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Abstract

Heterogeneity in biological aging manifests itself in health status and mortality. Frailty indices 

(FIs) capture health status in humans and model organisms. To accelerate our understanding of 

biological aging and carry out scalable interventional studies, high-throughput approaches are 

necessary. Here we introduce a machine-learning-based visual FI for mice that operates on video 

data from an open-field assay. We use machine vision to extract morphometric, gait and other 

behavioral features that correlate with FI score and age. We use these features to train a regression 

model that accurately predicts the normalized FI score within 0.04 ± 0.002 (mean absolute error). 

Unnormalized, this error is 1.08 ± 0.05, which is comparable to one FI item being mis-scored by 

1 point or two FI items mis-scored by 0.5 points. This visual FI provides increased reproducibility 

and scalability that will enable large-scale mechanistic and interventional studies of aging in mice.

Aging is a terminal process that affects all biological systems. Biological aging, in contrast 

to chronological aging, occurs at different rates for different individuals. There is an 

observed heterogeneity in mortality risk and health status among individuals within an age 
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cohort1,2. The concept of frailty is used to quantify this heterogeneity and is defined as the 

state of increased vulnerability to adverse health outcomes3. Identifying frailty is clinically 

important as frail individuals have an increased risk of diseases and disorders, worse health 

outcomes from the same disease and even different symptoms of the same disease2.

An FI is an invaluable tool for quantifying frailty4,5. In this method, an individual is scored 

on a set of age-related health deficits to produce a cumulative score4. The presence and 

severity of each health deficit is scored as 0 for not present, 0.5 for partially present or 

1 for present. The health deficits scored can vary between indices but still show similar 

characteristics and utility; two sufficiently large frailty indices (FIs) with different deficits 

would similarly predict an individual’s risk of adverse health outcomes and mortality4. 

FI scores outperform other developed measures, including molecular markers and frailty 

phenotyping at predicting mortality risk and health status5–7.

FIs have since been adapted for use in mice2,5,8. The mouse FI shows many of the 

characteristics of human FIs, including a submaximal limit and a strong correlation 

with mortality9. Mouse FIs have been used successfully to evaluate a variety of aging 

interventions10 and for construction of models of chronological age and mortality5. Unlike 

human FIs, the majority of mouse frailty indexing has been performed using the same set of 

health deficits as Whitehead et al.2, although some studies have substituted a small number 

of mouse FI items for ones that better fit their specific strain or experiment10.

The successful creation of the mouse FI is a major step forward in aging research, 

particularly for long-term interventional studies that may be carried out by multiple 

laboratories; however, mouse FI scoring requires trained individuals, which limits the 

scalability of the tool. Manually scoring thousands of mice is labor intensive and so mouse 

studies that employ FIs are much smaller9. Furthermore, as many of the FI metrics require 

some level of subjective judgment, there are concerns about scorer-based variability and 

reproducibility10–12. The reliability of FI between scorers has been found to be very good 

in general, but these studies on inter-scorer agreement strongly emphasize the importance 

of inter-scorer discussion and refinement in obtaining high agreement10–12. Discussion and 

refinement is not always feasible in multi-site or long-term studies. Therefore, although an 

FI is an extremely useful tool for aging research, an increase in its scalability, reliability and 

reproducibility through automation would enhance its utility.

Toward this end, we developed an automated visual FI (vFI) using videos of mice in 

the open field. The open field is one of the oldest and most widely used assays for 

rodent behavior13. Commonly, measures such as locomotion, thigmotaxis, grooming and 

defecation have been used14; however, advances in machine-learning techniques have 

greatly expanded the types of metrics that can be extracted from the open-field assay15,16. 

These advances are largely due to discoveries in the computer vision and statistical learning 

field17–22. We, along with a number of other groups, have applied these new methods to 

animal behavior analysis. Our group has developed methods for image segmentation and 

tracking in complex environments23, action detection24 and pose-based gait and whole-body 

coordination measurements in the open field25. These and other highly sensitive methods 

have advanced animal behavior extraction15,26–28.
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Our goal was to develop an efficient scalable method to determine frailty in the mouse using 

computer vision-based features. We hypothesized that biological aging produces changes 

in behavior and physiology that are encoded in video data (we can visually determine the 

frailty of an animal based on their open-field behavior). Additionally, sex differences in 

the FI are still an active area of research9,29–32. Therefore, we generated one of the largest 

mouse FI datasets consisting of both males and female C57BL/6J. We extracted measures 

from video data using machine-learning methods. We used these features to construct a 

vFI model that has high prediction accuracy. Through modeling, we also gained insight 

into which video features are important to predict FI score across age and frailty status. 

Our automated vFI will increase efficiency and accuracy for large-scale studies that explore 

mechanisms and interventions of aging.

Results

Data collection and study design.

Our overall approach is described in Fig. 1a. The study was conducted with 643 data 

points (371 males and 272 females) taken over three rounds of testing with 533 unique 

mice (Supplementary Table 1). Top-down video of each mouse in a 1-h open-field session 

was collected according to previously published protocols16,23 (Methods, Fig. 1a and 

Supplementary Videos 1 and 2 as examples of a young and old mouse). Following the 

open field, each mouse was scored using a mouse FI by a trained expert to assign a manual 

FI score33 (Supplementary Fig. 2a). Despite bi-modality in age (Hartigan’s test34, D = 0.07, 

P < 2.2 × 10−16) of our data, we found that the Simpson’s paradox35 did not manifest in any 

of the top 15 features in our data (Supplementary Fig. 4a,b).

Consistent with previous data, in our dataset, the mean FI score increases with age (Fig. 1b). 

The heterogeneity of the FI scores also increases with age. We found a submaximal limit 

of the FI score slightly below 0.5 for our data, which falls within a range of submaximal 

limits shown in mice2,9. These results show that our FI data are typical of other mouse data 

and mirror the characteristics of human FIs9. Over the course of the data collection, four 

different scorers conducted the manual FI. Inspection of the data showed a scorer effect on 

the manual FI score (Fig. 1c). For instance, scorer 1 and 2 tended to generate high and low 

frailty scores, respectively (Supplementary Fig. 1b). The modeling indicated that 42% of the 

variability in manual FI scores was due to a scorer effect (Fig. 1c). Piloerection, kyphosis 

and vision are the most affected items (Supplementary Fig. 1a).

Feature extraction.

The open-field video was processed by a tracking network and a pose estimation network, 

to produce an ellipse fit and a 12-point pose of the mouse for each frame23,25. These 

frame-level measurements were used to calculate a variety of per-video features, including 

traditional open-field measures23, grooming24, gait and postural measures25 and engineered 

features. All extracted features with explanation and source of the measurements can be 

found in Supplementary Table 2. Overall, there was a very high correlation between median 

and mean video metrics (Supplementary Fig. 3a,b). We decided to use only medians and 

interquartile ranges (IQRs) in modeling where possible for two reasons: medians tend to 
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have higher correlation with FI score than mean and median and IQRs are more robust to 

outlier effects than means and s.d. values, respectively. This gave us a total of 44 video 

features (Supplementary Tables 3 and 2). We first looked at metrics taken in standard 

open-field assays, such as total locomotor activity, time spent in the periphery and center 

and grooming bouts (Fig. 2a). All standard open-field measures showed low correlation with 

both FI score and age (Supplementary Tables 3 and 4).

In addition to the existing features, we designed a set of features that we hypothesized 

may correlate with FI. These include morphometric features that capture the animal’s 

shape. Changes in body composition and fat distribution with age are observed in humans 

and rodents36. We hypothesized that body composition measurements may show some 

relationship to aging and frailty. We took the median measurement of major and minor 

axes of the ellipse fitted to the mouse over all frame as an estimated length and width of 

the mouse, respectively (Fig. 2b). The median distance between the rear-paw coordinates 

over all frames was taken as another width measurement. Many of these morphometric 

features showed high correlations with FI score and age (Supplementary Tables 3 and 4), 

for example, median width and median rear-paw width had correlations of r = 0.56 and 0.57, 

respectively (Fig. 2c).

Changes in gait are a hallmark of aging in humans37,38 and mice39,40. Recently, we 

established methods to extract gait and posture measures from freely moving mice in the 

open field25. We carried out similar analysis to explore age-related gait changes in our 

dataset (Fig. 2d,e). Each stride was analyzed for its spatial, temporal and posture measures 

(Fig. 2d) and we took the medians of these measure over all strides for each mouse. We also 

looked into intra-mouse heterogeneity of gait features by calculating IQR over all strides 

for each mouse. Many of these measures showed a high correlation with the FI score and 

age (Supplementary Tables 3 and 4), for example, the median step width and tip-tail lateral 

displacement IQR (r = 0.58 and r = 0.63, respectively) (Fig. 2e).

We next investigated the bend of the spine throughout the video (Supplementary Video 3). 

We hypothesized that aged mice may bend their spine to a lesser degree, or less often due 

to reduced flexibility or spine mobility. This change can be captured by the pose estimation 

coordinates of three points on the mouse at each video frame: the back of the head (A), the 

middle of the back (B) and the base of the tail (C). At each frame, the distance between 

points A and C normalized for mouse length (dAC), the orthogonal distance of the middle 

of the back B from the line (dB) and the angle of the three points (aABC) were calculated 

(Fig. 2f) (Methods). We found some correlations showing relationships between spinal bend 

and FI score that contradicted our hypothesis (Supplementary Tables 3 and 4); while we 

expected dB median for all frames and dB median for non-gait frames to decrease with age, 

we found that they increase (r = 0.45 and 0.44, respectively) (Fig. 2g). High-frailty mice may 

have higher dB medians partially due to body composition, as dB median has a correlation 

of 0.496 with body weight. It is important to note that these bend metrics cast a wide net; 

they are an inexpensive and general account of all the activity of the spine during the 1-h 

open field. Thus, these measures capture the interaction between body composition and 

behavior.
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We also looked at occurrences of rearing supported by the wall (Fig. 2h and Supplementary 

Video 4). We hypothesized that frailer mice may rear less due to reduced lateral spinal 

mobility and/or reduced exploratory activity. We heuristically scored rearing by tracking the 

nose point of the mouse and the edges of the arena (Methods). We determined the number 

of rears and the average length of each rearing bout (Supplementary Table 2). We found that 

some metrics related to rearing bouts show signal for frailty, specifically total count of rears 

and rears in the first 5 min (r = 0.2 and 0.3, respectively; Fig. 2i).

Notably, most of the correlations with age were slightly higher than correlations with FI 

score (Supplementary Tables 3 and 4). Of further note is the increase of heterogeneity in 

many of these measures with both age and FI score (for example, median width, median step 

width and dB median).

Sex differences in frailty.

The sex-specific characteristics of aging are important considerations. To visualize sex 

differences in frailty, we stratified the FI score data into four age groups and compared the 

box-plots for each age group between males and females (Fig. 3a). The oldest age group 

included 25 females compared to 122 males. The range of females’ frailty scores for each 

age group tended to fall lower than males except for the oldest age group. The middle two 

age groups showed highly significant differences in distribution between males and females.

Comparisons between the correlations of male and female FI item scores with age showed 

an overall high correlation (Fig. 3b and Supplementary Table 5). The average difference 

between male and female correlations of FI index items with age was 0.08, but a few 

index items showed notable differences. Alopecia and menace reflex have the highest sex 

differences in their correlation to age (0.29 and 0.21, respectively), with females having 

a higher correlation for alopecia and males having a higher correlation for menace reflex 

(Supplementary Table 5).

The correlations of male and female video features with both FI score and age were also 

high overall (Fig. 3c,d and Supplementary Tables 3 and 4). In both FI score and age, the 

video features with the highest sex differences were gait measures. Females had a higher 

correlation for median base-tail lateral displacement and median tip-tail lateral displacement 

to both FI score and age. For the metrics related to stride length and step length, males had 

a higher correlation to FI score and age. These results show that with age, females increase 

their base-tail and tip-tail lateral displacement in gait while males show little change in 

this feature, whereas males show a greater reduction in stride length with age compared to 

females.

Prediction of age and frailty index from video data.

Once we established that our video features correlated with aging and frailty, we used 

these features as covariates in a model to predict age and manual FI scores (Fig. 4a; 

model vFRIGHT and vFI, respectively). Age is an empirical ground truth and has a strong 

relationship to frailty. We compared the prediction of age using video features (Fig. 4a; 

Model vFRIGHT) to the prediction of age using manual FI items, a method referred to as the 
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FRIGHT age clock5 (Fig. 4a; Model FRIGHT). We first tested four models, penalized linear 

regression (LR*)41, support-vector machine (SVM)42, random forest (RF)43 and extreme 

gradient boosting (XGB)44 (Fig. 4b; panel 1). We selected the RF regression model as our 

vFRIGHT model to predict age on unseen future data due to its superior performance over 

other models (Fig. 4b, panel 1, Supplementary Fig. 2c). Our vFRIGHT model was able to 

more accurately and precisely predict age (mean absolute error (MAE) 13.1 ± 0.99 weeks) 

than the FRIGHT clock (15.7 ± 4 weeks) (Fig. 4b, panel 2 and Supplementary Fig. 2d). The 

variance of prediction errors was noticeably reduced for vFRIGHT compared to FRIGHT 

(Fig. 4b, panel 2). We also plotted the predicted versus actual values for the train and test 

sets for the vFRIGHT model (Fig. 4g) and the FRIGHT model (Supplementary Fig. 2g). We 

find that for the youngest and oldest terciles, the model does better at predicting age than 

at the middle tercile. These results show that the automated video features offer information 

about age beyond what is addressed in the manual FI items. The video features may also 

provide information of aging which overlap with the health deficits scored in the manual FI.

To address this, we predicted individual FI items using video features (Fig. 4a). Of the 

27 items, many had no to almost no non-zero scores, which shows that in our genetically 

homogeneous dataset at least, most of the information in the manual FI are coming from a 

subset of index items (Supplementary Fig. 2f). We selected only index items with a balanced 

ratio of 0 to 0.5 and 1 scores for prediction (Fig. 4c). We then built a classifier for each of 

the nine index items to predict the score given a mouses video features. We predicted the 

individual FI items’ scores using an ordinal elastic-net regression model. For all nine, we 

were able to predict the score at an accuracy above what would be expected by randomly 

guessing (Fig. 4c; dotted line shows guessing accuracy). Many of these FI items have 

implicit relationships to video features such as grooming (coat condition and alopecia), gait/

mobility (gait disorders and kyphosis) and body composition (distended abdomen and body 

condition). In the FRIGHT model, we found that gait disorders, kyphosis and piloerection 

had the highest contribution to age prediction in our dataset, followed by distended abdomen 

and body condition (Supplementary Fig. 2b), all items that our video features were able to 

predict the score for (Fig. 4c). These results together showed that most of the information for 

aging and frailty came from a small subset of manual FI items and that we are able to predict 

the information in this subset with video data. Furthermore, as we were able to predict age 

more accurately and precisely with video data than with manual FI items, video data may 

also contain additional signals for aging.

Next, we addressed the goal of a vFI (Fig. 4a; Model vFI): prediction of manual FI score 

with video data. Similarly to the vFRIGHT modeling, the RF regression model predicted FI 

score on unseen future data better than all other models (Fig. 4d and Supplementary Fig. 

2e). The model could predict the FI score within 0.04 ± 0.002 of the actual FI score (FI 

scores have a possible range of 0 to 1, in our dataset we find a range of 0.04 to 0.47). This 

error is akin to 1 FI item mis-scored at one or two items mis-scored at 0.5 and demonstrates 

the robustness of the model. The residuals computed from the training data show that their 

distribution is symmetric around zero for both models and most residuals fall around the 

black diagonal line. The residuals for the test set follow similar patterns (Fig. 4f,g and 

Supplementary Fig. 2g). Age has a correlation with manual FI score of r = 0.81 which is 

Hession et al. Page 6

Nat Aging. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher than any video feature. Thus, when we use a model with only age as feature, we 

find a higher prediction accuracy (Supplementary Fig. 5a). The model using both video 

features and age (AllRF) does notably better than the model with age alone, showing that the 

video features provide important information about frailty (Supplementary Fig. 5a). When 

we looked specifically at mice whose FI scores deviated from their age group, younger mice 

with higher frailty and older mice with lower frailty, the vFI model (VideoRF) performs 

better than the model using age and even the model using video features + age (AllRF) 

(Supplementary Fig. 5b). For mice who are outliers of their age group, video features 

provide better information about frailty than age. All together, we conclude that the vFI 

successfully predicts frailty beyond chronological age.

Finally, to see how much training data are realistically needed for high performance 

prediction with vFI and vFRIGHT, we performed a simulation study where we allocated 

different percentage of total data to training. We found that a training set of <80% of our 

current dataset achieved similar performance, whereas a decrease below this shows a general 

downward trend in performance (Supplementary Fig. 5e). As open-field tests are sometimes 

shorter than 1 h, we next investigated the accuracy for vFI predictions using shorter tests 

by truncating videos to the first 5 and first 20 min (Supplementary Fig. 5d). We observed a 

significant drop in performance accuracy when the open-field test length is reduced from a 

60 to 20-min video.

Quantification of uncertainty in frailty index predictions.

In addition to quantification of an average accuracy, we investigated prediction errors more 

closely within our dataset to see how performance changes across frailty and age. We 

quantified the prediction error by providing prediction intervals (PIs)45. For mice in the test 

set, we use generalized RFs based on quantiles to provide the point predictions of the FI 

score (age resp.) and PIs, which give a range of FI (age resp.) values that will contain the 

unknown FI scores (resp. age) with 95% confidence (Supplementary Fig. 2h,i). We find that 

the widths of the PIs are mouse and age-group specific. We plotted a smoothed regression fit 

for PI width versus age, which indicated that the widths increased with mouse age (Fig. 4e). 

The variability of 95% PI widths (Fig. 4e) showed higher variability for mice belonging to 

the middle (M) age groups (labeled M in green). We went beyond simple point predictions 

by providing PIs of the FI to quantify our predictions’ uncertainty. This allowed us to 

pinpoint the FI score and age with higher accuracy for some mice than others.

Feature importance for prediction of frailty.

A useful vFI should depend on several features that can capture the mouse’s inherent frailty 

and simultaneously be interpretable. Interpretability can prevent bias46,47 and can guide the 

design of new features and improve later iterations of the vFI. We took two approaches to 

identify the features important for making vFI predictions using the trained RF model: (1) 

feature importance and (2) feature interaction strengths.

A comparison of the feature importance’s for the vFI and vFRIGHT (age prediction) models 

(Fig. 4a) shows that though many of the most important video features to the model are 

shared, there are a couple key differences (Supplementary Fig. 5c). For example, step width 
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IQR is much more important for the vFI than for vFRIGHT and tip-tail lateral displacement 

(LD) IQR is much more important for vFRIGHT than for vFI. We next obtained a more 

complete picture of the feature importance by modeling three different quantiles of the 

conditional distribution of the FI score: low frail (Q1), intermediate frail (M) and high 

frail (Q3) mice. We found that different sets of features were crucial for mice belonging to 

different frailty groups (Fig. 5a). For the feature interaction strength approach, we measured 

the fraction of variability in predictions explained by feature interactions after considering 

the individual features48 (Fig. 5c). For example, we can explain ⇡ 15% of the prediction 

function variability due to interaction between step width IQR and other features after 

considering the individual contributions due to step width IQR and other features.

Both feature importance and feature interaction strengths informed us that the trained RF for 

vFI depends on several features and their interactions; however, they did not tell us how the 

vFI depends on these features and how the interactions look. We used the accumulated local 

effect (ALE) plots49 that describe how features influence the RF model’s vFI predictions on 

average (Fig. 5b). For example, an increasing tip-tail lateral displacement positively impacts 

(increases) the predicted FI score for mice in all groups. We explored the ALE second-order 

interaction effect plot for the step length1-step width (Fig. 5d) and body length-width (Fig. 

5e) predictors. Figure 5d revealed an interaction between step width and step length: mice 

with the lowest step widths and step length1 between 2.2 and 2.7 have a higher vFI on 

average (yellow area) compared to mice with lower step lengths (dark blue area). Similarly, 

larger widths (3.7–4.5) and smaller lengths (4.5–5.5) had a negative impact on the average 

FI scores predictions (Fig. 5e).

To summarize, we established vFI’s utility by demonstrating its dependence on several 

features through marginal feature importance and feature interactions. Next, we used the 

ALE plots to understand the effects of features on the model predictions, which help us 

relate the black-box models’ predictions to our video-generated features, an essential final 

step in our modeling framework.

Discussion

The mouse FI is an invaluable tool in the study of biological aging. Here we sought to 

extend it by producing a scalable automated vFI using video-generated features to model FI 

score. We generated one of the largest frailty data sets for the mouse with associated open-

field video data. We used machine-vision techniques to extract an array of features, many of 

which show strong correlations with aging and frailty. We also analyzed sex-specific aging 

in mice. We then trained machine-learning models that can accurately predict age and frailty 

from video features.

We collected our data at a national aging center with a similar design as expected in 

a high-throughput interventional study that may run for several years. The mice were 

tested by the trained scorer who was available; four different scorers were used to FI test 

the different batches of mice. Further, we had some personnel changes between batches. 

These conditions may provide a more realistic example of inter-laboratory conditions, where 

discussion and refinement would be difficult. We found that 42% of the variability in our 

Hession et al. Page 8

Nat Aging. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset could be accounted for by the scorer, indicating the presence of a tester effect. 

This variability and affected some items, such as piloerection, more than others. Although 

previous studies looking at tester effect found good to high inter-reliability between testers 

in most cases, FI items showing lower inter-reliability required discussion and refinement 

for improvement10,12.

Top-down videos of mice in the open field were processed by previously trained neural 

networks to produce an ellipse fit, segmentation and pose estimation of the mouse for 

each frame. These frame-by-frame measures were used to engineer features. In humans, 

changes in age-related body composition and anthropometric measures such as waist-to-

hip ratio are predictors of health and mortality risk50–52. There are observed changes in 

body composition in rodents similar to humans51,53. We found high correlation between 

morphometric features and both FI score and age, in particular median width and median 

rear-paw width.

The prevalence of gait disorders and irregularities increase with age37,38. We looked at the 

spatial, temporal and postural characteristics of gait for each mouse and found many features 

with a strong correlation with both frailty and age. We found a decrease in stride speed 

with age, as well as an increase in step width variability38. As gait is thought to have both 

cognitive and musculoskeletal components, it is a compelling area for frailty research.

Spinal mobility in humans is a predictor of quality of life in aged populations54. Notably, 

although some spinal bend metrics showed moderately high correlations with the FI score 

and were deemed important features in the model, the relationship was the opposite of what 

we initially hypothesized. As these metrics are a general account of all the activity of the 

spine, they are likely capturing a combination of behaviors and body composition that gave 

this result.

Many age-related biochemical and physiological changes are known to be sex-specific30–32. 

In humans, there is a known ‘sex-frailty paradox’, where women tend to be more frail but 

paradoxically live longer29. However, in C57BL/6J mice, the evidence is mixed2,29,55. We 

found that more males survived to old age and further, we found females tended to have 

slightly lower frailty distributions than males of the same age group. These results suggest 

that in C57BL/6J mice, the sex-frailty paradox may not exist or may be reversed. We also 

found a number of starkly different correlations of certain gait features with age and FI score 

between males and females.

The manual FI evaluates a wider range of body systems than vFI; however, we believe that 

the complex behaviors we measure contain implicit information about many body systems. 

We found that in our isogenic dataset, most information in the manual FI was came from 

a limited subset of index items. Of the 27 manual FI items scored, 18 items had little to 

no variation in score in our dataset (almost all mice had the same score) and only 9 items 

had a balanced distribution of scores. Our video features can accurately predict those nine 

FI items. Our model using video features also predicted age more accurately with much less 

variance than the model using manual FI items (FRIGHT versus vFRIGHT). This suggests 

that our video features can not only predict the relevant FI items but also contain signals for 
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aging beyond the traditional manual FI. We find that the model does better at predicting age 

for the youngest and oldest terciles than for the middle tercile. This may be partially due to 

having fewer data at the middle tercile.

Finally, using the video features as input to the RF model, we were able to predict the 

manual FI score within 0.04 ± 0.002 of the actual score on average. Unnormalized, this 

error is 1.08 ± 0.05, which is comparable to one FI item being mis-scored by 1 point or 

two FI items being mis-scored by 0.5 points. We went beyond simple point predictions by 

providing 95% PIs. We then applied quantile RFs to low and high quantiles of the FI score’s 

conditional distribution that revealed how certain features affected frail mice differently.

Ease of use of the trained model by non-computational labs is an important challenge. 

Therefore, in addition to implementation details in the Methods, we have detailed our 

integrated mouse phenotyping platform, a hardware and software solution that provides 

tracking, pose estimation, feature generation and automated behavior analysis56. This 

platform requires a specific open-field apparatus; however, researchers would be able to use 

the trained model if they generate the same features as our model using their own open-field 

data collection apparatus.

The vFI can be further improved with the addition of new features through reanalysis 

of existing data and future technological improvements to data acquisition57,58. For 

instance, new behaviors could provide information about additional systems, while higher 

camera quality could provide information about fine-motor movement-based behaviors and 

appearance-based features. Additionally, this approach could be applied to a long-term 

home cage environment. Not only would this reduce handling and environmental factors, 

features such as social interaction, feeding, drinking, sleep and others could be integrated. 

Given the evidence of a strong genetic component to aging59, application of this method 

to other strains and genetically heterogeneous populations, such as Diversity Outcross 

and Collaborative Cross, may reveal how genetic variation influences frailty. Further, as 

predicting mortality risk is a vital function of frailty, video features could be used to study 

lifespan. We also imagine that the value of this work could go beyond community adoption 

and toward community involvement; training data from multiple laboratories could provide 

an even more robust and accurate model. This could provide a uniform FI across studies. 

Overall, our approach has produced insights into mouse frailty and shows that video data 

of mouse behavior can be used to quantify aggregate abstract concepts such as frailty. Our 

work enables high-throughput, reliable aging studies, particularly interventional studies that 

are a priority for the aging research community.

Methods

Mice.

C57BL/6J mice were obtained from the Nathan Shock Center at The Jackson Laboratory. 

A total of 533 male and female mice from the ages of 8 to 161 weeks old were tested in 

accordance with approved protocols from The Jackson Laboratory Institutional Animal Care 

and Use Committee guidelines. This is an aging colony and were originally house eight 

mice to a pen. Each pen had an amber tunnel, chew block, shack and nestlet. The average 
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temperature is 69 °F with 45% humidity. The first round (batch 1) of tests included 222 

mice (141 males and 81 females). The second round (batch 2) of tests occurred about 5 

months later and included 319 mice (173 males and 146 females). Of those mice, 105 were 

repeated from the first batch. The third round (batch 3) of testing occurred about a year later 

in response to reviewer comments with 102 mice (57 males and 45 females). Of these mice, 

18 had previously been tested in the first round and 15 had been tested in the second round

Open-field assay and frailty indexing.

Mice were shipped from Nathan Shock Center aging colony, which resides in a different 

room in the same animal facility at The Jackson Laboratory. The mice were acclimated for 

1 week to the Kumar Laboratory animal holding room, adjacent to the behavioral testing 

room. During the day of the open-field test, mice were allowed to acclimate to the behavior 

testing room for 30–45 min before the start of test. Open-field testing was performed by 

placing the mouse in the open field arena for 1 h for recording16,23,56. After open-field 

testing, mice were returned to the Nathan Shock Center for manual FI (Supplementary 

Table 6). Manual FI was performed by trained experts in the Shock Center within 1 

week of the open-field assay on each mouse. Mice were brought into the procedure room, 

body weights are recorded and mice were left undisturbed to acclimate to the procedure 

room for a minimum of 60 min. Mice were assessed one at a time for the multiple 

characteristics with the approximate time to complete the battery of 3–4 min per mouse 

(Fig. 1). With the exception of quantitative measures of body weight (g) and core body 

temperature (°C), all other characteristics were assessed on a scale of 0, 0.5 or 1 by a 

trained technician blinded to genotype or age2,33. Body temperature was taken via a glycerol 

lubricated thermistor rectal probe (Braintree Scientific product RET 3; measuring 3/4 inches 

L 0.028 dia. 0.065 tip) inserted 2 cm into the rectum of the mouse for approximately 10 

s and body temperature recorded (to the nearest 0.1 °C (Braintree Scientific product TH5 

Thermalert digital thermometer). Between subjects, the thermistor probe was wiped with 

70% ethanol and re-lubricated with glycerol. FI testing sheet with all items can be found in 

Supplementary Materials.

Video, segmentation and tracking.

Our open-field arena, video apparatus and tracking and segmentation networks are detailed 

elsewhere23,56. Briefly, the open field arena measures 20.5 inches by 20.5 inches with 

Sentech camera mounted 40 inches above. The camera collects data at 30 fps with a 640 × 

480-pixel resolution. We use a neural network trained to produce a segmentation mask of the 

mouse to produce an ellipse fit of the mouse at each frame as well as a mouse track.

Pose estimation and gait.

The 12-point two-dimensional pose estimation was produced using a deep convolutional 

neural network25. The points captured are nose, left ear, right ear, base of neck, left forepaw, 

right forepaw, mid-spine, left rear-paw, right rear-paw, base of tail, mid-tail and tip of tail. 

Each point at each frame has an an x coordinate, a y coordinate and a confidence score. 

We use a minimum confidence score of 0.3 to determine which points are included in the 

analysis.
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The gait metrics were produced by a trained neural network25. Briefly, stride cycles were 

defined by starting and ending with the left hind paw strike, tracked by the pose estimation. 

These strides were then analyzed for several temporal, spatial and whole-body coordination 

characteristics, producing the gait metrics over the entire video.

Open-field measures and feature engineering.

Open-field measures were derived from ellipse tracking of mice23,24,56. The tracking 

was used to produce locomotor activity and anxiety features. Grooming was classified 

using an action detection network24. The other engineered features (spinal mobility, body 

measurements and rearing) were all derived using the pose estimation data. The spinal 

mobility metrics used three points from the pose: the base of the head (A), the middle of the 

back (B) and the base of the tail (C). For each frame dAC, dB and aABC were measured. 

The means, medians, maximum values, minimum values and s.d of dAC, dB and aABC 

were taken over all frames and over frames that were not gait frames (where the animal 

was not walking). For morphometric measures, we measured the distance between the two 

rear-paw points at each frame and also the means, medians and s.d. of that distance over all 

frames. For rearing, we took the coordinates of the boundary between the floor and wall of 

the area (using OpenCV contour) and added a buffer of four pixels. Whenever the mouse’s 

nose point crossed the buffer, this frame was counted as a rearing frame. Each uninterrupted 

series of frames where the mouse was rearing (nose crossing the buffer) was counted as a 

rearing bout. The total number of bouts, the average length of the bouts, the number of bouts 

in the first 5 min and the number of bouts within 5–10 min were calculated.

Modeling.

We investigated the effect of the scorer using a linear mixed model with scorer as the 

random effect and found that 42% of the variability (restricted likelihood-ratio test (RLRT) = 

183.85, P < 2.2 × 10−16) in manual FI scores could be accounted for by scorer (Fig. 1c). An 

RLRT60 provided strong evidence of scorer (random) effect with non-zero variance. We fit a 

cumulative link model (logit link)61 to the ordinal response (frailty parameter) with weight, 

age and sex as fixed effects and the tester as a random effect. The effects are estimated 

variances associated with the random tester effect in the model (y axis) across each FI item. 

We removed the tester effect from the FI scores using a linear mixed model

yij = μi + eij eij, N 0, s2 , μi P ⌘ N 0, t2

with the lme4 R package62. The following model was fit:where yij is the jth animal scored by 

tester i, μi is a tester-specific mean, eij is the animal-specific residual, s2 is the within-tester 

variance and P  is the distribution of tester-specific means. We had four testers with different 

number of animals tested by each tester i = 1, …, 4 . The tester effects, estimated with 

the best linear unbiased predictors using restricted maximum likelihood estimates63 were 

subtracted from the FI scores of the animals, yij
∼ = yij − μ̂i.

We modeled tester-adjusted FI scores, yij
∼, with video-generated features as covariates/inputs 

using linear regression model with elastic-net penalty41, SVM42, RF43 and gradient-boosting 
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machine44. We split the data randomly into two parts: train (80%) and test (20%). We 

ensured that the repeat measurements from the same mouse belonged to either the training 

or the test data and not both. We used the training data to estimate and tune the models’ 

hyper-parameters using tenfold cross-validation; the test set served as an independent 

evaluation sample for the models’ predictive performance. We performed 50 different splits 

on the data to allow for a proper assessment of uncertainty in our test set results. The models 

were compared in terms of MAE, root-mean-squared-error (RMSE) and R2. These metrics 

were compared across the four models using repeated-measures ANOVA through F  test with 

Satterthwaite approximation64 applied to the test statistic’s denominator d.f.

For FRIGHT modeling to predict age with manual FI items, we removed frailty parameters 

with a single value to avoid unstable model fits (zero-variance predictors). We fitted the 

ordinal regression models65 without any regularization term and used a global likelihood-

ratio test (P < 2.2 × 10−16) to determine whether the video features show any evidence of 

predicting each frailty parameter separately (evidence of a predictive signal). Next, we used 

the ordinal regression model with an elastic-net penalty41 to predict frailty parameters using 

video features.

For predicting manual FI items, we selected frailty parameters for which P i < 0.80, where i is 

the mode of the parameters’ count distribution. For example, menace reflex is excluded, as i 

= 1 is the mode for menace reflex’s count distribution with P1 > 0.95.

We obtained the 100(1−a)% out-of-bag PIs X, Cn , where X is the vector of covariates and 

P1 > 0.95 is the training set, via quantile RFs66 with the grf package67. PIs produced with 

quantile regression forests often perform well in terms of conditional coverage at or above 

nominal levels that is P y 2Ia X, Cn ∣ X = x 1 − a, where we set a = 0.05.

We picked animals whose ages and FI scores had an inverse relationship (younger animals 

with higher FI scores and older animals with lower FI scores). We formed five test sets 

containing animals with these criteria and trained the RF model on the remaining mice. We 

evaluated the predictive accuracy for predicting FI scores for the five test sets and displayed 

the results (Supplementary Fig. 5b). We defined the test sets using ageL, ageU, FLL and FLU, 

which denote age and FI cutoffs for young and old animals, respectively. For the five test 

sets, we set the parameters as follows:

ageL = 60, ageU = 90, FIL = 0.20 and FIU = 0.15 n = 43

ageL = 60, ageU = 100, FIL = 0.20 and FIU = 0.15 n = 38

ageL = 50, ageU = 90, FIL = 0.20 and FIU = 0.20 n = 45
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ageL = 60, ageU = 110, FIL = 0.20 and FIU = 0.20 n = 42

ageL = 70, ageU = 100, FIL = 0.25 and FIU = 0.15 n = 20

Statistics and reproducibility.

Both behavioral testing and FI were performed by trained experts who were blind to the 

age of the mice. Behavioral testing and FI were performed one cage at a time. Once a 

cage was selected, all mice in the cage was tested. Cages were randomized by age and sex 

to insure that each testing group had both males and females from each age group. We 

removed nine animals from the data as they contained missing values for many features. We 

removed approximately 20 videos due to technical data collection failures (video capture 

failures). Data distribution was assumed to be normal, but this was not formally tested 

in tests that were used to compare different predictive models. No statistical method was 

used to predetermine sample size, but our sample size was larger than similar studies5. We 

evaluated the predictive performance of our methods by randomly splitting the data into 

disjoint training and test sets. We ensured that the repeat measurements from the same 

animal belonged to either training or test set and not both. We performed 50 different 

splits on the data to allow for a proper assessment of uncertainty and reproducibility in our 

reported results. All attempts at replication were successful.

Extended Data

Extended Data Fig. 1 |. Estimation of the scorer effect in clinical FI items.
A, The effect of tester varies across FI items. B, The estimated random effect across 4 

scorers in the data set.
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Extended Data Fig. 2 |. Detailed modeling analysis.
A, The distribution of age across 643 data points (533 mice). The distribution of manual 

FIadj scores across 643 data points (533 mice). B, To determine the contributions of frailty 

parameters in predicting Age, we calculated the feature importance of all frailty parameters. 

We discover that gait disorders, kyphosis and piloerection have the highest contributions. 

C, The random forest regression model performed better than other models with the lowest 

root-mean-squared error (RMSE) (n = 50 independent train-test splits, p < 2.2e − 16, F3,147 

= 59.53) and highest R2 (p < 2.2e − 16, F3,147 = 58.14) when compared using repeated-
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measures ANOVA. D, The vFRIGHT model performed better than the FRIGHT model 

with a lower RMSE (n = 50 independent train-test splits, RMSEvFRIGHT = 17.97 ± 1.44, 

RMSEFRIGHT = 20.62 ± 4.78, p < 6.1e − 7, F1,49 = 32.84) and higher R2 (RMSEvFRIGHT 

=0.78 ± 0.04, RMSEFRIGHT = 0.76 ± 0.07, p < 2.1e − 8, F1,49 = 44.54) when compared 

using repeated-measures ANOVA. E, The random forest regression model for predicting FI 

score on unseen future data performed better than all other models, with a lowest root-mean-

squared error (RMSE) (n = 50 independent train-test splits, p < 8.3e − 14, F3,147 = 26.62) 

and highest R2 (p < 4.7e − 14, F3,147 = 27.2). F, The plot shows the counts distribution (0 - 

green, 0.5 - orange, 1 - purple) for individual frailty parameters— for many parameters such 

as Nasal discharge, Rectal prolapse, Vaginal uterine and Diarrhea, the proportion of 0 counts 

is 1 (p0 = 1). Similarly, Dermatitis, Cataracts, Eye discharge swelling, Microphthalmia, 

Corneal opacity, Tail stiffening and Malocclusions have p0 > 0.95. G, The residuals versus 

the index and predicted versus true for training (Column 1; residual standard error = 8.5, 

difference in slopes (black vs gray) = 0.11) and test sets (Column 2; residual standard error 

= 15.87, difference in slopes (black vs gray) = 0.30) for the model that predicts Age using 

frailty index items for both training and test data. H, I, Out-of-bag (OOB) error based 95% 

prediction intervals (PIs) (gray lines) quantifying uncertainty in point estimates/predictions 

(gray dots). There is one interval per test mouse (n = 107 unique mice, the test data contains 

some repeats of the same mice tested at different ages) and approximately 95% of the PI 

intervals contain the correct Age (red dots) and FI scores (blue dots). We ordered the x-axis 

(Test set index) in ascending order (from left to right) of the actual age/FI. The average PI 

width for all test mouse’s predicted FI score is 0.18 ± 0.04 (resp. 71.96 ± 18.52 for the 

predicted Age), while the PI lengths range from 0.08 to 0.29 (resp. 28 to 113 for Age). n (C, 

D and E), the lower and upper hinges correspond to the first and third quartiles (the 25th and 

75th percentiles) respectively, the line in the middle corresponds to the median, the upper 

(lower) hinge extends from the upper (lower) hinge to the largest (smallest) value not bigger 

(smaller) than 1.5 × IQR where IQR is the interquartile range.
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Extended Data Fig. 3 |. Correlation between video metrics.
A, Correlation between average/mean (x-axis) and median (y-axis) video gait metrics. 

The diagonal line corresponds to maximum correlation i.e. 1. B, Correlation between inter-

quartile range (IQR, x-axis) and standard deviation (Stdev, y-axis) video gait metrics. The 

diagonal line corresponds to maximum correlation i.e. 1. A tight wrap of points around the 

diagonal line indicates a high correlation between mean and median or IQR and standard 

deviation for the respective metric.
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Extended Data Fig. 4 |. test for Simpson’s paradox.
A, Simpson (1951) showed that the statistical relationship observed in the population could 

be reversed within all of the subgroups that make up that population, leading to erroneous 

conclusions drawn from the population data. To test for the manifestation of Simpson’s 

paradox in our data, we split the bimodal Age distribution into two separate unimodal 

distributions (clusters), that is, less than 70 weeks old (L70, red) versus more than 70 

weeks old (U70, blue). Next, we plotted the dependent variable (frailty) against each of 

the independent variables/features in our data and fit a simple linear regression model to 
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each subgroup separately (solid red and blue lines) as well as to the aggregate data (black 

dotted line). B, We quantified the correlations by measuring the slope of the linear fits of 

the features (Y) on Age (X). We computed the slopes for L70, U70 and overall (All), then 

plotted the slopes for features in decreasing order of their relevance to the model (where we 

predict Age from these features). We went further and performed one-way ANOVA to test 

for differences in slopes between L70 and U70 sub-groups and the overall data (one-way 

ANOVA, F2,141 = 1.162, p > 0.32). Next, we performed a false discovery rate adjusted 

post hoc pairwise comparisons using the t-test. We found no significant differences in the 

comparisons (L70 versus U70, p = 0.38, L70 versus All, p = 0.77 and U70 versus All, p = 

0.38). We found that Simpson’s paradox does not manifest in any of the top fifteen features 

in our data.

Extended Data Fig. 5 |. Further experiments to test model performance and parameters.
A, We compare the performance of different feature sets, 1) age alone, 2) video and 3) 

age + video, in predicting frailty across n = 50 independent train-test splits. We use age 

alone as a feature in a linear (AgeL) and a generalized additive non-linear model (AgeG). 

Although we didn’t notice a clear improvement of the random forest model (VideoRF) using 
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video features over a vFI prediction based on age alone, a clear improvement in prediction 

performance is seen for the model (AllRF), which contains video features + age with lowest 

MSE (p < 2.2e − 16, F3,147 = 213.79, LMM post hoc pairwise comparison with AgeG, 

t147 = −12.21, FDR-adjusted p < .0001), lowest RMSE (p < 2.2e − 16, F3,147 = 172.88, 

LMM post hoc pairwise comparison with AgeG, t147 = −14.12, FDR-adjusted p < .0001) 

and highest R2 (p < 2.2e − 16, F3,147 = 171.12, LMM post hoc pairwise comparison with 

AgeG, t147 = 14.07, FDR-adjusted p < .0001). This shows that video features add important 

information pertaining to frailty that age alone does not. B, We picked animals whose ages 

and FI scores had an inverse relationship, that is, younger animals with higher FI scores 

and older animals with lower FI scores. We formed 5 test sets (n = 43, 38, 45, 42, 20) 

containing animals with these criteria and trained the random forest (RF) model on the 

remaining mice. The model using only video features (VideoRF) does better than all other 

models for these mice with lowest MSE (p < 1.6e − 08, F3,12 = 91.07, LMM post hoc 

pairwise comparison with AgeG, t12 = 13.60, FDR-adjusted p < .0001), lowest RMSE (p < 

1.6e − 08, F3,12 = 93.88, LMM post hoc pairwise comparison with AgeG, t12 = 14.15, FDR-

adjusted p < .0001) and highest R2 (p < 1.31e − 08, F3,12 = 94.32, LMM post hoc pairwise 

comparison with AgeG, t12 = 14.10, FDR-adjusted p < .0001). C, We further investigate 

the difference between Age and vFI predictors in terms of feature importance. Features 

lying along the diagonal are important for both Age and vFI predictions. D, Predicting FI 

score from video features extracted from videos of shorter durations. We used video features 

generated from videos with shorter durations (first 5 and 20 minutes) to investigate the loss 

in accuracy in predicting age and FI score. We used the random forest model trained with 

features generated from 60-minute videos as a baseline model for comparison. We found 

a diminished loss in accuracy using shorter videos. The features associated with 60-minute 

videos had the best accuracy for vFI prediction (LMM where ‘simulation’ is the random 

effect, nsim = 50; lowest MAE, F2,98 = 178.39, p < 2.2e − 16; lowest RMSE, F2,98 = 156.93, 

p < 2.2e − 16); highest R2 (p < 2.2e − 16, F2,98 = 297.3). We observed a significant drop 

in performance accuracy when the open field test length is reduced from 60 to 20-minute 

video (LMM with post hoc pairwise comparisons - MAE, t98 = 14.82, FDR-adjusted p < 

0.0001; RMSE, t98 = 13.69, FDR-adjusted p < 0.0001; R2, t98 = −19.22, FDR-adjusted p < 

0.0001). E, To see how much training data is realistically needed, we performed a simulation 

study (n = 50 independent train-test splits) where we allocated different percentage of total 

data to training. As expected, there is a general downward (upward) trend in MAE, RMSE 

(R2 with an increasing percentage of data allocated to training set. Indeed, a smaller training 

set (< 80% training) can reach a similar training performance. In A, B, E and D, the lower 

and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles) 

respectively, the line in the middle corresponds to the median, the upper (lower) hinge 

extends from the upper (lower) hinge to the largest (smallest) value not bigger (smaller than 

1.5 × IQR where IQR is the interquartile range.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Approach overview to build a visual frailty index.
a, Pipeline for automated vFI. Top-down videos of the open field for each mouse are 

processed by a tracking and segmentation network and a pose estimation network. The 

resulting frame-by-frame ellipse-fits and 12-point pose coordinates are further processed to 

produce per-video metrics for the mouse. The mouse is also manually frailty indexed to 

produce an FI score. The video features for each mouse are used to model its FI score. b, 

Distribution of FI score by age. The black line shows a piece-wise linear fit (n = 160, 146, 

50, 287 mice) to the data. The center point is the mean, and the error bars are the s.d. values. 

c, Effect of scorer on FI data; 42% of the variability in manual FI scores was due to a scorer 

effect (RLRT = 183.85, P < 2.2 × 10−16).
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Fig. 2 |. Sample features used in the vFI.
a, Single frame of the top-down open-field video. b, Morphometric features from ellipse 

fit and rear-paw distance measure performed on the mouse frame by frame. The major and 

minor axis of the ellipse fit are taken as the length and width, respectively. c, The median 

ellipse fit width and the median rear-paw distance taken over all mouse frames are highly 

correlated with FI score. d, Spatial, temporal and whole-body coordination characteristics 

of gait used to create metrics25. e, The median step width and the IQR of tip-tail lateral 

displacement taken over all strides for a mouse are highly correlated with FI score. f, Spinal 
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mobility measurements taken at each frame. dAC is the distance between point A and C 

(base of head and base of tail, respectively) normalized for body length, dB is the distance 

of point B (mid-back) from the midpoint of the line AC and aABC is the angle formed 

by the points A, B and C. When the mouse spine is straight, dAC and aABC are at their 

maximum value, whereas dB is at its minimum. When the mouse spine is bent, dB is at 

its maximum value, whereas dAC and aABC are at their minimum (Supplementary Video 

3). g, The median of dB taken over all mouse frames and the median dB taken only over 

frames where the mouse is not in gait, shows a correlation with FI score. h, Wall-rearing 

event. The contour of the walls of the open field are taken and a buffer of five pixels is 

added (yellow line), marking a threshold. The nose point of the mouse is tracked at each 

frame. A wall-rearing event is defined by the nose point fully crossing the wall threshold 

(Supplementary Video 4). i, The total count of rearing events and the number of rears in the 

first 5 min of the open-field video show some correlation with FI score.
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Fig. 3 |. Comparison of male and female measures.
a, The distribution of FI scores for males and females when the data are split 

into four age groups of equal range. Significant differences in the distributions 

of male and female scores for that age group are determined by the two-sided 

Mann–Whitney U-test and are indicated by an asterisk (*). For each successive 

age group, P = 0.524 (n = 78 females, n = 81 males), P = 3.38 × 10−12 (n = 85 females, 
n = 61 males), P = 2.27 × 10−12 (n = 107 females, n = 107 males) and P = 0.269 (n = 25 females, 
n = 122 males). The box shows the quartiles of the dataset, while the whiskers extend to show 

the rest of the distribution, except for points that are determined to be ‘outliers’ using a 

method that is a function of the IQR. b, Pearson correlations of FI items with age for males 

compared to females (r = 0.85). c, Pearson correlations of video metrics with FI score for 

males compared to females (r = 0.88). d, Pearson correlations of video metrics with age for 

males compared to females (r = 0.90).
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Fig. 4 |. Prediction of age and frailty from video features.
a, A graphical illustration shows the different models we fit. b, Video features are more 

accurate in predicting age than clinical frailty index items. Comparison among four models 

(LR*, SVM, RF and XGB) show that the RF predicted age on unseen future data better 

than other models with a lower MAE (n = 50 independent train–test splits, P < 2.2 × 10−16, 

F3, 147 = 190.43) when compared using repeated-measures ANOVA. We then compared the 

performance of RF models using frailty parameters (FRIGHT) and video-generated features 

(vFRIGHT) in predicting age. vFRIGHT had a superior performance (n = 50 independent 
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train–test splits, P < 4.7 × 10−5, F1, 49 = 19.9, using repeated-measures ANOVA) with a lower 

MAE (13.1 ± 0.99 weeks) compared to the FRIGHT clock using FI items (15.7 ± 4 weeks). 

c, The performance of our ordinal regression models (classifiers) in terms of accuracy 

(accurately predicting the value of the frailty parameter in the test using the model trained 

on the training data). The black dotted line superimposed on the plot shows the accuracy 

that one would obtain if one guessed the values instead of using the video features. We 

found that the video features encode useful information that improves the models’ ability 

to predict frailty parameter values accurately. d, Comparison among four models (LR*, 

SVM, RF and XGB) show that the RF regression model predicted FI score on unseen future 

data better than all other models, with a lowest MAE (n = 50 independent train–test splits, 

P < 2.1 × 10−15, F3, 147 = 30.53) and highest R2 (P < 4.7 × 10−14, F3, 147 = 27.2) when compared 

using repeated-measures ANOVA. e, Uncertainty in predicting age (red) and FI score (blue) 

plotted as a function of age (weeks). The black curve shows the loess fit. These plots 

show less uncertainty in predicting age and FI scores for very young mice. We plot the 

distributions of PI widths and find that the PI widths for predicting age are wider (increased 

uncertainty in predictions) for mice belonging to the M age group. Similarly, the PI widths 

for predicting FI scores increase with age in our data. The shaded gray region is the 95% 

confidence interval for predicted values from the fitted linear model. f, The residuals versus 

the index and predicted FI score versus true for training (columns 1 and 2; residual s.e. 

0.020(0.001), difference in slopes (black versus gray) = 0.23) and test sets (columns 3 and 

4; residual s.e. 0.036, difference in slopes (black versus gray) = 0.37) for the RF model. 

We calculated the difference in the slopes between the diagonal line (black) and gray line. 

g, The residuals versus the index and predicted age versus true for training (columns 1 and 

2; residual s.e. 9.051(1.585), difference in slopes (black versus gray) = 0.17) and test sets 

(columns 3 and 4; residual s.e.14.27, difference in slopes (black versus gray) = 0.29) for the 

RF model. The train–test splits in f and g are independent of each other. In b,d, the lower 

and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles), 

respectively, the line in the middle corresponds to the median, the upper (lower) hinge 

extends from the upper (lower) hinge to the largest (smallest) value not bigger (smaller) than 

1.5 × IQR.
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Fig. 5 |. Quantile regression modeling of vFI using generalized random forests.
a, Variable importance measures for three quantile RF models (lower tail, Q.025; median, 

Q.50; upper tail, Q.975). Mice in lower and upper tails correspond to mice with low and high 

frailty scores respectively. b, Marginal ALE plots show how important features influence 

the predictions of our models on average. For example, the average predicted FI score rises 

with increasing step width, but falls for values greater than three in mice belonging to lower 

and upper tail. c, A plot showing how strongly features interact with each other. d,e, ALE 

second-order interaction plots for step width and step length1 (E, width and length) on 
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the predicted FI score. Lighter shade indicates an above average and darker shade a below 

average prediction when the marginal effects from features are already taken into account. 

d,e, Weak (resp. strong) interaction between step width (d) and step length1 (e) (resp. width 

and length). Large step width and step length1 increases the vFI score.
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