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Abstract

Genomic studies of bacteria have long pointed toward widespread prevalence of small open reading frames (sORFs) encoding for short
proteins, <100 amino acids in length. Despite the mounting genomic evidence of their robust expression, relatively little progress
has been made in their mass spectrometry-based detection and various blanket statements have been used to explain this observed
discrepancy. In this study, we provide a large-scale riboproteogenomics investigation of the challenging nature of proteomic detection
of such small proteins as informed by conditional translation data. A panel of physiochemical properties alongside recently developed
mass spectrometry detectability metrics was interrogated to provide a comprehensive evidence-based assessment of sORF-encoded
polypeptide (SEP) detectability. Moreover, a large-scale proteomics and translatomics compendium of proteins produced by Salmonella
Typhimurium (S. Typhimurium), a model human pathogen, across a panel of growth conditions is presented and used in support of
our in silico SEP detectability analysis. This integrative approach is used to provide a data-driven census of small proteins expressed
by S. Typhimurium across growth phases and infection-relevant conditions. Taken together, our study pinpoints current limitations
in proteomics-based detection of novel small proteins currently missing from bacterial genome annotations.
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Introduction
With rapidly growing number of sequenced genomes, manual
gene annotation had to give way to automated gene prediction al-
gorithms. Despite their utility, a growing body of evidence suggests
that these methods pose a danger of propagating biases present
in current annotations and may vastly underestimate the com-
plexity of bacterial genomic architecture (Crappé et al. 2015, Giess
et al. 2017, Ndah et al. 2017). One particularly understudied class
of genomic elements is represented by small open reading frames
(sORFs), generally considered as ORFs encoding proteins (equal
or) smaller than 100 amino acids in length and herein referred to
as sORF-encoded polypeptides or SEPs (Miravet-Verde et al. 2019).
Thus far, existence of actively translated sORFs has been detected
in a wide variety of organisms. Besides regulatory sORFs, many
sORFs have been shown to give rise to functionally relevant pro-
tein products (Park et al. 2010, Adams et al. 2021). In bacteria, SEPs
have been associated with a plethora of cellular functions, includ-
ing glucose uptake, antibiotic resistance and peptidoglycan syn-
thesis to name a few (Storz et al. 2014, Duval and Cossart 2017,
Fijalkowska et al. 2020). A pivotal role of SEPs in bacterial biology
is also supported by the fact that sORFs have been found to be the
most frequently essential genomic elements of the Mycoplasma
pneumoniae genome (Lluch-Senar et al. 2015). These properties sit-
uate complete SEP identification as an important milestone on the
way to better our understanding of bacterial systems biology.

In the past, predicted ORFs were frequently penalized based
on length using arbitrary cutoffs (like 100 codons) and sequence

overlap with other ORFs (Dinger et al. 2008, Richardson and Wat-
son 2013, Miravet-Verde et al. 2019, Fijalkowska et al. 2020). While
current annotation pipelines largely rely on sequence composi-
tion features instead of length thresholds to distinguish coding
from noncoding sequences, short proteins still remain underrep-
resented (Warren et al. 2010, Samayoa et al. 2011). Yet, numer-
ous novel bacterial sORFs and SEPs have recently been discov-
ered in bacteria using phylogenetic analyses (Sberro et al. 2019),
transcriptomics, translatomics (Venter et al. 2011, Baek et al. 2017,
Hücker et al. 2017, Omasits et al. 2017, Weaver et al. 2019, Fuchs
et al. 2021, Stringer et al. 2021) and proteomics efforts (Impens
et al. 2017, Yuan et al. 2018, Miravet-Verde et al. 2019), the lat-
ter omics approaches jointly referred to as riboproteogenomics
(Ndah et al. 2017, Willems et al. 2020). Algorithms used for prokary-
otic sORF delineation without a priori knowledge (Hemm et al.
2008, Miravet-Verde et al. 2019, Venturini et al. 2020) suggest that
sORFs may even be counted in hundreds but experimental con-
firmation of these data however is only limited with few high-
throughput methods reported (Miravet-Verde et al. 2019), and of-
ten tedious (e.g. detection via genomic tagging and immunode-
tection of candidate sORFs; Vanorsdel et al. 2018) (Weaver et al.
2019, Stringer et al. 2021). Unsurprisingly, only a handful of bac-
terial SEPs were functionally characterized (Impens et al. 2017,
Yuan et al. 2018). Notwithstanding the considerable efforts aim-
ing at improving bacterial genome annotations, identification of
sORFs remains a considerable challenge. Recent major advances
in the field can be attributed to the development of ribosome

Received: November 13, 2021. Revised: April 18, 2022. Accepted: April 29, 2022
C© The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://orcid.org/0000-0001-9090-027X
mailto:Petra.VanDamme@ugent.be
https://creativecommons.org/licenses/by/4.0/


2 | microLife, 2022, Vol. 3

profiling (Ribo-seq), a genomic method providing a snapshot of
in vivo translation through deep sequencing of mRNA fragments
covered by the actively translated ribosome (Ingolia et al. 2009).
Evidence of pervasive translation in previously unannotated ge-
nomic regions sparked the development of novel Ribo-seq data-
dependent ORF prediction algorithms for both eukaryotic and
prokaryotic genomes (Ndah et al. 2017, Verbruggen et al. 2019).
Moreover, recent introduction of retapamulin-assisted ribosome
profiling (Ribo-RET) allows for more precise delineation of bacte-
rial translation start sites aiding ORF delineation (Meydan et al.
2019, Weaver et al. 2019). Continuous developments in the field
of bacterial translation initiation as well as termination pro-
filing hold great promise in facilitating further gene discovery
through employment of novel antibiotics, like lefamulin or api-
daecin (Ribo-Api and Ribo-Api/Pmn (puromycin); Mangano et al.
2020), enabling trapping of ribosomes at start and stop codons,
respectively (Vazquez-Laslop et al. 2022). Besides, the predicted
(s)ORF repertoire can be used to inform the proteomic searches
of putative sORF products and facilitate their identification. How-
ever, despite notable advances in the proteogenomic identification
of SEPs owed to custom peptidomics approaches (Petruschke et al.
2020) and the use of matching (differential) RNA-seq or ribosome
profiling-inferred databases for proteomics database searching,
the repertoire of mass spectrometry (MS)-confirmed SEPs is scarce
(Venturini et al. 2020). Besides their intrinsic small size, also their
possible low abundance or low stability has often been raised
as potential factors obstructing MS detection (Peeters and Men-
schaert 2020). Moreover, more than half of predicted SEPs in Es-
cherichia coli are predicted to be single-transmembrane (TM) pro-
teins, suggesting that their hydrophobic nature and low solubility
might contribute to the poor detectability of this specific class of
SEPs when using proteomics as a readout (Fontaine et al. 2011). Ex-
istence of such hydrophobic SEPs has also been suggested in Strep-
tococcus and Enterococcus (Ibrahim et al. 2007). Considering all that,
it is thus surprising that no systemic analysis investigating the
challenging nature of MS-based identifiability of bacterial SEPs
has thus far been conducted using the wealth of available com-
plementary omics datasets at both proteomic and genomic levels
(Gray et al. 2022).

Here, computational analysis aided by state-of-the-art exper-
imental riboproteogenomics data sheds light on the challenges
faced by MS-based SEP discovery. For the comprehensive de-
tection of translated (novel) (s)ORFs, complementary Ribo-seq
and Ribo-RET screening was performed in the model bacterial
pathogen Salmonella enterica subsp. enterica serovar Typhimurium
(further referred to as S. Typhimurium) sampled at various
growth conditions—including infection relevant conditions—
selected based on complementarity expression patterns observed
in published transcriptomics efforts of the Hinton lab (Kröger et al.
2013, Srikumar et al. 2015). Following the recently reported land-
mark census of S. Typhimurium small proteins identifying 139
novel high-confidence sORFs (Venturini et al. 2020) of which SEP
expression was validated for 15 out of 16 tested candidates, we
provide additional rich datasets and evaluate the utility of trans-
lation initiation profiling in refining the compendium of putative
novel small proteins. Using initiating and elongating Ribo-seq sig-
nals, a new gene discovery pipeline was applied to detect and de-
lineate translated ORFs. Moreover, matching proteomics datasets
generated and analyzed using our recently published proteoge-
nomic pipeline (Willems et al. 2020) further strengthened the con-
fidence of novel proteogenomic identifications, with a specific fo-
cus on SEPs. The findings highlight the importance of proteoge-
nomic efforts for the continuous enrichment of bacterial genome

annotations (Venter et al. 2011, Giess et al. 2017, Ndah et al. 2017,
Omasits et al. 2017, Fijalkowska et al. 2020, Willems et al. 2020,
Fuchs et al. 2021).

Materials and methods
Bacterial culture
The S. Typhimurium wild-type strain SL1344 (Hoiseth and
Stocker, 1981) (Genotype: hisG46, Phenotype: His(-); biotype 26i)
was obtained from the Salmonella Genetic Stock Centre (SGSC,
Calgary, Canada; cat no. 438; Hoiseth and Stocker 1981). The
SL1344 has been further modified by deleting tolC (�tolC) us-
ing λ red-mediated recombineering as described in (Datsenko
and Wanner 2000), with the following homology primer pair:
CAACAAGGAATGCAAATGAAGAAATTGCTCCCCATCCTTATCGG
Ctgtgtaggctggagctgcttc; CCAGCGAATAACTTATCAATGCCGGAA
TGGATTGCCGTTATTGCTtatgaatatcctccttagttc. Bacterial growth
was performed using liquid Lennox broth (LB) growth medium
(10 g/L Bacto tryptone, 5 g/L Bacto yeast extract, 5 g/L NaCl), on
LB agar plates (10 g/L Bacto tryptone, 5 g/L Bacto yeast extract,
5 g/L NaCl, 12 g/L agar) or variants of phosphate carbon nitrogen
(PCN) medium (Löber et al. 2006) (lnSPI2; Salmonella pathogenic-
ity island 2-inducing condition; pH 5.8, 0.4 mM Pi), low Mg2+

SPI2-inducing PCN (low Mg2+; pH 5.8, 0.4 mM Pi) containing low
levels (10 μM) of magnesium sulfate (PCN medium was stored at
4◦C and brought at room temperature for cultivation). Viewing
the His-auxotrophic nature of the SL1344 strain used, all PCN
media were supplemented with histidine to a final concentration
of 5 mM.

Shotgun proteomics sample collection and
preparation
For shotgun total proteomics analysis, WT SL1344 cells were
grown in various conditions: early exponential growth phase (EEP;
OD600 0.1), mid-exponential growth phase (MEP; OD600 0.3), late
exponential growth phase (LEP; OD600 1.0), early stationary phase
(ESP, OD600 2.0) and late stationary phase (LSP, OD600 2.0 + 6
h of extra growth). Environmental shocks in LB were performed
on MEP-grown bacteria as follows: osmotic shock (NaCl shock),
by addition of NaCl to a final concentration of 0.3 M and con-
tinued growth for 10 min; anaerobic shock, a 50 mL culture was
transferred into a prewarmed (37◦C) 50-mL centrifuge tube, tightly
closed and incubated for an additional 30 min at 37◦C without agi-
tation. For growth in variants of PCN minimal medium (Löber et al.
2006), overnight grown LB cultures (8 mL) were washed twice in
PCN medium before resuspension at OD 0.02. Cells were grown
in T175 mL flasks in 50-mL SPI2-inducing PCN (InSPI2; pH 5.8,
0.4 mM Pi), or low magnesium SPI2-inducing PCN (Low Mg2+; pH
5.8, 0.4 mM Pi) containing low levels (10 μM) of magnesium sul-
fate. All PCN media were supplemented with 5 mM (f.c.) histidine.
The nitric oxide shock conducted in PCN (InSPI2) was performed
at OD600 0.3 by addition of the nitric oxide donor-2-Spermine
NONOate to a final concentration of 250 μM for 20 min (nitric
oxide shock (InSPI2)). Per biological replicate sample, the equiv-
alent of 4 × 50, 50, 10 or 5 mL of culture were sampled in case
of the OD600 0.1, OD600 0.3, OD600 1.0 and OD600 2.0 growth
conditions, respectively. Cell pellets were resuspended in Gu.HCl
lysis buffer (4 M Gu.HCl, 50 mM NH4HCO3; pH 7.9) and sub-
jected to three rounds of mechanical freeze–thaw lysis in liquid
nitrogen followed by sonication (Branson probe sonifier output
4, 50% duty cycle, 2 × 30 s, 1 s pulses). Lysates were clarified
by centrifugation for 10 min at 16 100 × g (4◦C). Protein concen-
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tration was determined by Bradford measurement according to
the manufacturer’s instructions. An aliquot equivalent of 400 μg
(∼2 × 10−9 bacteria) protein lysate was transferred to a clean
tube, diluted to 2.7 mg/mL with lysis buffer, 2× diluted with HPLC
grade water and precipitated with 4× volumes of −20◦C acetone
overnight (−20◦C). The precipitated protein material was recov-
ered by centrifugation for 15 min at 3500 × g (4◦C), pellets washed
twice with −20◦C 80% acetone and air dried upside down for
10 min at RT or until no residual acetone odor remained. Pel-
lets were resuspended in 200 μL TFE (2,2,2-trifluoroethanol) di-
gestion buffer (10% TFE, 100 mM ammonium bicarbonate) with
sonication until a homogenous suspension was reached. All sam-
ples were digested overnight at 37◦C using mass spec grade
Trypsin/Lys-C Mix (Promega, Madison, WI) (enzyme/substrate of
1:100 w/w) while mixing (550 rpm). Samples were acidified with
TFA to a final concentration of 0.5%. Samples were cleared from
insoluble particulates by centrifugation for 10 min at 16 100 × g
(4◦C) and the supernatant was transferred to clean tubes. Methio-
nine oxidation was performed by the addition of H2O2 to reach
an f.c. of 0.5% for 30 min at 30◦C. Solid phase extraction of pep-
tides was performed using C18 reversed phase sorbent contain-
ing 100 μL pipette tips (Bond Elut OMIX 100 μL C18 tips; Agi-
lent, Santa Clara, CA) according to the manufacturer’s instruc-
tions. Eluted samples were vacuum-dried in a SpeedVac concen-
trator (Thermo Fisher Scientific, Waltham, USA), redissolved in
2 mM tris(2-carboxyethyl)phosphine in 2% acetonitrile and in-
jected onto the Q Exactive HF instrument (Thermo Fisher Scien-
tific, Waltham, USA).

Ribo-seq and Ribo-RET sample collection
Biological replicate cultures were used to obtain two total trans-
latomes and two retapamulin-treated translatomes per condition
(i.e. total of four cultures per condition). Wild-type bacteria were
used for total translatome samples, while the isogenic �tolC strain
was used for retapamulin-treated translatome samples. For each
replicate, a single colony was picked from an LB plate, incubated
in 5 mL liquid LB and grown overnight at 37◦C with agitation
(180 rpm). Overnight cultures were diluted 1:200 (OD600 0.02) and
used to inoculate 50 mL cultures of S. Typhimurium grown under
different growth and infection-relevant conditions. More specif-
ically, bacteria were grown in a limited panel of conditions de-
scribed earlier: MEP, LEP, NaCl shock, anaerobic shock, nitric oxide
shock, InSPI2 and InSPI2 Low Mg2+ (Srikumar et al. 2015).

Following the growth conditions described earlier, 50 mL cul-
tures (or 5 mL in case of LEP samples) were treated with either
chloramphenicol (100 μg/mL) or retapamulin (10 μg/mL; 100 ×
MIC �tolC of 0.1 μg/mL) for 5 min at 37◦C, collected using centrifu-
gation (2500 × g, 3 min, 4◦C) and the bacterial pellets flash frozen
in liquid nitrogen and stored at −80◦C until further processing.

Total translatome and translation initiation
profiling
All cell pellets were resuspended in 1 mL of lysis buffer (10 mM
MgCl2, 100 mM NH4Cl, 20 mM Tris pH 8.0 20 U/mL of RNase-free
DNase I (Thermo Fisher Scientific, Waltham, USA) 1 mM chloram-
phenicol and 20 μL/mL lysozyme) thawed and flash frozen. Subse-
quently, 5 mM CaCl2, 30 μL 10% DOC and protease inhibitor cock-
tail (Roche, cat# P8465) were added. The lysates were incubated
on ice for 5 min and cellular debris was removed by centrifug-
ing (16 000 × g, 10 min, 4◦C). Total RNA content was measured
using NanoDrop (Thermo Fisher Scientific, Waltham, USA; 1:100
dilutions, blank 1:100 dilution of the lysis buffer because chloram-

phenicol absorbs at 260 nm) and MNase (Roche, cat# 10107921001,
Basel, Switzerland) digestion was performed by the addition of the
enzyme (15 U/1.0 OD260 of RNA) and 1 h incubation at 25◦C with
mixing (650 RPM). Subsequently, 10 mM EGTA was added to stop
the reaction. Four hundred fifty microliters of each sample was
ran through a 540 μL sucrose cushion (1 M sucrose in 10 mM
MgCl2, 100 mM NH4Cl, 20 mM Tris, pH 8.0, 1 mM chlorampheni-
col, 100 U/mL superasin, 2 mM DTT) by ultracentrifugation (4◦C,
200 000 × g, 4 h, TLA-120.2 rotor). Resulting pellets were resus-
pended in 300μL of lysis buffer and RNA extracted using the warm
acid phenol chloroform method as previously described (Ingolia
et al. 2009). Ribosome protected footprints were subsequently pu-
rified by excision from a 15% TBE-Urea polyacrylamide gel (Invit-
rogen, Waltham, USA) ran in TBE (Ambion, Waltham, USA). The
gel was pre-run for 30 min at 200V. 2× sample loading buffer
(TBE-Urea, Novex, Invitrogen, Waltham, USA) was added to the
samples. Alongside the samples, 1 μL of 10 bp ladder (Invitrogen,
Waltham, USA) and RNA oligos of 26 and 32 nt length (10 pmol)
were ran for size control. All samples were denatured at 70◦C for
2 min, chilled and loaded on the gel. The gel was ran for 65 min
at 200 V. Subsequently, the gel was stained for 20 min (RT) with
SYBR gold according to manufacturer’s instructions (Invitrogen,
Waltham, USA) and desired bands demarked by the control oli-
gos were excised. RNA was recovered through isopropanol pre-
cipitation as previously described (Ingolia et al. 2009). All samples
were resuspended in 15 μL of 10 mM Tris pH 7.0 and dephos-
phorylated using T4 polynucleotide kinase (NEB, Ipswitch, USA)
(2 μL of enzyme per sample corresponding to 200 ng of purified
footprints). The samples were incubated for 1 h at 37◦C with-
out shaking. The volume of samples was adjusted to 100 μL with
nuclease free water and the samples were purified using RNA
Clean & Concentrator-5 kit (Zymo Research, Irvine, USA) accord-
ing to the manufacturer’s instructions with the following modi-
fication; 200 μL of RNA binding buffer was used and 450 μL of
100% EtOH. Samples were eluted with 11 μL of nuclease free wa-
ter and used as input for library preparation. The libraries were
generated with NEXTFLEX Small RNA-seq kit v3 for Illumina plat-
forms (PerkinElmer, Waltham, USA) according to manufacturer’s
instructions from 200 ng of purified, dephosphorylated footprints.
Final library PCR product (∼160 nt) was assessed using Bioana-
lyzer 2100 High Sensitivity DNA Assay (Agilent, Santa Clara, USA)
and purified from 8% TB polyacrylamide gel (Invitrogen, Waltham,
USA; 45 min, 180 V) by isopropanol precipitation. Concentration of
purified libraries were measured using the High Sensitivity Qubit
assay (Invitrogen, Waltham, USA) and 1.8 pmol of libraries was se-
quenced on NextSeq 550 using the NextSeq High Output kit (v2.5,
75 cycles; Illumina, San Diego, USA).

MS/MS analysis and data analysis
The LC-MS/MS system was composed of the Ultimate 3000 RSLC
nano system (Thermo Fisher Scientific, Waltham, USA) connected
to a Q Exactive HF mass spectrometer (Thermo Fisher Scien-
tific, Waltham, USA) equipped with a Nanospray Flex Ion source
(Thermo Fisher Scientific, Waltham, USA). Trapping was per-
formed at 10 μL/min for 4 min in solvent A (0.1% formic acid
in water/ACN; 2:8, v/v) on a 20 mm trapping column (made in-
house, 100 μm internal diameter, 5 μm beads, C18 Reprosil-HD,
Dr. Maisch, Germany) and the sample was loaded on a 200 cm
long micro pillar array column (PharmaFluidics, Ghent, Belgium)
with C18-endcapped functionality mounted in the UltiMate 3000’s
column oven at 50◦C. Fused silica PicoTip emitter (10 μm inner
diameter) (New Objective, Littleton, USA) was connected to the



4 | microLife, 2022, Vol. 3

μPAC outlet union and a grounded connection was provided to
this union. Peptides were eluted by a nonlinear increase from
1% to 55% MS solvent B (0.1% formic acid in water/ACN; 2:8,
v/v) over 145 min, first at a flow rate of 750 nL/min, then at 300
nL/min, followed by a 15 min wash reaching 99% MS solvent B
and reequilibration with MS solvent A. The mass spectrometer
was operated in data-dependent, positive ionization mode, auto-
matically switching between MS and MS2 acquisition for the 16
most abundant ion peaks per MS spectrum. Full-scan MS spec-
tra (375–1500 m/z) were acquired at a resolution of 60 000 in the
Orbitrap analyzer after accumulation to a target value (AGC tar-
get) of 3 000 000. The 16 most intense ions above a threshold value
of 13 000 were isolated (window of 1.5 Th) for fragmentation at a
normalized collision energy of 28% after filling the trap at a target
value of 100 000 for maximum 80 ms. MS2 spectra, with a first fixed
mass of 145 m/z, were acquired at a resolution of 15 000 in the Or-
bitrap analyzer. The S-lens RF level was set at 50 and precursor
ions with single, unassigned and >7 charge states were excluded
from fragmentation selection.

Raw data files were searched using MaxQuant version 1.6.3.4
(Tyanova et al. 2016) and spectra searched against the ENSEMBL
database for S. Typhimurium strain SL1344. For both proteomics
and genomics datasets the Salmonella enterica subsp. enterica
serovar Typhimurium str. SL1344 (enterobacteria) genome as-
sembly ASM21085v2 from The Wellcome Trust Sanger Institute
(GCA_000210855.2) containing 4672 protein entries was used. Mul-
tiplicity was set to 1, indicating that no labels were used. Further-
more, label-free quantitation (LFQ) with MaxQuant’s standard set-
tings was performed with matching between runs enabled (match
time window of 1.2 min and an alignment time window of 20 min).
As a fixed modification, methionine oxidation (to methionine sul-
foxide) was selected. We used the enzymatic rule of Trypsin/P with
a maximum of 2 missed cleavages. The main search peptide toler-
ance was set to 4.5 ppm and the ion trap MS/MS match tolerance
was set to 0.5 Da. Peptide-to-spectrum match confidence level was
set at 1% FDR with an additional minimal Andromeda score of 40
for modified peptides as these settings are most commonly used
by researchers. The maximal number of modifications per pep-
tide was set to 5. Resulting protein identifications were reported
in Table S1 (Supporting Information).

Additionally, proteogenomic searches were performed on the
proteomics datasets using our recently published pipeline as
previously described (Willems et al. 2020) and new proteoge-
nomic findings (at protein and peptide level) summarized in
Table S2 (Supporting Information). In short, the pipeline relies
on an iterative search strategy of cofragmenting peptides with
robust confidence estimating postprocessing, incorporating ad-
vanced peptide-to-spectrum match quality scoring. For this pur-
pose, comparison to predicted fragmentation spectra (Degroeve
and Martens 2013), advanced retention time prediction (Moruz
et al. 2010) and cross-validation with Ribo-seq data are utilized.
As presented in the original work, these features assure not only
deeper proteome coverage but also increased confidence in iden-
tified novel genomic elements.

Ribosome profiling data analysis
Sequencing files were demultiplexed using bcl2fastq software (Il-
lumina, San Diego, USA). Sample specific fastq.gz files originat-
ing from individual lanes were concatenated (cat, Unix). Unique
molecule identifiers (UMI) introduced in NextFlex library were
extracted from individual reads using a custom Python script.
PCR bias normalization was performed using a previously pub-

lished procedure (Mcglincy and Ingolia 2017). Normalized data
was trimmed in two steps using cutadapt. In the first step stan-
dard Illumina adapters are removed (cutadapt -q 20 -m 25 -e 0.2)
followed by secondary removal of UMIs (cutadapt -u 4 -u -4). The
data are subsequently mapped to indexed rRNA sequences using
Bowtie (bowtie -t -n 2 -p 6 –best). rRNA sequences were retrieved
from Ensembl and GenBank. Additional sequences of tRNAs, RNA
subunits of nucleoproteins and ncRNAs were also added to the
rRNA index and all aligned reads were removed from further anal-
ysis. The remaining reads were mapped to the S. Typhimurium
SL1344 genome using bowtie (-t -n 2 -p 6 -m 1 –best –strata –sam).
Resulting SAM files were converted to BAM format and sorted us-
ing Samtools (Danecek et al. 2021). Ribosomal P-site assignment
for all reads was performed using RiboWalz (Lauria et al. 2018)
outperforming plastid (Dunn and Weissman 2016) utilized in pre-
vious studies (Fig. S1, Supporting Information) (Ndah et al. 2017).
Positional data was counted using a custom Python script and nor-
malized to RPM values. Positional read occupancy tables were cre-
ated using Python and R tidyverse environment and exported for
further analysis. Subsequently, RPKM values were calculated for
all Ensembl annotated genes and separate BedGraph files for data
visualization were parsed using a custom Python script and pro-
vided as supplementary material via OSF.

Ribosome profiling data quality control
For Ribo-seq and Ribo-RET, two biological replicate samples ob-
tained from all growth conditions (i.e. two total translatomes and
two retapamulin-treated translatomes per condition) were se-
quenced. The ribosomal RNA (rRNA) contamination typical for
Ribo-seq libraries ranged between 61% and 74% for total trans-
latome samples. The samples were sequenced to the depth result-
ing in between 18 and 28 million of genome-aligned reads (after
removing rRNA-aligned reads). In case of Ribo-RET, considerable
rRNA contamination was detected ranging from 72% to 80% of
obtained reads. The libraries were sequenced to the depth rang-
ing from 8 to 12 million of genome aligned reads after removing
rRNA-aligned reads. Sequencing statistics and metagene analysis
has been summarized in Fig. S2 (Supporting Information).

Ribosome profiling-dependent gene detection
Open reading frame (ORF) detection from Ribo-RET was per-
formed using four distinct methods. First, a sliding window sig-
nal detection tool was devised using a custom Python script. For
this tool, a 30 nt window is run through the genome aligned sam-
ple and searching for signal accumulation peaks that exceed the
median RPM values of surrounding genomic positions by 3-fold.
To prefilter the data, a denoising step was introduced guided by
a 30 nt sliding window and removing areas of continuous low
coverage (<4 reads per strand at continuous stretch of four nu-
cleotides). Of note, the signal accumulation method detects all po-
tential signal peaks but is severely affected by background signal
producing a large number of potentially false positive hits. De-
spite this drawback, the sliding window method allows the anno-
tation of start and end positions of each individual retapamulin
data peak resulting from imperfect P-site assignment and thus
the peak start, max, end and width data is used in subsequent
ORF detection tools as an important feature.

Second, a criterium classifier was adapted from Meydan et al.
(2019). In short, the tool assigns ribosomal density to defined ini-
tiation codons in a stepwise manner based on the probability of
initiation at a given position (with annotated start sites taking pri-
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ority). The tool was modified to use the SL1344 genome and Ribo-
waltz corrected P-site assigned reads as inputs.

Third, a random forest classifier based on Ndah et al. (2017) was
trained to detect initiation events based on a positive set of highly
expressed (top 20%) annotated genes. A negative set of random
ORFs was used to correct for false positive detection as described
in the original work. The machine learning algorithm based on
a modified Perl script was subsequently ran on all retapamulin
samples. Resulting short sequence list reflects the positions of re-
tapamulin initiation peaks in the input data based on signal dis-
tribution features devised from the positive training set.

Finally, a similar approach has been devised by modifying the
pipeline described in Clauwaert et al. (2019). A neural network
(NN) classifier was trained using positive datasets including the
20% highest expressed annotated genes in retapamulin samples.
The NN classifier was subsequently applied to all samples provid-
ing a list of initiation events detected based on a discrete set of
features.

Results from each individual ORF detection tool were parsed
together into a data matrix using a custom Python script and a
high confidence dataset of initiation events detected by three out
of four methods cross-referenced. Subsequently, the list of initia-
tion events was matched with a six-frame STOP to STOP database
assigning most likely ORF bodies to in-frame initiation signals and
selecting RET peaks as a new 5′ CDS delineator, and concomitantly
as new N-terminal delineator. The resulting list of confident trans-
lated ORFs predicted based on Ribo-RET data are listed in Table S3
(Supporting Information).

Novel ORF data analysis
The high confidence dataset (Table S3, Supporting Information)
obtained was further processed using custom R and Python
scripts. A differential expression analysis was performed for ORFs
detected in all investigated Ribo-seq conditions using a custom
R script. First, a maximal expression matrix was built to provide
the oversight on all ORFs detected in at least two conditions. Such
ORFs were selected for further analysis. In parallel a similar anal-
ysis was performed using corrected retapamulin peak intensity
as input value in place of RPKM. Corrected retapamulin intensity
values were obtained as the integral of the retapamulin peak de-
tected normalized against detected expression within the body of
the gene (background). Differential expression analysis was per-
formed using DESeq2 package with stringent Bonferroni correc-
tion for multiple testing (Love et al. 2014).

Results
A conditional atlas of S. Typhimurium total
protein expression
For the in-depth mapping of translated ORFs—including trans-
lated sORFs—and thus the S. Typhimurium translation landscape,
and to understand the biases of proteomics toward SEP detec-
tion, complementary proteomics and translatomics data were
generated. More specifically, translation (initiation) data originat-
ing from (retapamulin-assisted) ribosome profiling (Ribo-RET and
Ribo-seq) and matching total lysate shotgun proteomics datasets
were obtained from a series of representative growth conditions
corresponding to various growth phases (e.g. MEP, LEP) and en-
vironmental stresses (NaCl shock, anaerobic shock, low pH, low
Mg2+ at low pH and nitric oxide shock at low pH; see the ’Materi-
als and Methods’ section).

Conditional shotgun proteomics investigation provided a com-
prehensive snapshot of the annotated S. Typhimurium proteome,
identifying 3053 out of 4672 annotated proteins (65% of the an-
notated proteome) with at least one unique tryptic peptide (UTP)
and minimally two peptide-to-spectrum matches (PSMs) using
MaxQuant (Tyanova et al. 2016) when searching against the En-
sembl protein database (ASM21085v2; Ensembl release 51; Ta-
ble S1, Supporting Information). Each growth condition was in-
terrogated by shotgun proteomics in quadruplicates. When filter-
ing for proteins identified in at least three replicates of at least
one growth condition, 2813 protein groups remain confidently de-
tected (92%) and quantified with an average protein peptide cover-
age of 43%. Owed to the number of conditions investigated and the
wide dynamic range of protein expression captured (maximum
intensity-based absolute quantification: iBAQ fold change of 8.9
× 105), a relatively small number of proteins was uniquely identi-
fied only in one growth condition with a maximum of 14 proteins
being uniquely detected in stationary phase grown cells (Table S1,
Supporting Information). Proteomics evidence for the expression
of 190 annotated SEPs was discovered with 170 SEPs confidently
quantified (Table S1, Supporting Information). While no SEPs were
exclusively identified in only one growth condition, and an aver-
age SEP peptide coverage of 44% was observed, it is noteworthy
that SEPs were identified with an average of 291 PSMs compared
with the average of 484 PSMs per protein identification for the en-
tire protein dataset.

Complementary to shotgun proteomics analyses, total cellular
translatomes were investigated by means of Ribo-seq. This way,
4135 genes were found to be robustly expressed (here arbitrarily
defined as RPKM (reads per kilobase per million sequenced reads)
value higher than 5) in at least one growth condition. The transla-
tion data positively correlates with the proteomics data (average
Pearson coefficient of 0.57). When investigating general protein
translation levels, a core set of 2529 robustly translated proteins
(RPKM > 5) in all investigated conditions can be distinguished.
Considering the RPKM cutoff of 5, a dynamic translation range
of 9.3 × 104 was interrogated. The translation data was further
supported by translation initiation profiling using Ribo-RET. Sim-
ilar to total translatome datasets, each growth condition was se-
quenced in duplicates. Using an arbitrary cutoff of 32 reads at
the annotated start codon we confirmed initiation events at 2799
database-annotated translation initiation sites (dbTIS). The vast
majority of confirmed initiation events occur at canonical ATG
codons (89%—2491 start sites), 9% (252) at GTG codons and 2%
(56) at TTG codons, proportions largely in line with previously
published data (Ndah et al. 2017, Meydan et al. 2019, Verbruggen
et al. 2019) and current S. Typhimurium gene annotation (88% ATG,
9.2% GTG and 2.7% TTG). The summary of most commonly as-
signed start codons of Ribo-RET data is presented in Fig. S3 (Sup-
porting Information).

Integration of in silico proteome analysis and
experimental riboproteogenomic data to uncover
biases in MS-based SEP detection
The conditional S. Typhimurium annotated protein expression
maps obtained using translatomics and proteomics were used in
conjunction with in silico analysis to illustrate the potential biases
present in proteomics detection. For this, a wide panel of chem-
ical and biophysical property descriptors of all theoretical tryp-
tic peptides (mass range of 600–4600 Da, length of ≥ 7 aa) re-
sulting from in silico digestion of the annotated S. Typhimurium
proteome were calculated using the propy python package (https:

https://pypi.org/project/propy3/
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//pypi.org/project/propy3/). Using these descriptors, we compared
theoretical properties of peptides originating from database anno-
tated SEPs with those originating from the rest of the proteome.

SEPs detection is challenged by low numbers of
MS-detectable tryptic peptides
Rationally, a major reason for missing SEP identifications in pro-
teomics datasets is their short size leading to a limited number
of detectable tryptic peptides. Strikingly, while 482 SEPs consti-
tute ∼10% of the annotated S. Typhimurium proteome (Fig. 1A
and B), they solely produce 4420 peptides (mass range of 600–4600
Da, length of ≥7 aa) or 2.5% of all identifiable peptides. In addi-
tion, 21 proteins (of which three SEPs) have no UTPs within the
detectable mass range. As evident from Fig. 1A and B, the major-
ity (77%) of database annotated S. Typhimurium proteins are be-
tween 100–500 aa in length. These proteins also produce the bulk
of specific UTPs. Besides being theoretical peptides plausibly gen-
erated by trypsin digestion, MS detectability represents an impor-
tant limitation, i.e. some peptides are refractory toward MS-based
detection due to incompatible physicochemical properties such
as high hydrophobicity or charge. Such peptide features have been
used in machine learning algorithms to predict the detectability of
peptides, with a recently developed algorithm being the advanced
proteolytic peptide predictor (AP3) (Gao et al. 2019). In Fig. 1B, the
AP3 predicted peptide detectability (0: low detectability, to 1: high
detectability) of theoretical peptides (gray dots) was plotted in
function of the length of their respective protein. In addition, pep-
tides identified in this study (at least two PSMs) were indicated in
red (Fig. 1B). Globally, out of 32 171 peptides identified, almost 70%
are highly detectable (22 734 peptides, detectability > 0.9, dark
green class), 20% have medium detectability (6383 peptides, de-
tectability 0.9–0.45, light green) and 10% low detectability (3378
peptides, detectability < 0.45, pink). The proportion of theoretical,
highly detectable peptides increases with protein length to reach
a plateau of ∼12% when over 150 aa in length (Fig. 1C) and with a
significant lower proportions of highly detectable peptides (i.e. 6%
on average) originating from proteins smaller than 50 aa in length.
This downward trend is particularly evident for SEPs below 25 aa
in length (Figs 1C and 2A). Viewing the peptide identification rate,
i.e. the proportion of identified theoretical peptides, it is thus in-
disputably that SEPs suffer from lower peptide identification rates
(2.5% for proteins < 50 aa, 4.5% for proteins <100 aa), where the
rate remains relatively stable for longer proteins at ∼9% (Fig. 1D).
It can be observed that peptide detectability of SEPs represents
a strong influencing factor when considering their MS-based de-
tection, with SEPs only producing 673 unique peptides originating
from 421 SEPs (i.e. 1.6 unique peptides per SEP on average) with
a detectability score higher than 0.9 (Fig. 1E). Overall, identified
peptides had a high detectability score median of 0.88, in sharp
contrast to the 0.18 median detectability score of all theoretical
tryptic peptides of the S. Typhimurium proteome (Fig. 2B). In sum-
mary, the relatively lower proportion and lower absolute number
of MS-detectable peptides in case of SEPs (Fig. 1E) is convincingly
a strong influencing factor for their general lower proteomic iden-
tification rate.

When focusing on all eight database annotated protein en-
tries smaller than 25 aa (Fig. 2A) it becomes clear that scarcity of
detectable peptides—with even no theoretical peptides with de-
tectability score above 0.9—represents a major problem for MS de-
tection of SEPs. This finding is further accentuated by the fact that
one such SEP completely lacks identifiable UTPs (CCG27798; yjeV)
and four displaying only UTPs with low detectability scores (<0.4).

Evidently, the same phenomenon influences also the proteomic
detection of potentially unannotated SEPs in proteogenomic ef-
forts as illustrated by the example of a newly identified sORF, sORF
23, lacking any detectable peptides, while nonetheless showing
strong Ribo-seq support (Fig. S4, Supporting Information).

SEP properties contributing to challenging
proteomic detection
The relative low abundance of SEPs has been widely suggested
as a confounding factor hindering their proteomics identification.
With proteomics being potentially biased against identifying SEPs,
we additionally turn to matching translatomics information that
is likely unaffected by the same confounding factors. Here, we
analyzed this notion by viewing normalized Ribo-seq translation
levels of all robustly expressed (RPKM > 5) annotated proteins
(Fig. 3A and B). Note, this normalization corrects for ORF length
and is here displayed as log2-normalized RPKM expression values.
Moreover, the typical Ribo-seq read accumulation at the transla-
tion initiation and termination sites is corrected for (i.e. signal at
5% of terminal positions was removed from the analysis) as pre-
viously described to avoid overestimation of sORF translation lev-
els (Verbruggen et al. 2019). It can be observed that SEPs display
relatively similar translation levels as compared with longer pro-
teins (Fig. 3B), at least for the expressed annotated proteins con-
sidered. This indicates that a generalized lower expression of SEPs
is unlikely to constitute a decisive factor accounting for their poor
identification rates. In fact, the category of SEPs shorter than 25
aa in length, for which no peptides were identified, displays even
slightly elevated translation levels (median log2(RPKM) of 8.12)
while being affected by poor detectability of their resulting pep-
tides (as illustrated by Figs 2A and 3A and B). With matching pro-
teomics data correlating well with these translatomics findings
(Fig. 3C and D), we can conclude that low expression—both among
missed annotated proteins and newly detected ones (discussed
further in this work)—is thus unlikely to be a main confounding
factor specifically hindering the MS-based proteomic detection of
SEPs.

Among other factors postulated to account for the low de-
tectability of SEPs and given that a significant proportion of bacte-
rial SEPs has been predicted to contain (hydrophobic) TM domains
in previous studies (Fontaine et al. 2011), the hydrophobic nature
of SEPs has often been put forward. In this regard, it is striking to
note that 9 out of 10 most hydrophobic annotated S. Typhimurium
proteins are SEPs, and none of them have been identified in our
proteomics screen despite good translatomics expression levels
(mean log2 RPKM of 11.279). To evaluate to what extent hydropho-
bicity affects SEP detection, we calculated the grand average of hy-
dropathy (GRAVY) metric for all annotated proteins. This gives an
indication of protein hydrophobicity/hydrophilicity, with higher
GRAVY values indicating more hydrophobic proteins. It can be ob-
served that small proteins exhibit a more extreme range of hy-
drophobicity scores compared with larger proteins (Fig. 4A–D), es-
pecially when considering the higher GRAVY distribution in SEPs
smaller than 50 amino acids (Fig. 4B). When considering identi-
fied UTPs, a set of hydrophobic proteins (GRAVY ≥ 0.5) can be
distinguished with poor MS proteomic evidence for all proteins
and especially SEPs (Fig. 4C and D). Taken together, MS detection
and GRAVY are negatively correlated, meaning that hydrophobic
proteins are generally poorly detectable by MS, a property further
accentuated for SEPs given their increased average hydrophobic-
ity. Also the observation that in the category of SEPs smaller than
50 amino acids with a mean GRAVY value of 0.198, the by pro-

https://pypi.org/project/propy3/


Fijalkowski et al. | 7

Figure 1. Detectability of peptides produced by in silico tryptic digestion of the annotated S. Typhimurium proteome. (A) Number of S. Typhimurium
proteins in function of their protein length. (B) Distribution of detectability tryptic peptide scores in function of protein length. Three detectability
classes are distinguished (high, >0.9; mid, 0.9–0.45; and low, <0.45). Peptides with proteomic support (minimum two PSMs) are indicated in red. (C)
Composition of peptide detectability classes in function of protein length. (D) Peptide detectability classes with proteomic support in function of
protein length. (E) Numbers of unique peptides in distinct peptide detectability classes for SEPs versus all other proteins.

teomics identified SEPs displayed a mean GRAVY of −1.36, further
indicates that essentially, only hydrophilic SEPs of this size cate-
gory were identified. Moreover, among the properties used in AP3
predictions, high peptide hydrophobicity is considered an indica-
tor of low detectability, further supporting our findings at the pro-
tein level (Gao et al. 2019). Noteworthy, however, is that hydropho-
bic proteins (>0.8 gravy) display a mean log2(RPKM) expression
value of 6.605, which is significantly lower compared with the 7.63
expression value for less hydrophobic proteins (gravy < 0.8) (P-
value < 0.05). If the same calculation is made exclusively for SEPs
then hydrophobic SEPs (gravy > 0.8) are slightly higher expressed
log2(RPKM) of 7.42 vs 6.985 for hydrophilic SEPs.

Related to the strong hydrophobicity of SEPs, we investigated
their domain structure, namely, the occurrence of signal peptides
(SPs) and TM helices in their sequence. Importantly, SPs are eas-
ily mistaken as TM helices given their similar biophysical prop-
erties (Krogh et al. 2001). Therefore, we first predicted SPs after
which TM helix prediction was performed on S. Typhimurium pro-
teins with predicted SP-containing proteins removed. As the rel-
ative numbers of TM helices and SPs predicted show relatively
similar proportions in SEPs and longer proteins, the MS identifica-
tion is drastically affected in case of SEPs (Fig. 4E). For instance,

only 7 out of 71 (∼10%) TM helix-containing SEPs were identi-
fied (≥2 PSMs) (i.e. CBW19682, CBW17714, CBW19928, CBW20018,
CBW17862, CBW18094, CBW20286), whereas 182 out of 404 (45%)
TM helix-containing proteins larger than 100 aa were identified
(Fig. 4E). This is in stark contrast to 130 out of 323 (∼40%) SEPs
and 2530 out of 3022 (∼84%) longer proteins identified without
predicted TM domains or SPs. Likely, the greater relative portion
of these structural domains present in SEPs signifies another con-
tributing factor hindering their proteomics detection, and again in
line with the increased hydrophobicity aspect of such motifs. This
is especially apparent when peptide coverage of detected mem-
brane proteins is considered, with TM proteins showing median
coverage of 15.68% (with 30% maximal theoretical coverage when
considering highly detectable peptides) while soluble proteins dis-
play a 43% median coverage (with 54% maximal theoretical cov-
erage when considering highly detectable peptides).

Similarly to high hydrophobicity, potential low stability of SEPs
could hinder their MS discovery. In the absence of proteome-wide
data of bacterial protein turnover we turned to stability predic-
tions that shown efficacy in reflecting some aspects of (bacterial)
protein instability (Guruprasad et al. 1990, Gamage et al. 2019). To
examine this, we calculated the instability index as described by
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Figure 2. Properties of peptides derived from small proteins. (A) Peptide detectability coverage plot of the eight SL1344 annotated SEPs smaller than 25
aa in length, with color representing the detectability score of a peptide. The peptide coverage plots indicate the peptides of the highest detectability at
each position. (B) Detectability distribution for all unique theoretical tryptic peptides originating from annotated proteins, theoretical unique tryptic
peptides originating from novel proteogenomics-detected proteins and unique peptides identified by proteomics in this study.

Guruprasad and colleagues (Guruprasad et al. 1990). This index
predicts protein stability based on the amino acid composition of
the protein, namely the bicodon occurrence frequencies, a proxy
utilized by many protein stability predictors (Pucci et al. 2017, Yang
et al. 2019, Chen et al. 2020). Proteins with an instability index lower
than 40 are predicted to be stable, while higher values represent a
good indication of protein instability. Similar to GRAVY scores, we
observe that SEPs display a more extreme variation in instability
indexes, with SEPs smaller than 25 aa displaying clearly elevated
instability indexes (Fig. S5A and B, Supporting Information) while
larger SEPs do not deviate from the index distribution observed
for longer proteins. However, intriguingly, when only considering
identified proteins (Fig. S5C and D, Supporting Information), we
observe that identified proteins smaller than 50 aa in size dis-
play relatively elevated instability indexes pointing toward robust
identification of, at least some SEPs predicted as being (relatively)
unstable. Despite this subtle trend, the methodology used can-
not predict if proteins might undergo (targeted) proteolysis in vivo
(Gamage et al. 2019), so instability of at least some SEPs cannot be
excluded as clearly demonstrated by recently observed improved
validation rate of novel bacterial SEPs in the presence of Borte-
zomib, due to lowered protein degradation rates (Stringer et al.
2021).

Next to Ribo-seq expression levels, we viewed protein abun-
dance (iBAQ) measured by MaxQuant for 3053 proteins identified
by proteomics (≥1 UTP, min two PSMs; Fig. 3D and E). It can be ob-
served for all proteins and SEPs, that Ribo-seq RPKM and MS-based
protein iBAQ values are positively correlated (mean Pearson coef-
ficient of 0.67). Moreover, SEPs with sizes as small as 46 residues,
e.g. RpmH, can be among the most abundant proteins expressed,
with this particular protein being the third and fourth most abun-
dant protein in our proteomics and Ribo-seq datasets, respectively
(highlighted in Fig. 3D). Admittedly, small ribosomal proteins are
a special case of robustly expressed SEPs, but their removal from
the analysis did not reveal a significant change in the average ex-
pression levels between SEPs and longer proteins (chi square test).
By and large, proteomics detected SEPs display robust expression
throughout investigated growth conditions (Table S1, Supporting
Information).

Low numbers and poor detectability of tryptic
peptides, but not general abundance and
predicted stability, are major limiting factors for
missing SEP identifications
Compounding effects of the various properties described ear-
lier (protein hydrophobicity, peptide detectability etc.) all con-
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Figure 3. Protein Ribo-seq expression levels in function of protein length. (A) Log2-transformed RPKM values of all annotated proteins smaller than 600
aa. (B) Box plot depicting distribution of translation values per protein length bin. (C) Abundance of annotated proteins detected in the proteomics
experiments as measured by log2(iBAQ) values in function of protein length. (D) Correlation between proteomics and translation as measured by
ribosome profiling in MEP (OD 0.3 in LB medium). The protein length is marked on a color scale with proteins smaller than 100 aa indicated with
triangles. Pearson correlation coefficients are marked in respective graphs. The robustly expressed RpmH SEP described in the text is highlighted. The
quantification of RpmH is highlighted as an example of robustly expressed SEP (see manuscript text for details).

tribute to the observed underrepresentation of SEPs in proteomic
datasets. To estimate the overall probability of SEP detection, a
multivariate analysis was performed using logistic regression for
dichotomous outcomes (adjusted odds ratio) as described in de-
tail in Lee et al. (2009) and Grant et al. (2019). The detection prob-
ability of a SEP-derived peptide was calculated from a multi-
variate, compounding statistical model. Factors included in the
multivariate analysis are Ribo-seq expression levels (RPKM val-
ues), number and detectability scores of tryptic peptides origi-
nating from the SEP, hydrophobicity of the protein and its in-
stability as measured by instability index. Using this model to
estimate detection chances of individual peptides the adjusted
odds ratio for SEP detection could be calculated. Given the partial

stochastic aspect of DDA-based peptide identification in a given
MS experiment, the probability of SEP identification equals 0.0342.
This value closely resembles the contribution of SEP-originating
peptides in the pool of all tryptic peptides (∼2.5%) hinting to-
ward a highly complete description of experimentally observed
variance. Based on this analysis, we can delineate that scarcity
and poor detectability of tryptic peptides originating from SEPs
jointly explain over 75% of variability observed in SEP detec-
tion and thus represent the dominant limiting factors for their
MS-based detection. This finding offers a more nuanced view
of the factors limiting SEP detection compared with low abun-
dance and stability generally put forward as major causes of this
phenomenon.
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Figure 4. Protein hydrophobicity of the annotated S. Typhimurium proteome. (A) Distribution of protein hydrophobicity scores in function of protein
length. Proteins detected in the proteomics experiments were highlighted in color in function of the number of identified UTPs. (B) Box plot depicting
distribution of hydrophobicity scores per protein length bin. (C) Box plot depicting distribution of hydrophobicity scores of proteomics identified
proteins per protein length bin. (D) Histogram of hydrophobicity scores of proteins for all annotated proteins (left) and for SEPs (right). (E) Domain
composition of all proteins (left) and SEPs (right) in the S. Typhimurium proteome.
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Riboproteogenomic discovery of unannotated
SEPs in Salmonella
As ORF size impacts the accuracy of genome annotation algo-
rithms, sORFs and their corresponding SEPs are in particular af-
fected by underannotation (Baek et al. 2017). In order to deepen
our understanding of the S. Typhimurium genome, we inspected
the Ribo-seq and Ribo-RET datasets for pervasive translation out-
side of annotated genes. Using the datasets obtained, we applied
our Ribo-seq based gene detection search for novel genomic ele-
ments (Willems et al. 2020). In total, 243 unannotated translation
products were detected. Next to small proteins, and in line with
our previous findings (Ndah et al. 2017, Willems et al. 2020), we de-
tected a number of errors persisting in current genome annota-
tion of S. Typhimurium. To this end, protein truncations (115) and
extensions (79) of annotated genes have been found indicating in-
correctly assigned start sites. Fifty-four of such novel genomic el-
ements have been matched by two or more UTPs in our proteoge-
nomic pipeline search highlighting the need for continuous data-
driven reannotation efforts. As such reannotation efforts have
previously been described by us and others (Giess et al. 2017, Ndah
et al. 2017, Willems et al. 2020), in this work we focused on sORFs
discovery and their resulting protein products—SEPs. Among the
49 newly discovered intergenic ORFs, 36 encode proteins smaller
than 100 aa (Fig. 5; cross-referenced with previous studies as in-
dicated in Table S2, Supporting Information). The newly identi-
fied sORFs show robust expression throughout the investigated
growth conditions (average log2(RPKM) of 9.68 vs 8.64 for all pro-
teins; average log2(IBAQ) of 24.16 vs 23.32 for all proteins). Us-
ing matching proteomics data, our recently published proteoge-
nomic pipeline making use of six-frame translation (Willems et al.
2020) identified 433 (251 with at least two PSMs) new peptides
originating from database unannotated genomic locations (Table
S2, Supporting Information). In total, such newly discovered pep-
tides have been matched to 321 either novel, incorrectly anno-
tated or unannotated genomic elements. When considering SEP
identification, 12 of the 36 (33%) novel sORFs predicted by Ribo-
seq have been confirmed by at least one unique peptide (≥2 PSMs)
displaying good quality fragmentation spectra supporting their
confident identification (Figs 5B and 6). Eight out of the 36 (22%)
newly discovered sORFs are predicted to encode SEPs with TM do-
mains (Fig. 5A), slightly more than in case of annotated SEPs (15%).
Among the 36 newly discovered sORFs, 25 display ANOVA signif-
icant (P-value < 0.05) Ribo-seq expression levels when consider-
ing late exponential growth versus the five other growth condi-
tions tested by Ribo-seq, further indicating their potential biolog-
ical role (Fig. 7). Notably, eight novel sORFs (new sORF 2, 3, 6, 9, 18,
25, 31, 35) were significantly upregulated in Salmonella pathogenic-
ity island 2-inducing growth conditions (PCN and PCN low Mg2+)
that mimic the intra-vacuolar growth conditions of infecting S. Ty-
phimurium (Srikumar et al. 2015) (Fig. 7, highlighted in orange; av-
erage log2 FC over MEP of 2.21). Ribo-seq signal of a representative
example (new sORF 31) is shown in Fig. S6 (Supporting Informa-
tion).

In order to further evaluate potential biological functions of
novel sORFs detected in this study, we performed homology anal-
ysis using protein BLAST for the putative SEP sequences against
the bacterial RefSeq protein database. This revealed that all but
three (new sORF 1, 5 and 13) of the SEPs detected by our ap-
proach share, at least partial, sequence homology to proteins an-
notated in other bacterial species. Half of such SEPs (16) were hy-
pothetical and uncharacterized proteins present in either other
Salmonella strains or other members of the Enterobacteriaceae

family. Such hypothetical, multispecies bacterial protein records
in the NCBI RefSeq database (WP entries) were introduced re-
cently to avoid redundancy and are managed independently from
the genome accessions (Tatusova et al. 2016). One example of this
is the new sORF 34 that matches the multispecies hypothetical
protein WP_000343102.1 annotated in Enterobacteriaceae. Simi-
larly, new sORF 35 matches a truncated version of hypothetical
protein WP_204903213 annotated in Salmonella enterica. On the
other hand, certain homology matches can provide valuable in-
sight into the biological function of newly detected SEPs. New
sORF 26 matches the VapB antitoxin of the type II toxin-antitoxin
system of Salmonella enterica (Winther and Gerdes 2011). This pro-
tein has thus far not been annotated in SL1344 strain used in this
study and next to existing homologs, strong genomic and pro-
teomics support its true expression again showcasing the valid-
ity of our proteogenomics approach. Similarly, the 17 amino acid
long SEP encoded by new sORF 2 (MDPEPTPLPRWRIFLFR) showed
full homology with the mgtL encoded regulatory leader peptide
of the magnesium-transporting ATPase MgtA, serving a molecu-
lar proline level detector function (by its four encoded prolines)
and regulating osmotic shock induction (Park et al. 2010). Regu-
latory SEPs represent a distinct category of SEPs that intriguingly
may display highly deviating amino acid and dipeptide composi-
tions. Other functional indications of newly discovered SEPs in-
clude involvement in ribosomal structure (50S ribosomal protein
L36 homolog; new sORF 4), magnesium transport (MgtS homolog;
new sORF 6, SlyB homolog; new sORF 8), lipoprotein processing
(patatin homolog; new sORF 15) and general bacterial metabolism
(PTPS synthase homolog; new sORF 13).

Discussion
The elusive nature of SEPs in proteomics has long been explained
by often incompletely studied assumptions pointing toward their
low abundance, unstable nature or broadly undefined incompat-
ibility with MS-based detection. In this study we carefully exam-
ine such inherent properties of SEPs and point toward a combi-
nation of factors that jointly explain the challenging proteomic
detection of SEPs. Logically, low number of unique tryptic pep-
tides produced by SEPs represents the biggest challenge in this
process (explaining up to 60% of variance observed). The scarcity
of tryptic peptides produced points directly to possible improve-
ments that could be achieved by generating proteomics datasets
using alternative proteases (Tran et al. 2011). For instance, in sil-
ico chymotrypsin digestion results in ∼30% more theoretically
identifiable peptides from annotated S. Typhimurium SEPs (con-
sidering two missed cleavages and high specificity as defined
by ExPaSy; https://web.expasy.org/peptide_cutter/peptidecutter_
enzymes.html). Despite this, trypsin is often preferred due to its
enhanced specificity, consistency in cleavage site selection and re-
sulting C-terminally charged peptides displaying improved ioniza-
tion in MS experiments (Giansanti et al. 2016). In S. Typhimurium,
merely 2.5% of all tryptic peptides (falling within MS detection
size limits) are produced from proteins shorter than 100 aa in size.
This is further exacerbated by the low detectability scores of the
majority of such peptides as strikingly ∼70% of these have de-
tectability scores lower than 0.45 while the average detectability
of proteomics-identified peptides in this study was 0.856 (Fig. 1;
Fig. 2B). Thus, on average, only one in eight tryptic peptides orig-
inating from the S. Typhimurium proteome displays high MS de-
tectability. This fact, further compounded by the hydrophobic na-
ture of many SEPs and their frequently predicted membrane lo-
calization, nearly completely explains the challenge posed for the

https://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html
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Figure 5. Riboproteogenomics reannotation of the S. Typhimurium genome. (A) Chromosomal position, length and domain composition of newly
Ribo-seq called intergenic or (partially) overlapping ORFs. (B) Peptide detectability coverage plots for Ribo-seq predicted SEPs with the proteomics
identified peptides highlighted in red. Detectability of peptides is coded on a color scale.

MS-based discovery of this understudied class of proteins. Impor-
tantly, low abundance and predicted lower stability of SEPs often
postulated in literature were poorly supported as important con-
tributors to subpar detection of SEPs in our analysis. In fact, SEPs
identified in this study displayed relatively high instability mea-
sures as predicted (Fig. S5, Supporting Information) and did not
deviate significantly from the overall abundance distribution as
inferred from Ribo-seq. Relatively good validation rates for some
of the other landmark studies (Baek et al. 2017, Venturini et al.
2020) potentially support the observation that stability might not
be a limiting contributor to the subpar proteomic SEP detection.
However, computational descriptors of stability, such as the insta-
bility index utilized in this study display significant flaws as they
for example fail to capture (specific) cellular proteolysis events
and rather reflect thermal fold stability of a protein. Moreover,
recent findings indicated that inhibition of protease ClpP led to
improved SEP validation in E. coli suggesting that rapid degrada-
tion might affect a significant fraction of SEPs (Stringer et al. 2021).
However, prior to generalizing the concept of ClpB inhibition-
mediated stabilization of SEPs, a proteome-wide assessment on
protein turnover (and stabilization following ClpP inhibition) is
deemed required before generalization of possible differences in
SEP versus non-SEP stabilities.

Inherent to their small protein size, a substantial fraction of
SEPs found in proteomic datasets are only identified by a single
UTP (19% vs 8% for longer proteins). This is problematic as de-
tection of more peptides often serves as a guideline for trustwor-
thy protein identification and quantification, making it nearly im-
possible to identify and quantify SEPs in a comprehensive man-
ner. From available MS evidence of SEPs in Mycobacterium pneu-
moniae, it was shown that the category of SEPs with at least two
distinct peptides managed to distinguish true positives, whereas
false positives more frequently remained supported by one pep-
tide hit (Miravet-Verde et al. 2019). However, as we demonstrate
in the current and a previous proteogenomic study (Willems et al.
2020), supporting such identifications with one or more lines of
orthogonal riboproteogenomic evidence, besides spectral quality
features including the comparison to predicted fragment ion in-
tensities, can greatly improve our confidence in the true nature of
sORFs and SEPs. Transcriptomics, translatomics and translation
initiation delineation all can provide direct supporting evidence
of protein production. With all eight annotated S. Typhimurium
proteins smaller than 25 aa only producing three peptides of
medium detectability score (Fig. 2A), such orthogonal data might
often be lacking or provide the sole evidence of very few endoge-
nously expressed SEPs. Previously, to gain further support for such



Fijalkowski et al. | 13

Figure 6. Newly discovered SEPs with supporting proteomics evidence. Novel SEPs are presented with matching examples of assigned peptide
fragmentation spectra.

one-hit wonders and to incorporate quality of spectral matches
into the equation, synthetic peptides were synthesized and re-
sulting MS2 spectra compared (Friedman et al. 2017). It should be
noted that by comparing to MS2PIP-predicted spectra (Degroeve
and Martens 2013, Degroeve et al. 2015), a somewhat similar ra-
tionale is incorporated into our proteogenomic pipeline utilized
in this study (Willems et al. 2020) (Fig. S7, Supporting Informa-
tion). MS2PIP predictive models are however trained on tryptic
data and perform less optimal for peptides not ending on Arg or
Lys at their C-terminus (Wilhelm et al. 2021). However, with an-
other spectral predictor—PROSIT (Gessulat et al. 2019)—recently
including predictions of non-tryptic MHC class peptides, dynamic
developments in the field of computational proteomics hold the
promise of rapid improvements in this area (Wilhelm et al. 2021).

Despite the growing number of valuable efforts to identify and
catalog small bacterial proteins, the proteomic evidence of such

translation events is often scarce for reasons demonstrated by us
in this study (Venturini et al. 2020). As high quality omics datasets
become available in public repositories for a growing number of
species (Van Opijnen and Camilli 2012, Baek et al. 2017, Ndah et al.
2017, Vanorsdel et al. 2018), the metaanalyses concatenating and
cross-referencing the findings will be in high demand (Nielsen and
Krogh 2005, Venturini et al. 2020). With over 3000 confidently iden-
tified and quantified proteins (∼65% of the proteome and 74% of
the expressed proteome; 5 RPKM cutoff) we provide a compre-
hensive compendium of the expressed S. Typhimurium proteome.
The strength of the integrative approach used in this study relies
on multiple factors. As previously clearly demonstrated in case
of E. coli proteome (Schmidt et al. 2016), the use of complemen-
tary growth conditions aids in increasing proteome coverage. For
instance, when comparing protein identifications obtained from
MEP with SPI2-inducing low pH minimal media (PCN), 128 and
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Figure 7. Expression regulation of unannotated intergenic sORFs at the level of translation (measured by Ribo-seq). Condition-specific expression of
novel intergenic ORFs significantly differentially expressed between the MEP (OD 0.3 in LB medium) condition and other growth conditions
investigated. Only ANOVA significant regulation is presented with log2 fold change in color scale. Novel sORFs regulated in SPI2-inducing conditions
have been highlighted in orange.

218 proteins are uniquely identified in the two conditions, re-
spectively. Moreover, matching genomic (Ribo-seq and Ribo-RET)
datasets were generated to support such condition specific iden-
tifications. The utilization of differential growth conditions can
also point toward the functionality of newly discovered SEPs. Pre-
vious transcriptomic studies pointed to infection-like expression
patterns observed in SPI2-inducing conditions such as the (low
Mg2+) SPI2-inducing conditions utilized in our study. These condi-
tions correlated highly with expression program displayed by the
intravacuolar S. Typhimurium population upon infection (Sriku-
mar et al. 2015). With eight novel SEPs following a similar expres-
sion pattern indicative of their relevance in bacterial infection,
the potential biological relevance of genome reannotation efforts
is demonstrably clear. The comprehensive coverage of both the
translatome and the proteome obtained in this study highlights
the utility of conditional interrogation of bacterial genomes. De-
spite major advances in the technology allowing for effective gene
detection based on translation data, further improvements in the
bioinformatic toolkit are needed, as also acknowledged in a recent
benchmarking study comparing sensitivities of bacterial sORF de-
tection (Gelhausen et al. 2022).

A multitude of recent efforts have been undertaken to optimize
proteomics detection of SEPs. Use of enrichment strategies, alter-
native proteases and custom search databases have all shown

good promise in increasing the identification rates of SEPs (Bar-
tel et al. 2020, Fijalkowski et al. 2021, Kaulich et al. 2021). In one
recent example, using aliphatic polymers to enrich for small pro-
teins has shown promise in enhancing the proteomic detection
of SEPs (Fijalkowski et al. 2021). However, with certain classes of
proteins—most notably hydrophobic and TM proteins discussed
here—posing particular challenge to proteomics detection, tar-
geted approaches might be necessary for their effective identifi-
cation (Omasits et al. 2017). Further, the gain of using multiple,
complementary proteases can further be guided by theoretical
analysis and thus benefit from the development of dedicated pro-
teomic detectability predictors, such as AP3 used in this study for
tryptic peptide detectability. Using such predictors, we obtain a ra-
tional prediction of the depth to which proteomics analyses can
feasibly produce supporting evidence for novel SEPs and help to
guide targeted efforts based on genomic information. Given the
scarcity of possible proteolytic sites in short proteins and the chal-
lenge in limited specificity of some proteases, novel digestion pro-
tocols proposed need careful consideration (Kaulich et al. 2021).
Similarly, albeit very useful for identification and validation pur-
poses, and previously demonstrated for Bartonella henselae where a
complete membrane proteome has been identified (Omasits et al.
2017), enrichment strategies mostly forfeit the quantitative as-
pect of proteomics, making it challenging to apply them in func-
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tional studies aimed at investigating protein regulation (Mura-
tovic et al. 2015) or when comparing different types of omics data
(Willems et al. 2020). Importantly, in case of S. Typhimurium, the
maximal theoretical coverage of the annotated membrane versus
soluble proteome was found to be significantly (P-value < 0.01)
lower, with, respectively, 30% and 54% coverage when consider-
ing highly detectable peptides. Furthermore, translatomics data
indicate lower expression means of the membrane versus sol-
uble proteome with average log2(RPKM) values of 4.98 and 6.02
(P-value < 0.01), respectively (Fig. S8, Supporting Information).
As such, detectability and expression critically contribute to the
membrane protein bias observed in proteomics datasets and may
vary (widely) between organisms. Alternatively, continuous devel-
opments in topdown proteomics can potentially improve the de-
tection of intact small proteins as recently demonstrated in com-
plex murine brain tissue samples (Davis et al. 2018).

Riboproteogenomics applied in this study aided to elucidate
features obstructing proteomic identification of SEPs and explain-
ing their missing annotation in bacterial genomes. Next to pro-
viding orthogonal evidence for protein expression, genomic tech-
niques can facilitate the creation of custom databases used for
proteomics searches (Ndah et al. 2017, Verbruggen et al. 2019, Bar-
tel et al. 2020). With a potent combination of genomic informa-
tion, novel proteins can be delineated from translation and tran-
scription datasets. Albeit labor intensive, such efforts are adapt-
able and could readily be applied to other bacterial species where
supporting datasets are publicly available. Our recent proteoge-
nomic pipeline demonstrates an adaptable method of achieving
such a goal (Willems et al. 2020), and previous efforts provided ex-
cellent foundations for utilization of public proteomics datasets
(Venter et al. 2011, Bonissone et al. 2013). Popularization of ribo-
some profiling technique holds the potential of greatly enhanc-
ing these efforts, yet is labor intensive and requires optimizations
when applied to a new model. Importantly, data analysis protocols
lack standardization and universal, easily adaptable pipelines are
in high demand (Liu et al. 2020).

Discoveries in bacterial biology rely on available and reliable
genome annotations. With missing annotation of small proteins,
we are missing out on crucial puzzle pieces needed to obtain a
comprehensive understanding of bacterial systems. These find-
ings become all more important in case of pathogenic bacteria,
where growing danger of antibiotic resistance warrants urgent ef-
forts to fully elucidate the translational landscape underlying the
pathogenicity mechanisms employed by the bacterium to estab-
lish an infection (https://www.biorxiv.org/content/biorxiv/early/
2019/06/10/665208.full.pdf). Large-scale (ribo)proteogenomic ef-
forts therefore hold the key to fully appreciate the complexity
of bacterial genomes. Affordable sequencing prices and available
software, besides accessibility of publicly available genomic and
proteomic resources, will propel the field to deepen our under-
standing of bacterial systems biology.
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