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Due to error-prone replication, RNA viruses such as Zika virus (ZIKV), West Nile virus

(WNV), influenza A virus (IAV), and simian and human immunodeficiency viruses (SIV and

HIV, respectively) exist in nature as genetically and phenotypically complex mutant swarms

[1–3]. The ability of RNA viruses to be maintained in nature as a mutant swarm is thought to

promote adaptive plasticity and facilitate the evolution and emergence of these viruses [3].

Investigating swarm dynamics during infection, transmission, and treatment is therefore of

great significance. Studying intrahost virus population dynamics typically requires identifying

intrahost single nucleotide variants (iSNVs) using various approaches to whole-genome

sequencing [4]. While these approaches are well suited to exploring virus diversification and

measuring how natural selection shapes the virus genome, they are not well suited to quantita-

tively assess reductions in virus diversity. Barcoded viruses are a rapidly expanding technology

that allows researchers to quantitatively characterize aspects of virus population dynamics

with greater sensitivity and resolution than can be achieved with computational haplotype

reconstruction [5–7].

WhatAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:is a barcoded virus?

A barcoded virus is engineered to contain a sequence motif (i.e., a barcode) that can be used to

distinguish one otherwise identical virus genome from another (Fig 1). While technical

approaches to generating barcoded virus populations vary by virus and study, barcoded viruses

generally contain a series of coding-neutral alterations to the genome [7–9]. Barcodes com-

monly range from 9 to>40 nucleotides in length and are either placed in a noncoding region

of the genome (e.g., 30 or 50 untranslated regions) or into coding sequences that contain a series

of adjacent codons with fully synonymous third positions (i.e., Leu, Val, Ser, Pro, Thr, and

Ala). The barcodes are introduced to the viral genome via site-directed mutagenesis (SDM) or

custom synthetic gene fragments [2,7,10]. Early iterations of barcoded viruses were marked

clones, the marked (i.e., barcoded) regions of which were introduced individually by methods

such as SDM [2,11,12]. Due to the constraints associated with developing each unique virus

individually, marked clone populations often contain a small fraction—less than 20 unique

clones—of the diversity that can now be achieved in barcoded virus populations [2,11] (Fig 1).

Current applications of barcoded virus technology use degenerate nucleotides that allow all

possible mutations to occur at the site of insertion and, upon amplification and rescue of the

recombinant virus, can theoretically generate several million unique barcodes without the bur-

den of generating clones individually [7,8]. Due to the nature of barcode generation, this tech-

nology is currently limited to viruses for which efficient reverse genetics, cloning, and rescue

systems already exist.
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What is the appeal of using a barcoded virus population to study

population dynamics over traditional haplotype reconstruction?

Uniquely barcoded viruses within a population function as analogues for naturally occurring

variant genomes within a mutant swarm, making them powerful tools for mimicking RNA

virus populations [3,9]. Barcoded virus populations are high-diversity representations of virus

populations and thus allow for a more precise characterization of population dynamics than

can be achieved by characterizing naturally occurring diversity [5,7,10]. Since barcodes are

introduced to the virus genome without altering the coding sequence, they theoretically have a

minimal impact on fitness. This distinguishes them from true quasispecies virus populations,

which contain naturally occurring mutations that may confer significant phenotypic variability

[3]. Defining natural variants requires whole-genome sequencing and is typically accom-

plished using short-read sequencing, and assigning reads to individual genomes (binning) to

identify variants. This method of variant identification, when employed to quantify population

diversity, is extremely sensitive to errors introduced during sample preparation and sequenc-

ing [13].

While the fitness-neutral nature of the barcode population model precludes it from captur-

ing the full range of evolutionary processes (such as positive selection), stochastic forces, such

as bottlenecks, have a significant impact on virus evolution within individual hosts [14]. Bar-

coded viruses are extremely well suited to quantifying these stochastic forces shaping virus

populations, as the neutrality of the barcode allows investigators to examine population

dynamics without the variable of fitness [2,9–11]. Barcoded viruses also provide solutions for

examining infection dynamics in systems where intrahost virus diversity is typically

Fig 1. Barcoded viruses are highly effective mimics of RNA virus mutant swarms. Marked clones and barcoded

viruses allow investigators to study changes to population diversity in a variety of systems without the variable fitness

observed between viruses in natural RNA virus swarms. (Created with Biorender.com).

https://doi.org/10.1371/journal.ppat.1011291.g001
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constrained or too low to uniquely identify viral lineages, or where independent tracking of

multiple infection events, which would be difficult to track by conventional methods, is

required [7,15]. Additionally, the function of barcodes as unique identifiers allows for determi-

nation of the clonal origin of viruses throughout infection and allows for the identification and

quantification of variant analogues within a population with extremely high resolution and

sensitivity [5–7,16]. FinallyAU : Pleasenotethat}qRT � PCR}hasbeenfullyspelledoutas}quantitativereversetranscriptionPCR}atfirstmentioninthesentence}Finally; usingbarcode � specificprobes; thepopulation:::}Pleasecorrectifnecessary:, using barcode-specific probes, the population dynamics of bar-

coded viruses can be tracked during transmission events and analyzed by quantitative reverse

transcription PCR (qRT-PCR) without the need for deep-sequencing [11].

How has barcoded virus technology impacted the field?

The predominant use of barcoded viruses is as mimics of highly diverse virus populations in

studies of population dynamics during infection, transmission, and treatment. Early work suc-

cessfully demonstrated the value of synthetic swarm viruses as analogues for virus populations

by using marked clone populations to characterize the impact of stochastic forces, such as bot-

tlenecks (i.e., random and rapid reduction of diversity in a virus population), on poliovirus

populations during neuroinvasion in mice, and on WNV and Venezuelan equine encephalitis

virus (VEEV) populations within relevant mosquito vectors [2,11,12]. This work shed light on

the adaptive potential of these pathogens, highlighted the important role infection plays in

shaping virus populations, and established synthetic swarms as powerful molecular tools

[2,11,12]. Since this foundational work with poliovirus, WNV, and VEEV, barcoded viruses

have been utilized to answer questions about population dynamics across numerous virus

families.

bcZIKV. Barcoded Zika virus (bcZIKV) was used to characterize ZIKV infection dynamics

in pregnant and nonpregnant macaques [15]. Low complexity barcode populations persisted

in pregnant animals after typical resolution of infection in nonpregnant animals, indicating

that an anatomical reservoir had been established in the pregnant macaques [15]. This work

provided proof-of-concept for the use of bcZIKV in vivo to examine virus populations

throughout infection and highlighted the potential of barcoded viruses to probe the impacts of

anatomical reservoirs, and bottlenecks on virus populations. bcZIKV also identified a cumula-

tive reduction in bcZIKV population diversity associated with intrahost bottlenecks during

infection in Aedes aegypti mosquitoes [8] (Fig 2A). bcZIKV has also been instrumental in

determining the impact of transmission modes between vertebrates and mosquitoes on ZIKV

evolution and was used to demonstrate how direct vertebrate transmission chains could pro-

mote enhanced ZIKV virulence [17]. Further, bcZIKV was used to identify diversity in indi-

vidual plaque forming units, demonstrating that ZIKV could potentially be transmitted as

multigenome aggregates [18].

bcIAV. Barcoded influenza A virus (bcIAV) has been employed to study infection routes

and their associated bottlenecks, evolution of the NS1 gene, virus replication in different

regions of the respiratory tract, and the impact of compartmentalized replication on virus pop-

ulation dynamics [1,9,10,19]. Studies of bcIAV in ferrets allowed for a high-resolution charac-

terization of physiological bottlenecks and demonstrated that aerosol transmission represents

a severe and highly restrictive bottleneck [9] (Fig 2B). Additionally, bcIAV infection of ferret

lungs revealed that a series of bottlenecks within the lungs results in genetically distinct virus

population “islands” that are heavily impacted by founder effects [9,10]. Further work with

bcIAV in the respiratory tract established that transmissible droplets are generated in upper

respiratory tissues, providing an anatomical target for viral load reduction to prevent IAV

transmission [19]. bcIAV has also been instrumental in demonstrating the adaptive plasticity

of the IAV NS1 gene, and in quantifying reassortment of IAV upon multiple infection [1,20].
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bcCVB. Coxsackievirus B3 (CVB3) is an enterovirus that can penetrate the gastrointestinal

tract and cause systemic infection [21]. A highly rich barcoded CVB3 (bcCVB3) population

was used to study CVB3 population dynamics in mice and allowed researchers to quantify the

impact of the gastrointestinal (GI) barrier on a CVB3 population, demonstrating a significant

reduction in barcode diversity upon infection of and replication in extraintestinal tissues [21].

bcSIV and bcHIV. Barcoded SIV and HIV (bcSIV and bcHIV, respectively) have been used

in numerous studies to explore retrovirus population dynamics during transmission, infection,

Fig 2. Barcoded viruses mimic virus population dynamics during transmission and infection events. (A) Intrahost

bottlenecks in Ae. aegypti rapidly reduce the complexity of a bcZIKV population during mosquito infection. (B) A

more complex bcIAV population is transmitted between ferrets via contact infection than airborne infection. (Created

with Biorender.com)

https://doi.org/10.1371/journal.ppat.1011291.g002
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immune escape, treatment, and reactivation and rebound following latency [5–7,16,22–25].

Using bcSIV, investigators have shown that intrarectal (IR) inoculation of macaques results in

70- to 560-fold less complex SIV populations when compared to intravenous inoculation,

demonstrating that infection barriers associated with IR challenge impose a population bottle-

neck on SIV populations [25]. Further studies with bcSIV quantified the impact of the host

immune response on an SIV population and the level of replication preceding the generation

of escape mutations in unique lineages within an SIV population [6]. Studies of reactivation

and rebound following latency or the interruption of combination antiretroviral therapy

(cART) with bcSIV established an estimated rate of reactivation in viral reservoirs, an approxi-

mate viral load per reactivated latent cell, and determined that the viral lineages that were

dominant in the population pretreatment tend to reactivate first during treatment interruption

[7,22,23]. Finally, studies of bcHIV populations in mice revealed the efficacy of latency-revers-

ing agents (LRAs) in reducing the diversity of rebound populations and delaying rebound

upon interruption of cART [16].

bcAAV. Adeno-associated viral (AAV) vectors are a clinically relevant mode of therapeutic

gene transfer that have had success in reprogramming certain cell types in animal models [26].

Given the high demand for this therapeutic, there is a growing need to develop and screen

AAVs for increased or tissue-specific transduction efficiency [26–29]. Barcoded AAVs

(bcAAV) are frequently employed as high-throughput screening tools for recombinant AAV

vector pools that allow investigators to quantify multiple AAV genome and transcript abun-

dances in parallel in tissues of interest [27,29].

Why should I care about barcodes?

The barcoded virus approach to studying virus evolution is reliable, allows for investigation of

population dynamics with unprecedented depth and ease, and has been successfully adapted

to study these phenomena in a wide range of virus families and hosts. Barcoded viruses have

proven to be valuable tools in assessing viral replication dynamics, progeny production, and

polyinfection (i.e., infection of a single cell with multiple unique genomes) at the single-cell

level [30,31]. Finally, barcoded virus technology has the potential to be highly valuable for

computational modeling of infection by providing quantitative estimates of host- and environ-

ment-dependent patterns of genetic restriction.
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