Table 3.
Model | AUC | Cutoff | Accuracy | Sensitivity | Specificity | PPV | NPV (SD) | F1-Score |
---|---|---|---|---|---|---|---|---|
XGBoost | 0.800 (0.019) | 0.463 (0.013) | 0.749 (0.017) | 0.718 (0.060) | 0.790 (0.036) | 0.643 (0.035) | 0.812 (0.026) | 0.677 (0.035) |
Logistic | 0.773 (0.025) | 0.468 (0.033) | 0.738 (0.028) | 0.650 (0.065) | 0.821 (0.064) | 0.649 (0.051) | 0.788 (0.045) | 0.648 (0.050) |
Light GBM | 0.531 (0.081) | 0.600 (0.800) | 0.626 (0.042) | 0.350 (0.308) | 0.751 (0.292) | NA | 0.651 (0.038) | NA |
AdaBoost | 0.791 (0.028) | 0.467 (0.002) | 0.714 (0.031) | 0.695 (0.065) | 0.782 (0.053) | 0.584 (0.056) | 0.820 (0.036) | 0.633 (0.052) |
GNB | 0.790 (0.031) | 0.351 (0.032) | 0.738 (0.037) | 0.694 (0.065) | 0.807 (0.073) | 0.639 (0.066) | 0.809 (0.045) | 0.664 (0.057) |
CNB | 0.671 (0.029) | 0.993 (0.022) | 0.653 (0.031) | 0.677 (0.042) | 0.661 (0.028) | NA | 0.739 (0.066) | NA |
MLP | 0.606 (0.077) | 0.397 (0.029) | 0.617 (0.107) | 0.548 (0.305) | 0.664 (0.289) | NA | NA | NA |
SVM | 0.524 (0.093) | 0.449 (0.057) | 0.569 (0.100) | 0.554 (0.292) | 0.576 (0.316) | 0.467 (0.126) | 0.717 (0.146) | 0.456 (0.155) |
Data are shown as means ± standard deviations (SD).
AUC, area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, negative prediction value; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron neural network; SVM, support vector machine; NA, not applicable.