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ABSTRACT

Free-living bacteria in nutrient limited environments often exhibit traits which may reduce the cost of reproduction, such
as smaller genome size, low GC content and fewer sigma (σ ) factor and 16S rRNA gene copies. Despite the potential utility
of these traits to detect relationships between microbial communities and ecosystem-scale properties, few studies have
assessed these traits on a community-scale. Here, we analysed these traits from publicly available metagenomes derived
from marine, soil, host-associated and thermophilic communities. In marine and thermophilic communities, genome size
and GC content declined in parallel, consistent with genomic streamlining, with GC content in thermophilic communities
generally higher than in marine systems. In contrast, soil communities averaging smaller genomes featured higher GC
content and were often from low-carbon environments, suggesting unique selection pressures in soil bacteria. The
abundance of specific σ -factors varied with average genome size and ecosystem type. In oceans, abundance of fliA, a
σ -factor controlling flagella biosynthesis, was positively correlated with community average genome size—reflecting
known trade-offs between nutrient conservation and chemotaxis. In soils, a high abundance of the stress response σ -factor
gene rpoS was associated with smaller average genome size and often located in harsh and/or carbon-limited
environments—a result which tracks features observed in culture and indicates an increased capacity for stress response in
nutrient-poor soils. This work shows how ecosystem-specific constraints are associated with trade-offs which are
embedded in the genomic features of bacteria in microbial communities, and which can be detected at the community
level, highlighting the importance of genomic features in microbial community analysis.
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INTRODUCTION

Assessing microbial communities through a trait-based frame-
work highlights important relationships between microbes and
their environment which may not be detectable through tax-
onomic analyses alone (Green, Bohannan and Whitaker 2008;

Raes et al. 2011; Barberán et al. 2014; Fierer, Barberán and Laugh-
lin 2014; Krause et al. 2014; Martiny et al. 2015). Notably, genomic
characteristics such as genome size, GC content, number of reg-
ulatory genes and number of 16S rRNA gene copies, have been
shown to be indicators for growth rates (Vieira-Silva and Rocha
2010), life-history strategies (Cobo-Simón and Tamames 2017)
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and population dynamics (Batut et al. 2014) of bacteria. Rela-
tionships between genomic features and environmental factors
such as nutrient usage (Batut et al. 2014; Giovannoni, Cameron
Thrash and Temperton 2014; Roller, Stoddard and Schmidt
2016), aboveground cover (Schmidt et al. 2018; Li et al. 2019),
temperature (Sabath et al. 2013) and precipitation (Gravuer and
Eskelinen 2017) have additionally demonstrated the potential
utility of genomic traits for assessing the relationship between
bacteria and their environment.

The genome size of free-living bacteria may be reduced by
a process called genomic streamlining, wherein nutrient limi-
tation selects for smaller genomes as a way to reduce the cost
of reproduction (Giovannoni et al. 2005). Streamlined genomes
are associated with a number of traits which also reduce repro-
ductive costs, most notably a lower GC content (which reduces
nitrogen requirements and is less costly to synthesize), fewer
regulatory genes (specifically those encoding σ -factors), smaller
intergenic spacer regions, and fewer 16S rRNA gene copies (Gio-
vannoni, Cameron Thrash and Temperton 2014). Consequently,
bacteria with streamlined genomes are thought to have a higher
resource use efficiency and lower maximum growth rates com-
pared to bacteria with larger genomes and more rRNA gene
copies (Lauro et al. 2009), although evidence for this relation-
ship remains mixed (Klappenbach, Dunbar and Schmidt 2000;
Vieira-Silva and Rocha 2010; Yooseph et al. 2010; Karcagi et al.
2016; Kirchman 2016; Kurokawa et al. 2016). Streamlining has
long-been known to be highly prevalent in marine systems
(Morris et al. 2002) where the streamlined SAR11 clade, with
a genome of only ∼1.3 Mbp, makes up 25% of all planktonic
bacteria (Giovannoni 2017). As a result, much of the current
knowledge regarding streamlining is based on marine systems.
However, the recently described streamlined (2.81 Mbp) Ver-
rucomicrobia, Candidatus Udaeobacter copiosus, has been shown
to be ubiquitous in soils, comprising up to 30% of recovered
taxa in some grassland soils (Brewer et al. 2017)—indicating that
genome reduction may also be an important force shaping soil
bacteria.

Temperature can also influence genome size due to
increased fitness of small cells at high temperatures (Sabath
et al. 2013). Accordingly, small cells and smaller genomes are
typically associated with higher optimal growth tempera-
tures. This relationship is most pronounced in thermophilic
communities (Wang, Cen and Zhao 2015), but has also been
demonstrated in marine systems (Swan et al. 2013; Morán et al.
2015; Huete-Stauffer et al. 2016) and more recently in soils
(Sorensen et al. 2019). These patterns between genome size,
GC content and number of 16S rRNA gene copies as a result
of temperature-induced genome reduction often resemble
patterns in streamlined genomes (Sabath et al. 2013).

Small genomes are also prevalent in host-associated bac-
teria. However, the processes underpinning the reduction in
genome size involve several mechanisms, including drift, rapid
mutation rate or other mechanisms, which could be more
important than streamlining (Batut et al. 2014). In environments
where nutrients are abundant but population sizes small, dele-
tions in bacterial genomes are more likely to become fixed in a
population (Mira, Ochman and Moran 2001; Batut et al. 2014), a
process particularly common in host-associated gut microbiota,
where population sizes are small due to isolation (McCutcheon
and Moran 2012). Bacteria subject to higher levels of mutation
are more likely to be AT-rich since there is a mutational bias from
GC → AT (Kuo, Moran and Ochman 2009; Hershberg and Petrov
2010; Hildebrand, Meyer and Eyre-Walker 2010; Batut et al. 2014).

Since the mechanisms driving the evolution of host-associated
bacteria often stray from streamlining, genome reduction in
host-associated bacteria may yield different patterns in genome
reduction. Specifically, streamlining, which is more a directional
rather than stochastic process, will often select for specific genes
(Batut et al. 2014).

Much of this knowledge concerning bacterial genomic traits
has been derived from cultures or isolates. This presents
substantial bias in our understanding of these relationships
(Gweon, Bailey and Read 2017), especially for genomic traits of
bacteria in complex microbial communities (Rinke et al. 2013),
as most bacterial taxa have never been cultured or isolated. An
alternative approach is to examine genomic traits on a com-
munity level in situ. By observing community-derived metrics
of genomic traits we broaden our understanding of the distri-
bution and implication of these traits as they occur in the nat-
ural world. This is an important practice for microbial ecology
as there has been growing interest in trait dimensions which
might improve our assessment of community function (anal-
ogous to those existing for plants; Westoby et al. 2021), yet lit-
tle work has been done to observe these traits on the commu-
nity level. Such metrics could be valuable in the comparison of
communities across landscapes and ecosystems. Genomic traits
such as GC content, number of regulatory genes and average
genome size may be especially useful for this purpose, as they
can often be easily estimated from metagenomic datasets and
do not require an extensive knowledge of the taxa within the
community. The relative ease with which these traits may be
derived makes them ideal metrics for large-scale comparisons
and represents a potentially valuable tool for linking microbial
communities with ecosystem-level processes.

The ability to leverage these traits to gain insight into func-
tion, assembly or evolutionary relationships remains untested.
A necessary step towards building a more comprehensive under-
standing of community-derived traits includes assessment of
the distribution of these traits across systems, such has been
done numerous times for isolates. Here, we present a compari-
son of genomic traits from 116 metagenomes from soil, marine,
host-associated and thermophilic systems. These systems
were chosen as they represent distinct environments which
exert unique evolutionary pressures on genomic traits which
might produce predictable outcomes: streamlining in oceans;
temperature-induced genome reduction in thermophiles and
drift in host-associated communities. Several mechanisms have
been shown to influence genome size in soils; however, the pre-
dominant force is not well-understood. Isolate genomes in soils
tend to be comparatively larger than other systems (Sabath et al.
2013), which is thought to be a result of the increased metabolic
diversity (Barberán et al. 2014). The overall aim of this study is
to assess whether genomic traits measured at the community
level track relationships which have been observed in isolates.
Accordingly, we hypothesize that, consistent with trends in iso-
lates, the average genome size in soil microbial communities
will be larger than in marine, host-associated or thermophilic
communities. We also predict that GC content will be positively
correlated with average genome size in free-living soil, marine
and thermophilic communities—consistent with trends from
streamlined and thermophilic isolates. Finally, we predict that
while both free-living and host-associated communities with
small average genome sizes will demonstrate a low GC content,
free-living communities will also exhibit additional streamlined
traits such as a reduced number of σ -factor and rRNA gene
copies.



Chuckran et al. 3

MATERIALS AND METHODS

Dataset curation

Metagenomes from soil, marine, thermophilic and host-
associated communities were downloaded from the Integrated
Microbial Genomes and Microbiomes (IMG/M; Chen et al. 2019)
system. Data were used in accordance to JGI IMG/M data release
policies (https://jgi.doe.gov/user-programs/pmo-overview/polic
ies/), and studies were only used under the follow conditions:
(1) The studies were previously published with a corresponding
publication on the IMG database or; (2) We were granted written
consent from the team which generated the data. This publi-
cation does not act as a primary publication for these studies
and use of the data from the second group requires consent
from the corresponding principal investigators of that study.
We searched for soil and marine samples that were untreated
and collected in situ systems (i.e. not an incubation or micro-
cosm). If studies included any form of experimental manipula-
tion, then only metagenomes from the control were selected.
For thermophilic samples we searched for communities derived
from natural hot-springs, and for host-associated samples we
focused on animal-associated communities. We then selected
samples which were both sequenced and assembled (MEGAHIT;
Li et al. 2015 or SPAdes; Bankevich et al. 2012) by the Joint Genome
Institute (JGI) and where > 35 Mbp were assembled. Replicates
appearing to be derived from a single sample (i.e. identical meta-
data and sample name) were discarded. In order to limit poten-
tial bias introduced by a specific study site or set of protocols
of a given study, no more than four samples were used from
any single geographical location and no more than 14 samples
were selected from a single study. Ecosystem type was deter-
mined for soil samples using the available metadata and study
description. In total, 116 samples from 30 different studies were
used in this analysis (Figure S1 and Tables S1 and S2, Support-
ing Information; Baker et al. 2015; Rossmassler et al. 2015; Carde-
nas et al. 2015, 2018; Leung et al. 2016; Ouyang 2016; Whitman et
al. 2016; Beam et al. 2016; Wilhelm et al. 2017a,b,c; Gravuer and
Eskelinen 2017; Hawley et al. 2017; Armstrong et al. 2018; Lee et
al. 2018; Maresca et al. 2018; Colatriano et al. 2018; Krüger et al.
2019; Camargo et al. 2019; Abraham et al. 2020; Hervé et al. 2020;
Mushinski et al. 2020; Nayfach et al. 2020; Ouyang and Norton
2020; Li et al. 2021; Williams et al. 2021).

Average genome size for each metagenome was estimated
using the program MicrobeCensus (parameters -n 50 000 000;
Nayfach and Pollard 2015) on QC filtered reads accessed through
the JGI Genome Portal (Nordberg et al. 2014). MicrobeCensus uses
the abundance of single-copy genes to estimate the number of
individuals in a population, which is then divided by the total
number of read base-pairs to provide an estimate of the average
genome size in a metagenome.

From IMG/M, we accessed the size of the metagenomic sam-
ple (bp), GC-%, total number of 16S rRNA gene copies and the
total number of σ factors identified by the KEGG Orthology
database (Table 1; KEGG–Kanehisa and Goto 2000). We estimated
the number of genomes per metagenome by dividing the total
base pair count of the metagenome by the estimated average
genome size from MicrobeCensus. The average number of 16S
rRNA gene copies per genome and the number of σ -factors gene
copies per genome was then determined by dividing the total
number of 16S rRNA or σ -factor gene copies by the estimated
number of genomes.

To ensure that any observed trends were not heavily influ-
enced by the abundance of nonbacterial genomes, such as large

eukaryotic genomes, we assessed the relationship between
average genome size and the relative abundance of assembled
bacterial reads. For each metagenome, we accessed the tax-
onomic assignments of mapped reads from IMG/M and then
summed the total number of reads grouped by domain. The
relationship between the relative abundance of bacteria and
average genome size of the community was then calculated
for each ecosystem to assign a cutoff which demonstrated the
least amount of bias (as determined by linear regression). As a
result, samples where bacteria made up less than < 95% of the
assembled reads were discarded.

Since archaeal abundance in thermophilic microbial com-
munities is often high, filtering samples with < 95% bacterial
reads discarded a large number of thermophilic samples. Post-
filtering, only five thermophilic samples were left for analysis—a
sample size ultimately too small to generate conclusions. Rather
than omitting the thermophilic environments from our analysis
entirely, and because small archaeal genomes abundance have
been shown to be correlated with higher optimum growth tem-
peratures (Sabath et al. 2013), we decided to include thermophilic
samples with > 5% archaeal abundance in several of the compar-
isons. Although these data do not examine bacterial streamlin-
ing specifically, we find that they still provide valuable insight
into how genomic traits are distributed in these communities.
Mixed thermophilic samples (those including > 5% archaea) are
shown separately in figures and analyses. In comparisons of
genome size versus bacteria-specific traits, such as 16S rRNA
gene copies or abundance of sigma factors, we only report sam-
ples where bacteria comprise > 95% of annotated reads.

Analysis

Multiple regression was used to determine the relationship
between genome size and genomic characteristics—specifically,
GC content, 16S rRNA gene relative abundance, the relative
abundance of the total number of σ -factor genes and the relative
abundance of specific σ -factor genes as listed in Table 1. Mod-
els were constructed with the command lm or lmer from the R
(v3.6.1 (Team 2018)) package lme4 (Bates et al. 2020). For each
response variable, we constructed multiple models consider-
ing all parameters and interactions. Final models were selected
using Akaike information criterion (AIC) values. The addition of
a new parameter resulting in a reduction of the AIC value by at
least 4 indicated a significantly better fit with increased model
complexity.

To assess the abundance of σ -factor genes between different
ecosystems, we used both the multi-response permutation pro-
cedure (MRPP) as well as the permutational multivariate analy-
sis of variance (PERMANOVA). The MRPP was conducted using all
samples while PERMANOVA was conducted using 11 randomly
selected genomes from each ecosystem to ensure balanced
design. Both analyses were conducted using Bray–Curtis dissim-
ilarity matrices constructed from the relative abundance of each
σ -factor. To visualize differences in the distribution of different
types σ -factors between ecosystems we used nonmetric mul-
tidimensional scaling (NMDS) on Bray–Curtis distances. MRPP,
PERMANOVA and NMDS were done using the vegan package
(Oksanen et al. 2019) in R (v3.6.1).

Isolates

To compare relationships between genomic characteristics of
a microbial community with characteristics of isolates, we
accessed over 6000 isolates of bacteria, archaea and fungi from

https://jgi.doe.gov/user-programs/pmo-overview/policies/
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Table 1 Gene name, description and KEGG ortholog identifier (K numbers) for each σ -factor used in the analysis.

σ -factor
gene Functions regulated by σ -factor K Number

rpoD Primary sigma factor, ”Housekeeping” (Lonetto, Gribskov and Gross 1992) KO:K03086
rpoE Envelope stress (Hayden and Ades 2008) KO:K03088
fliA Flagella biosynthesis (Ohnishi et al. 1990) KO:K02405
rpoH Heat shock (Grossman, Erickson and Gross 1984) KO:K03089
sigI Heat shock (Zuber, Drzewiecki and Hecker 2001) KO:K03093
sigH Heat shock, oxidative stress (Fernandes et al. 1999) KO:K03091
rpoN Nitrogen assimilation (Ronson et al. 1987; Totten, Cano Lara and Lory 1990), motility (Totten, Cano Lara and

Lory 1990) and quorum sensing (Heurlier et al. 2003)
KO:K03092

rpoS Stress response (Battesti, Majdalani and Gottesman 2011; Hengge 2014) and stationary phase (Lange and
Hengge-Aronis 1991)

KO:K03087

sigB Stress response (Hecker, Schumann and Völker 1996) and stationary phase (Boylan, Redfield and Price 1993) KO:K03090

the IMG/M system in June of 2020. Isolates were selected if
they were (1) publicly available; (2) previously published and
(3) sequenced by JGI. The associated publications for these iso-
lates may be found in the Supplemental references. Metadata
was used to group samples into one of three ecosystem types:
soil, marine, thermophilic or host-associated. To avoid poten-
tial bias introduced by large studies selecting for specific taxa,
we randomly selected no more than 20 isolates from a sin-
gle study. Relationships between genomic characteristics were
analysed using multiple regression analyses as described above
for the analysis of community-level traits. ANOVA was used to
assess differences in the distribution of genomic characteristics
between isolates and metagenomic averages.

RESULTS

Average Genome Size and GC Content

Average genome size was significantly different between ecosys-
tems (ANOVA; F4,111 = 135.9, P < 0.01). Specifically, average
genome size was higher in soils compared to marine, host-
associated, or thermophilic communities (Fig. 1A, Tukey’s HSD P
< 0.01). GC content (%) varied between each ecosystem (ANOVA;
F4,111 = 140.3, P < 0.01), and was highest in soil, followed by
thermophilic, host-associated and then marine communities
(Fig. 1B). The relationship between GC content and average
genome size varied between ecosystems (Fig. 1C). A comparison
of multiple models, using AIC values as selection criteria, indi-
cated that GC content was best predicted by average genome
size, ecosystem and their interaction (F9,106 = 136.1, P < 0.01;
Table S3, Supporting Information). Specifically, GC content was
positively correlated with average genome size in marine and
thermophilic communities, negatively correlated in soil com-
munities and not significantly related in host-associated com-
munities (Fig. 1C). The relationship between average genome
size and GC content was offset between marine and ther-
mophilic communities, wherein thermophilic communities had
a higher GC content than marine communities with the same
average genome size (Fig. 1C). The relationship between GC con-
tent and average genome size was strongly driven by the abun-
dance of archaea in the mixed thermophilic samples (Figure S2,
Supporting Information). In soils, average genome size and GC
content were significantly different between ecosystem types
(ex. Deserts, grasslands and forests; ANOVA: Mbp—F7,38 = 24.35,
P < 0.01; GC-%—F7,38 = 4.986, P < 0.01; Fig. 2).

The average genome size and GC content of the
metagenomes fell within the range of isolates from each

ecosystem (Fig. 3). However, the mean genome size and GC
content derived from metagenomes varied from isolates in both
soil and thermophilic environments (ANOVA; P < 0.05), but not
in marine environments.

16S rRNA gene copies and Sigma factors

Host-associated communities had the highest number of 16S
rRNA gene copies per genome, followed by soils and then ther-
mophilic and marine communities (Figure S3, Supporting Infor-
mation). A comparison of AIC values indicated that ecosystem
type alone was the best predictor of 16S rRNA gene copies per
genome (Figure S3 and Table S3, Supporting Information).

The relative abundance of σ -factors genes per metagenome
changed with estimates of average genome size and this rela-
tionship varied significantly between ecosystems (Figs 4 and 5A;
Table S3, Supporting Information). Average genome size was sig-
nificantly correlated with the relative abundance of σ -factors in
thermophilic environments (R2 = 0.49), but not in soil, marine
or host associated environments (R2 < 0.2; Fig. 5A). The dis-
tribution of σ -factor types within a metagenome varied more
between ecosystems than within (Figs 4 and 5B; MMRP, A = 0.34,
P < 0.01), and ecosystems differed significantly (Figs 4 and 5B;
PERMANOVA, R2 = 0.50, P < 0.01).

The relationship between average genome size and the rel-
ative abundance of individual σ -factors was dependent on both
ecosystem type and the type of σ -factor (Fig. 5C; Table S4, Sup-
porting Information). In host-associated communities, the rel-
ative abundance of only one σ -factor, sigH, was significantly (P
= 0.018) negatively correlated with average genome size. Abun-
dance of all other sigma factors were unchanged with genome
size in host-associated communities (Table S4, Supporting Infor-
mation). In soil communities the relative abundance of rpoH per
metagenome significantly increased (P < 0.01) with larger aver-
age genome size, while the relative abundance per metagenome
of rpoS, sigH, sigB and fliA decreased (P < 0.01). In marine com-
munities, we found that the relative abundance of fliA, rpoE and
sigH significantly increased (P < 0.01) with genome size, and the
abundance of rpoH, and rpoD significantly decreased (P < 0.01).
Due to the small samples size of thermophilic communities, we
did not include the relationships between σ -factors and average
genome size for thermophilic environments; however, correla-
tion coefficients and statistics for all linear regressions between
average genome size and σ -factor abundance for each ecosys-
tem can be found in Table S4 (Supporting Information). A visu-
alization of average σ -factor copies per genome can be found in
Figure S4 (Supporting Information).
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Figure 1. Average genome size and GC-content calculated from environmental metagenomes. (A) Boxplots of the average genome size (Mbp) of microbial communities
in different ecosystems. (B) Boxplots showing GC-% between systems. (C) GC-% as a function of average genome size (Mbp) of a metagenome, separated by system.
Point shape and outline represent source system; point fill represents system including thermophilic samples with archaea.

DISCUSSION

The range of values for both genome size and GC content on
the community level was substantially more narrow than those
recorded for isolates, both from the literature (Sabath et al. 2013)
and isolates gathered from the IMG database (Fig. 3). However,
we did observe considerable variation both between and within
different ecosystems. The observed within-ecosystem variation
is likely a product of the range of ecosystems included in the
analysis. For example, soil metagenomes were derived from
deserts, grasslands, forests, tropical forests and polar deserts,
and traits accordingly tended to separate out by these habitats
(Fig. 2). This work demonstrates the variability that exists within
a specific ecosystem type and highlights the potential utility

of genomic traits in studies comparing multiple habitat types.
Between ecosystems, microbial communities in marine, host
and thermophilic environments had a smaller average genome
size and lower GC content than those in soil, consistent with our
first hypothesis based on previous findings from studies using
bacterial isolates and single-amplified genomes (Raes et al. 2007;
Giovannoni, Cameron Thrash and Temperton 2014; Cobo-Simón
and Tamames 2017). Although small genomes may persist in soil
communities, larger genomes tend to be more abundant (Bar-
berán et al. 2014; Brewer et al. 2017); a feature often attributed
to the advantage gained from the increased abundance of sec-
ondary metabolite genes in large soil genomes (Konstantinidis
and Tiedje 2004).
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Figure 2. GC content (%) as a function of average genome size (Mbp) in soils, with color indicating source environment.

Since smaller genomes tend to have lower GC content (Bent-
ley and Parkhill 2004), we expected to find a positive correlation
between GC content and average genome size for each ecosys-
tem. Contrary to our second hypothesis, we only found this rela-
tionship in marine and thermophilic communities. This rela-
tionship in marine communities is not especially surprising con-
sidering how many studies have observed the trade-off between
the genome size and GC content of individuals in marine sys-
tems. However, our results demonstrate that these trade-offs are
detectable on a community scale and emphasizes the degree to
which streamlining shapes community-averaged traits. In ther-
mophilic communities, this relationship appeared confounded
with the presence of archaea (Figure S2, Supporting Informa-
tion), thus making it impossible to distinguish between archaeal
abundance or temperature as a driver for smaller genome size in
these extreme environments. Additionally, higher temperatures
might similarly result in smaller archaeal genomes (Sabath et al.
2013), further contributing to this signal. It is worth noting that
the relationship between genome size and GC content in ther-
mophilic communities was offset higher from marine systems,
even for bacterial dominated thermophilic communities. This
offset is perhaps the result of a requirement for thermal sta-
bility in hot environments which is provided by the GC triple-
hydrogen bonds versus the AT double-bond (Wada and Suyama
1986; Musto et al. 2006).

Both GC content and average genome size in host-associated
communities were low, a common feature of symbiotic bacteria
(McCutcheon and Moran 2012). Although host-associated bac-
teria in small populations often have AT-rich genomes (Batut
et al. 2014), the relationship between GC content and aver-
age genome size was not significant for host-associated com-
munities. Reduced genetic flow in these communities could
mean that changes in nucleotide frequency and genome size
develop independently in populations. Therefore, these trends
might exist within, but not between, communities. In other
words, host-associated environments might produce small AT-
rich genomes, but these two traits do not covary between com-
munities as in marine systems.

Soil communities exhibited a negative relationship between
average genome size and GC content. This does not necessarily
exclude streamlining as a driver of genome size in soils but

suggests additional drivers of genome size and GC content.
One explanation of this relationship is that soil microbial
communities skew towards smaller genomes with a higher GC
content due to carbon limitation. A GC base pair has a carbon
to nitrogen ratio of 9:8 while an AT base pair has a ratio of 10:7.
A reduction in GC content, therefore, decreases the amount
nitrogen required for DNA synthesis, which has been suggested
as an explanation of the low GC content in small genomes that
is commonly exhibited in marine systems, where nitrogen is
often limiting (Grzymski and Dussaq 2012). In contrast, carbon
is generally considered to be the limiting factor for growth in
soil bacteria (Demoling, Figueroa and Bååth 2007; Hobbie and
Hobbie 2013). A higher GC content might therefore be advanta-
geous when carbon is particularly limiting. This would explain
the negative correlation between genome size and GC content
in soils—as smaller nutrient-limited soil bacteria would gain
a stochiometric advantage from GC rich DNA. In this dataset,
communities from deserts, agricultural fields and grasslands
had a smaller average genome size and higher GC content
(Fig. 2). These environments tend to have lower soil and micro-
bial carbon to nitrogen ratios than forests (Xu, Thornton and
Post 2013). Similarly, bacterial communities in forests tended
to have larger average genome sizes and lower GC content.
Although this mechanism for nucleotide selection has not been
established in soils, selection for high GC content in response to
carbon limitation is not unfounded (Hellweger, Huang and Luo
2018; Shenhav and Zeevi 2020). Moreover, microbial communi-
ties in bare soil have been shown to have a higher GC content
than in vegetated soil (Chen et al. 2021), and larger genomes were
associated with lower GC content in a recent pangenomic study
(Choudoir et al. 2021). It is important to note that many other
environmental factors may fall along the environment gradient
shown here, several of which might also influence GC content;
such as temperature and moisture, which have been shown to
influence nucleotide composition in terrestrial plants (Šmarda
et al. 2014) and the genomic traits of microbes (Gravuer and
Eskelinen 2017; Sorensen et al. 2019). Still, our data demonstrate
a relationship between genomic traits in soil which is distinct
to those of other systems and emphasizes the need to develop
a more complete understanding of genomic features across
soil microbial communities. A more thorough understanding
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Figure 3. The relationship and distribution of genome size and GC content for isolates and metagenomic averages for each system. In each panel, metagenomes

(dark circles) are plotted against bacterial (light squares) and archaeal (light triangles) isolates. Regression lines between genome size and GC-% are shown for both
metagenomes (dark lines) and isolates (light lines). Marginal density plots show the distributions of GC-% (right) and genome size (top) for isolates (light) and metage-
nomic averages (dark).

of these relationships in soil might enhance our ability to use
community-derived genomic traits in ecosystem science; for
instance, in tracking growth, nutrient turnover and microbial
contributions to soil organic carbon on an ecosystem-scale.

Another explanation is that fungal reads may reduce the
overall GC content of a metagenome while raising estimates of
average genome size. Although we attempted to avoid the influ-
ence of fungal genomes by limiting our dataset to metagenomes
dominated by bacteria, and found that the abundance of eukary-
otic reads to only slightly coincide with the relationship between
average genome size (R2 = 0.12) and GC content (R2 = 0.14), it still
is possible that even a low abundance of large fungal genomes
affected our estimates. To assess this further, we applied a

more stringent cut-off on the number of eukaryotic assigned
reads (<1% of total) which resulted in no detectable relationship
between the number or eukaryotic reads and average genome
size and GC content (Figure S5a and b, Supporting Information)
and found that the relationship between average genome size
and GC content stayed intact (Figure S5c, Supporting Informa-
tion).

Inconsistent with our third hypothesis, we did not find that
the relative abundance of σ -factors was associated with aver-
age genome size in free-living communities. However, we did
observe that marine communities maintained a lower abun-
dance of σ -factor gene copies in comparison to other ecosys-
tems, even when average genome size was comparable. One
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Figure 4. The relative abundance σ -factors in a metagenome separated by ecosystem. Each bar represents the abundance of σ -factors in a single metagenome, and
metagenomes are ordered from smallest to largest average genome size (left to right) for each ecosystem.

explanation is that the reduction of σ -factor gene copies is par-
ticularly effective in reducing reproductive costs in marine sys-
tems. Marine systems are considered to be nutrient poor rel-
ative to soils and a general reduction in the proportion of σ -
factors in bacterial genomes may function as an adaptation to
nutrient constraints. We also found many trends between aver-
age genome size and the abundance of specific σ -factor genes
in marine communities. In marine metagenomes, the relative
abundance per genome of rpoD and rpoH, which encode for
σD and σH respectively, was negatively correlated with average
genome size. These trends are perhaps caused by the abundance
of the streamlined SAR11 clade, which only contain σD and
σH (Giovannoni 2017). Conversely, the abundance of the gene
fliA, which encodes for the σ 28 and regulates flagella biosyn-
thesis (Ohnishi et al. 1990), increased with average genome size.
This relationship reflects that found in marine systems, wherein
nutrient scarcity selects for smaller, more streamlined, cells
while increased nutrient availability selects for larger cells capa-
ble of chemotaxis (Lauro et al. 2009; Stocker 2012).

In soils, the relative abundance of many σ -factors were neg-
atively correlated with estimates of average genome size. Most
notably, we observed a decrease in the relative abundance of rpoS
(σ S) but no significant change in the abundance of rpoD (σD) with
increasing average genome size. The balance between rpoS and
rpoD may be a trade-off between stress tolerance and growth
(Ferenci 2003; Nyström 2004). A higher ratio of rpoS to rpoD has
been shown to increase the cell’s capacity to cope with stress
but limit its ability to grow on a variety of carbon sources (Fer-
enci 2003; King et al. 2004; Maharjan et al. 2013). We see this
reflected in the environments from which the metagenomes
were samples, with microbial communities from high stress
environments, such as deserts, having a higher abundance or
rpoS compared to lower-stress carbon-rich environments, such
as forests (Figure S6, Supporting Information).

Surprisingly, we found a high abundance of fliA gene copies
in soil communities with smaller genomes, several of which

were sourced from desert environments. Motility may be more
valuable in nutrient limited soil environments, whereas in envi-
ronments with high nutrient inputs, nutritional competency
may be more paramount. However, these results contrast with
the commonly held notion that chemotaxis is most prevalent
in mesic soils. One explanation is that motility may be espe-
cially important when water availability is ephemeral. A greater
number of regulatory mechanisms would, therefore, be advanta-
geous as it would allow for a rapid response to periodic pulses of
moisture. Another possibility is that bacteria utilize biofilms sur-
rounding fungal hyphae, or ‘fungal highways’ (Kohlmeier et al.
2005), which could explain the persistence of flagellated bacte-
ria even in xeric environments (Pion et al. 2013).

Finally, we found that the distribution of genomic traits esti-
mated from soil and hot-spring communities did not follow the
distribution derived from isolates—potentially due to a decou-
pling of traits between the individual and community level. The
relationship between genome size and GC content was also
substantially different between soil isolates and isolates of soil
bacteria. These results indicate that certain ecosystem trade-
offs may be detectable using community-derived estimates of
microbial traits as opposed to isolates and showcases how relat-
ing these traits to specific environments may reveal important
ecosystem-level pressures on microbial community traits.

However, it is necessary to consider that the data used for
this comparison were not sourced from the same studies and
the sample size was fairly limited. If genomic traits are to
be used as trait-dimensions in microbial ecology, more work
must be done observing the distribution of these traits both
within and between communities. Further, we found that many
of the studies we were able to access were collected from
more specialized communities. Although we believe that the
comparison of these communities still has merit in showing the
range of genomic traits for particular systems, they might not
accurately reflect the true distribution of these traits in their
respective environments globally.
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Figure 5. The relative abundance of σ -factors (σ -factor count/total gene count) as a function of average genome size and system. (A) The relative abundance of all
σ -factors (σ -factor count/total gene count) in a metagenome against average genome size. Source environment indicated by color for host associated (red), soil (green),
thermophilic (orange) and marine (blue) communities. (B) NMDS of Bray–Curtis distance of the relative abundance of σ -factors (σ -factor count/total gene count) from

a metagenome. (C) The relative abundance (σ -factor count/total gene count) of 9 σ -factors (rows) versus average genome size, separated by environment (columns).
Statistical significance of a relationship (P < 0.05) is indicated with an asterisk before R2 value.
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CONCLUSION

We found several compelling ecosystem-specific relationships
between genomic traits of a microbial community, most notably
with genome size, GC content and the distribution of σ -factors.
Several of these relationships align with evolutionary mecha-
nisms which relate to known drivers in these environments,
such as streamlining in oceans and drift in host-associated com-
munities. We also observed trends in soils which were not in-
line with known mechanisms of genome reduction, emphasiz-
ing the need to develop an understanding of the controls of
genomic features in soils. In this way, our work demonstrates
the importance of genomic traits in the field of microbial ecology
and ecosystem science; both in their potential to assess micro-
bial communities via ecosystem-specific trade-offs, as well as
their ability to reveal new selection pressures not detectable
through the analysis of individuals.
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Morris RM, Rappé MS, Connon SA et al. SAR11 clade domi-
nates ocean surface bacterioplankton communities. Nature
2002;420:806–10.

Mushinski RM, Payne ZC, Raff JD et al. Nitrogen cycling micro-
biomes are structured by plant mycorrhizal associations
with consequences for nitrogen oxide fluxes in forests.
2020:1–15. DOI: 10.1111/gcb.15439.

Musto H, Naya H, Zavala A et al. Genomic GC level, opti-
mal growth temperature, and genome size in prokaryotes.
Biochem Biophys Res Commun 2006;347:1–3.

Nayfach S, Pollard KS. Average genome size estimation improves
comparative metagenomics and sheds light on the func-
tional ecology of the human microbiome. Genome Biol
2015;16:51.

Nayfach S, Roux S, Seshadri R et al. A genomic catalog of Earth’s
microbiomes. Nat Biotechnol 2020. DOI: 10.1038/s41587-020-
0718-6.

Nordberg H, Cantor M, Dusheyko S et al. The genome portal of the
Department of Energy Joint Genome Institute: 2014 updates.
Nucleic Acids Res D26–31, 2014;42. DOI: 10.1093/nar/gkt1069.

Nyström T. Growth versus maintenance: a trade-off dictated by
RNA polymerase availability and sigma factor competition?
Mol Microbiol 2004;54:855–62.

Ohnishi K, Kutsukake K, Suzuki H et al. Gene fliA encodes
an alternative sigma factor specific for flagellar operons in
Salmonella typhimurium. MGG Mol Gen Genet 1990;221:139–47.

Oksanen AJ, Blanchet FG, Kindt R et al. vegan: cCommunity ecology
package. 2019. DOI: 10.4135/9781412971874.n145.

Ouyang Y, Norton JM. Short-term nitrogen fertilization affects
microbial community composition and nitrogen mineraliza-
tion functions in an agricultural soil. Appl Environ Microbiol
2020;86. DOI: 10.1128/AEM.02278-19.

Ouyang Y. Agricultural nitrogen management affects microbial
communities, enzyme activities, and functional genes for
nitrification and nitrogen mineralization. All Graduate The-
ses and Dissertations. Utah State University, Logan, UT. 2016.

Pion M, Bshary R, Bindschedler S et al. Gains of bacterial
flagellar motility in a fungal world. Appl Environ Microbiol
2013;79:6862–7.

Raes J, Korbel JO, Lercher MJ et al. Prediction of effective genome
size in metagenomic samples. Genome Biol 2007;8:R10.

Raes J, Letunic I, Yamada T et al. Toward molecular trait-based
ecology through integration of biogeochemical, geographical
and metagenomic data. Mol Syst Biol 2011;7:473.

Rinke C, Schwientek P, Sczyrba A et al. Insights into the phy-
logeny and coding potential of microbial dark matter. Nature
2013;499:431–7.

Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon
copy number to investigate bacterial reproductive strategies.
Nat Microbiol 2016;1:1–8.

Ronson CW, Nixon BT, Albright LM et al. Rhizobium meliloti ntrA
(rpoN) gene is required for diverse metabolic functions. J Bac-
teriol 1987;169:2424–31.

Rossmassler K, Dietrich C, Thompson C et al. Metagenomic
analysis of the microbiota in the highly compartmented
hindguts of six wood- or soil-feeding higher termites. Micro-
biome 2015;3:56.

Sabath N, Ferrada E, Barve A et al. Growth temperature and
genome size in bacteria are negatively correlated, suggesting
genomic streamlining during thermal adaptation. Genome
Biol Evol 2013;5:966–77.

Schmidt R, Gravuer K, Bossange AV et al. Long-term use of cover
crops and no-till shift soil microbial community life strate-
gies in agricultural soil. PLOS ONE 2018. DOI: 10.1371/jour-
nal.pone.0192953.

Shenhav L, Zeevi D. Resource conservation manifests in the
genetic code. Science 2020;370:683–7.
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