Skip to main content
. 2023 Apr 6;11:1087297. doi: 10.3389/fpubh.2023.1087297

Table 3.

Model parameters in validation set.

Model AUC Cutoff Accuracy Sensitivity Specificity PPV NPV (SD) F1-Score
XGBoost 0.800 (0.019) 0.463 (0.013) 0.749 (0.017) 0.718 (0.060) 0.790 (0.036) 0.643 (0.035) 0.812 (0.026) 0.677 (0.035)
Logistic 0.773 (0.025) 0.468 (0.033) 0.738 (0.028) 0.650 (0.065) 0.821 (0.064) 0.649 (0.051) 0.788 (0.045) 0.648 (0.050)
Light GBM 0.531 (0.081) 0.600 (0.800) 0.626 (0.042) 0.350 (0.308) 0.751 (0.292) NA 0.651 (0.038) NA
AdaBoost 0.791 (0.028) 0.467 (0.002) 0.714 (0.031) 0.695 (0.065) 0.782 (0.053) 0.584 (0.056) 0.820 (0.036) 0.633 (0.052)
GNB 0.790 (0.031) 0.351 (0.032) 0.738 (0.037) 0.694 (0.065) 0.807 (0.073) 0.639 (0.066) 0.809 (0.045) 0.664 (0.057)
CNB 0.671 (0.029) 0.993 (0.022) 0.653 (0.031) 0.677 (0.042) 0.661 (0.028) NA 0.739 (0.066) NA
MLP 0.606 (0.077) 0.397 (0.029) 0.617 (0.107) 0.548 (0.305) 0.664 (0.289) NA NA NA
SVM 0.524 (0.093) 0.449 (0.057) 0.569 (0.100) 0.554 (0.292) 0.576 (0.316) 0.467 (0.126) 0.717 (0.146) 0.456 (0.155)

Data are shown as means ± standard deviations (SD).

AUC, area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, negative prediction value; GNB, Gaussian Naïve Bayes; CNB, Complement Naive Bayes; GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron neural network; SVM, support vector machine; NA, not applicable.