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Abstract

This communication discloses the first examples of aza-Wacker cyclizations of sulfamate esters. 

Within the realm of related cyclization reactions, this protocol is differential in that it forms 

6-membered rings in good yield and uses catalytic amounts of palladium (0) rather than palladium 

(II) salts. These reactions scale well, and their products are demonstrated to be valuable synthetic 

intermediates.

Graphical Abstract

The oxidative functionalization of unsaturated moieties remains an area of vigorous research 

activity.1–5 Within the realm of alkene functionalization, Wacker-type cyclizations of 

alcohols have been extensively investigated.6–15 In sharp contrast, the analogous cyclization 

of nitrogen moieties onto alkenes, the aza-Wacker reaction, remains relatively under-

explored.16–18 Inspired by the pioneering studies of Åkermark, Bäckvall, Zetterberg19–22 

and Hegedus23–25 as well as important recent contributions from Stoltz,26 Zhang,27–29 

and Stahl,30–34 among others,35–41 we chose the aza-Wacker cyclization as a point 

of focus. Elegant aza-Wacker cyclization reactions have been disclosed with protected 

amines,36, 37, 42 amides,26, 28, 43 aminals,35 and hemiaminals.33 With few exceptions,33, 44 

the majority of these protocols have been developed with alkenyl amines and require the 

nitrogen functionality to be native to the molecule. Furthermore, examples of aza-Wacker 

protocols that form heterocyclic rings containing more than 5 atoms remain extremely 
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limited.31, 37, 45–49 As the alcohol functional group is ubiquitous in organic molecules, a 

general protocol where a nitrogen containing auxiliary could be affixed to an alkenyl alcohol 

and then oxidatively cyclized would be highly desirable. We envisioned a reaction where 

diverse sulfamate auxiliaries would be easily appended to alcohols and then cyclized to form 

six-membered and larger rings in an aza-Wacker type process.50–53

In this communication, we disclose the first examples of aza-Wacker cyclizations of 

sulfamate esters. These reactions reliably yield valuable 6-membered oxathiazinane 

heterocycles with pendant unsaturation. The oxathiazinane moiety is a masked 1,3-amino 

alcohol, a motif found in myriad biologically active compounds (Figure 1), and can be used 

as a synthetic intermediate for a variety of transformations.54–58 Our protocol, catalytic in 

palladium and reliant on Cu(OAc)2/O2 as stoichiometric oxidants, offers convenient access 

to these important synthetic intermediates (Scheme 1).

Optimization of an oxidative cyclization of alkenyl sulfamate esters was performed 

with (E)-hex-3-en-1-yl methylsulfamate 1a, prepared in a single step from commercially 

available trans-3-hexen-1-ol (Table 1). Using Andersson’s protocol for oxidative tosylamine 

cyclization Pd(OAc)2/O2 in DMSO, (See Supporting Information for reaction conditions),36 

the conversion of 1a into 2a was approximately 30%. While modest, this important result 

gave us hope that this reaction could be further developed. Augmenting these conditions 

with Cu(OAc)2
59 boosted the yield of 2a to 46% (Table 1, Entry 1). Switching solvents 

from DMSO to THF (Table 1, Entry 2), toluene (Table 1, Entry 3), or methanol (Table 

1, Entry 4) was deleterious. In CH3CN, the yield of 2a was similar to that in DMSO 

(Table 1, Entry 5). Increasing the pressure of O2 from 1 atm to 4 atm31 did little (Table 1, 

Entry 6) to increase yield. Switching to palladium chloride salts was markedly deleterious 

(Table 1, Entries 7–8). In contrast to other aza-Wacker reactions, we saw no advantage 

with Pd(TFA)2 relative to Pd(OAc)2 (Table 1, Entry 9). Increasing the reaction temperature 

from 55 °C to 80 °C (Table 1, Entry 10) conferred a modest 5% boost in yield. At 55 

°C, increasing the reaction time from 17 h to 26 h was similarly beneficial (Table 1, 

Entry 11). In conjunction with Pd(OAc)2, bidentate ligands [(PhSO)2, DPPE, bipyridine 

(Table 1, Entry 12 and Supplementary Table 1)] and monodentate ligands [PPh3, P(OiPr)3, 

IMes, pyridine (Supplementary Table 1)] were invariably deleterious. To our great surprise, 

switching to catalytic Pd2(dba)3 (Table 1, Entries 13–14) improved the reaction yields 

dramatically. To our knowledge, this is the first disclosure of an aza-Wacker cyclization that 

employs a Pd(0) pre-catalyst.

Systematically varying the substituent attached to the sulfamate nitrogen (Table 2) revealed 

that the reaction is exquisitely sensitive to the steric bulk of alkyl substituents (Table 2, 

Entries 1–4). In contrast, diverse electron rich and electron deficient aryl substituents 

on the nitrogen are well tolerated (Table 2, Entries 5–8). We hypothesize that cis/trans 

isomerism in some of the products arises from reversible formation of a palladium π-allyl 

complex from the reaction of Pd2(dba)3 with the product oxathiazinanes.60, 61 In the 

absence of any substituent on the nitrogen, the oxidative cyclization proceeded, albeit in 

lower yield than with alkyl or aryl substitution (Table 2, Entry 9). Such products are 

alternatively accessible via C-H amination processes51, 62 and are not the focus of this study. 

Our protocol is complementary to C–H amination methods in that it allows convenient, 
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one-step access to N-alkylated and N-arylated oxathiazinane heterocycles without the 

formation of competing aziridination side products. It should also be noted that while 

unsubstituted oxathiazinane heterocycles can be easily alkylated, we know of only example 

of oxathiazinane N-arylation.63

A variety of alkenyl sulfamates were prepared and tested with our optimized reaction 

protocol of catalytic Pd2(dba)3 and stoichiometric Cu(OAc)2 heated in CH3CN under 1 atm 

of O2 (Table 3). 6-membered rings reliably formed with synthetically useful yields (56% to 

>90%). The diastereoselectivity of the reaction was found to be highly substrate dependent 

and ranged from reasonable (4:1, Table 3, Entry 3) to excellent (>20:1, Table 3, Entry 
4). Seven membered ring formation was also possible, albeit in significantly lower yield 

(Table 3, Entry 8). Both cis and trans disubstituted alkenes engaged effectively. Overall, our 

reaction protocol was found to be compatible with a range of functional groups, including 

ethyl esters, morpholine amides, benzyl ethers, fluorinated arenes, and 1,3-benzodioxoles.

Under our optimized protocol, even when the scale was increased 20–45 times, the reactions 

continued to proceed with synthetically useful efficiency (Scheme 2). At a scale of 1.30 

g (4.58 mmol, ~20-fold increase), (E)-hex-3-en-1-yl (4-methoxyphenyl)sulfamate cyclized 

with comparable yield to the reaction at 0.2 mmol (Scheme 2a). On smaller scale, a 10:1 

mixture of trans/cis products formed; on larger scale, a 6:1 mixture of trans and cis products 

was isolated (Scheme 2a). At a scale of 1.74 g (9.09 mmol, ~45-fold increase), (E)-hex-3-

en-1-yl methylsulfamate cyclized with a yield of 56% (Scheme 2b).

The resulting unsaturated [1,2,3]-oxathiazinane-2,2-dioxide heterocycles are versatile 

synthetic intermediates for a variety of transformations (Scheme 3). Hydrogenation to 

form a fully saturated [1,2,3]-oxathiazinane-2,2-dioxide with 10% Pd/C under 1 atm of 

H2 proceeded in an excellent yield of 95% (Scheme 3a). Oxidation of the alkene with 

mCPBA to form the epoxide was also viable (Scheme 3b). The alkoxy-sulfonyl auxiliary 

was liberated via a smooth reaction with 2-naphthol (Scheme 3c).

In summary, we report the first examples of aza-Wacker cyclizations of sulfamate esters. 

The reactions are catalytic in Pd2(dba)3 and utilize Cu(OAc)2 and O2 as terminal oxidants. 

Our protocol is compatible with both N-alkyl and N-aryl sulfamates and tolerates a range 

of important functional groups. These reactions proceed in good yields on scales both large 

and small, and the resulting alkenyl oxathiazinane heterocycles are shown to be valuable 

synthetic intermediates. In time, we expect that this reaction will find use in both academic 

and industrial organic chemistry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
1,3-amino alcohols are vital structural elements in biologically active molecules.
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Scheme 1. 
Literature precedent inspires an aza-Wacker cyclinzation of sulfamate esters.
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Scheme 2. 
Oxdative cyclization scales successfully under standard conditions.
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Scheme 3. 
Alkenyl oxathiazinane heterocycles are versatile synthons.
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Table 1.

Optimization of reaction conditions.

Entry [Pd] Solvent Temp., Time 2/1
b

1
c Pd(OAc)2 (10%) DMSO 55° C, 17 h 46:54

2 Pd(OAc)2 (10%) THF 55° C, 17 h NR

3 Pd(OAc)2 (10%) Toluene 55° C, 17 h NR

4
d Pd(OAc)2 (10%) MeOH 55° C, 17 h 40:25

5 Pd(OAc)2 (10%) CH3CN 55° C, 17 h 50:50

6 Pd(OAc)2 (10%) CH3CN 55° C, 17 h 53:39

7 Pd(CH3CN)2(Cl)2 (10%) CH3CN 55° C, 17 h 30:30

8 Pd(DPPF)Cl2 (10%) CH3CN 55° C, 17 h NR

9 Pd(TFA)2 (10%) CH3CN 55° C, 17 h 50:30

10 Pd(OAc)2 (10%) CH3CN 80° C, 17 h 56:28

11 Pd(OAc)2 (10%) CH3CN 55° C, 26 h 56:30

12 White Catalyst
e CH3CN 55° C, 17 h 10:90

13 Pd2(dba)3 (10%) CH3CN 55° C, 17 h 62:07

14 Pd2(dba)3 (15%) CH3CN 55° C, 17 h
70:00

f

a
1 atm, unless mentioned otherwise

b
yields estimated by 1H NMR integration against an internal standard (1,3,5-trimethoxybenzene)

c
Without copper, conversion is ~30%; without O2, a similar drop in yield is observed

d
O2 pressure = 4 atm

e
1,2-Bis(phenylsulfinyl)ethane palladium (II) acetate (10 mol%)

f
At present, we are unable to account for the decreased mass balance
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Table 2.

Structure-Reactivity relationship of sulfamate esters.

a
isolated yield, unless otherwise mentioned

b
yield estimated by 1H NMR integration against an internal standard (1,3,5-trimethoxybenzene)
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c
isolated as a 10:1 mixture of trans/cis isomers

d
isolated as a 5:1 mixture of trans/cis isomers
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TABLE 3.

Diverse alkenyl sulfamates engage productively.

a
isolated yield, unless otherwise mentioned

b
1:1 mixture of cis/trans isomers
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c
isolated as a 4:1 mixture of syn/anti diastereomers

d
1:1 mixture of cis/trans isomers

e
isolated as a single diastereomer

f
Ar = Ph, 4.6:1 mixture of trans/cis isomers; Ar = pFC6H5, 5.9:1 mixture of trans/cis isomers; Ar = 1,3-benzodioxole, 5:1 mixture of trans/cis 

isomers

g
isolated as a 1.6:1 mixture of trans/cis isomers
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