by an average of 17% among public community water system
users, which was predicted to reduce bladder and lung cancer inci-
dence by 200–900 cases per year.10
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One particularly striking finding in the study by Borghese et al.
is that the toxicity of blood arsenic was reduced at higher blood
manganese concentrations.6 Previous studies have also demon-
strated the capacity of essential metals and other dietary factors to
reduce the effects or body burden of toxic metals.8,34–37 These
studies suggest that nutritional factors that act on common toxicity
pathways could be used in clinical practice. For example, appropri-
ate supplementation with manganese may improve outcomes in
patients at high risk for metals exposure, a hypothesis worthy of
further investigation. Future epidemiologic research on this topic
should be encouraged to stratify by essential metals to test whether
this specific finding is repeated in different populations. In addi-
tion, animal model experimentation would likely be required to
evaluate safety of manganese supplementation, given its toxicity at
higher doses, before proceeding to trial therapeutic use in pregnant
populations. However, the use of essential metal supplementation
is feasible, as evidenced by the fact that calcium supplementation
has been shown to lower lead body burden in mouse models and
among pregnant and lactating women in human studies.38,39 In
turn, calcium supplementation is known to reduce the risk of pree-
clampsia; to our knowledge, the potential mediating role of the
reduction in blood lead levels in this relationship has not been
investigated.37,40

In addition to offering an avenue of potential clinical interven-
tion for risk reduction, the antagonistic effect of manganese on ar-
senic toxicity furthers the toxicologic evidence that oxidative stress,
particularly within the placenta, plays a critical role in the pathoge-
nesis of hypertensive disorders of pregnancy.41 Manganese is a
component of superoxidase dismutase, an antioxidant enzyme.42

Pathways related to oxidative stress and inflammation may play a
role in poor placentation, one of the hallmarks of preeclampsia.43–45

The activation of these pathways by toxicants such as arsenic may
be attenuated by the antioxidant capacities of chemicals such as
manganese. Interestingly, data support environmentally respon-
sive epigenetic control of these key pathways as part of the com-
plex biological underpinnings of preeclampsia, offering another
avenue for therapeutic strategies to be investigated.43,44,46,47

Continued epidemiologic studies along with in vivo and in vitro
research into the mechanisms of environmentally induced hyper-
tensive disorders of pregnancy may lead to further insights for
risk-reducing interventions.

Last, the findings in the study by Borghese et al.6 take on added
importance when considering the appalling racial disparities in
maternal and infant mortality in the United States, where Black
women are more likely to develop preeclampsia than their White
counterparts.48,49 Although disparities are less extreme in Canada,
where this study was conducted, they still persist.50 These dispar-
ities are likely in part driven by several forms of environmental
injustice that result in women of color having greater exposure to
harmful chemicals, including toxic metals.51,52 For example, mu-
nicipal underbounding leaves periurban communities of color
more likely to rely on unregulated private well water.53,54 Cultural
and commercial pressure to attain White beauty standards often
pusheswomen of color to use toxic skin and hair care products.55,56

Further, Superfund sites and other contaminating sources are dis-
proportionately likely to adjoin communities of color.13,57 Thus,
mounting evidence of toxic metals’ impact on adverse perinatal
health outcomes behooves us to confront environmental racism to
tackle maternal–child health disparities.

Taken together, the evidence raises three critical points to
consider for improving perinatal environmental health. First, we
must remain vigilant in focusing on toxic metals as chemicals of
concern for perinatal health. Second, it is imperative that clinical
care of pregnant patients include an assessment of environmental
health history, perhaps moving toward biomonitoring of toxic

metals and, ultimately, the implementation of exposure-reducing
interventions. Finally, to translate these findings into improved
perinatal health, we must advocate for solution-oriented changes,
such as subsidizing and distributing water filters to families at
high risk of exposure, ensuring community water systems comply
with federal regulations, expanding clinical trials of nutritional
interventions, and tackling environmental racism to promote
clean drinking water for all.
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