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The great complexity of HDL. High-density lipoprotein (HDL) particles carry a large number of proteins and lipids, which contribute to define 
their compositional and functional complexity. HDLs exert multiple protective activities, essentially by three major mechanisms. HDLs, however, can 
lose their protective functions and even gain adverse functions in chronic diseases or during infections. U-shaped relationships between HDL-chol-
esterol (HDL-C) levels and several conditions have been reported, being both low and extremely high HDL-C levels associated with an increased risk 
of several pathologies and mortality. LCAT, lecithin:cholesterol acyltransferase; CETP, cholesteryl ester transfer protein; PONI, paraoxonase 1; S1P, 
sphingosine-1-phosphate; ASCVD, atherosclerotic cardiovascular disease; LDL, low-density lipoprotein; SAA, serum amyloid A; OxPL, oxidized 
phospholipids
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Abstract

Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). 
Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This 
review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are 
the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids 
between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like 
bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its 
cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies 
indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better pre-
dictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, 
death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with 
various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased 
risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and 
multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. 
For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the 
respective disease.

Keywords Cholesterol efflux • Evolution • Remnants • Triglycerides • Infectious disease • Cancer • Age-related macular 
degeneration • Autoimmune disease

Historical perspective
The first observation of an inverse relationship between high-density 
lipoprotein-cholesterol (HDL-C) levels and the risk of developing cor-
onary heart disease (CHD) dates back to the 1950s.1 Since the 1970s, 
results from many other studies have reinforced this strong inverse re-
lationship,2–8 conferring to HDL-C the appellative of ‘good cholesterol’, 
as opposed to the low-density lipoprotein-cholesterol (LDL-C) re-
ferred to as ‘bad cholesterol’. These early observations paved the 
road for interventional clinical trials testing the hypothesis that increas-
ing HDL-C levels using pharmacological approaches would reduce the 
cardiovascular (CV) risk.

Drugs that increase circulating HDL-C levels, including niacin, fibrates, and 
cholesteryl ester transfer protein (CETP) inhibitors except anacetrapib,9

have essentially failed to demonstrate any CV benefit, at least if added to 
state-of-the-art treatment with statins.10–13 However, it is important to rec-
oncile that, with the exception of dalcetrapib, these drugs also alter plasma 
levels of other lipoproteins so that the futility of these interventions in 
reducing ASCVD may reflect limitations of the drugs or the study design 
(e.g. patient selection, combination with statins) rather than the role of 
HDL in atherosclerotic CV disease (ASCVD). Of note, the benefit 
shown with anacetrapib was directly proportional to the reduction of 
non-HDL-C. Genetic studies provided controversial evidence that 
HDL-C levels are causally associated with CV risk, also because most genetic 
determinants of HDL-C also affect other lipid traits, notably triglycerides but 
also LDL-C. Rare variants in genes which cause low HDL-C without altering 
other lipid traits, namely APOA1, ABCA1, and LCAT, were not associated 
with any increase of risk of ASCVD in general population studies,14–16 but 
associated with a higher prevalence of ASCVD in studies of families with low 
HDL-C17 or in a large lipid clinic registry.18 Variants in genes determining 
higher HDL-C levels also yielded equivocal results. Some like LIPC19,20

and SCARB121,22 are associated with normal to increased risk of ASCVD. 
Others like LIPG23,24 or CETP25,26 are associated with normal to reduced 
risk.23 Data from a genetic score combining 14 variants exclusively related 
to HDL-C showedno significant association with the risk of CHD.23 Also, 

more recently, even larger Mendelian randomization studies failed to 
show any significant genetic association of HDL-C levels with the risk of 
ASCVD.27 Finally, the findings in genetic animal models indicate the import-
ance of specific genes and metabolic pathways as determinants of HDL’s 
role in ASCVD. For example, interferences with apoA-I expression show 
the expected inverse effects on HDL-C and atherosclerosis, whereas 
knock-out of Scarb1 increases both HDL-C and atherosclerosis.28

Apart from pleiotropic effects of gene variants, an important reason 
for this controversy is the non-continuous relationship of HDL-C with 
the risk of ASCVD. Data from six community-based cohorts showed an 
inverse and linear relationship between HDL-C and CHD risk up to a 
value of ≈90 mg/dL but for HDL-C values >90 mg/dL, no further re-
duction in CHD risk was observed.29 In a meta-analysis of 68 studies, 
this threshold was the 80th and 60th percentile for unadjusted and ad-
justed HDL-C levels, respectively.8 More recently, observational studies 
have shown a U-shaped relationship, with both low and very high levels 
of HDL-C being associated with an increased risk of all-cause mortality, 
CV mortality, infections, and dementia in the general population.30–32

These new findings have challenged the longstanding premise that rais-
ing HDL-C would reduce CV risk, but also suggested that, perhaps, 
HDL functionality rather than HDL-C levels may be more relevant in 
terms of drug development and as an ASCVD biomarker.

This new paradigm has reinforced the idea that HDL is not merely a 
cholesterol transporter, but, rather, possesses several additional 
functional properties [including cholesterol efflux capacity (CEC), 
anti-oxidant, anti-inflammatory, and immune-regulating activities].33 In 
addition, HDL is a rather complex family of different particles, being 
composed of sub-species differing in size, density, shape, charge, and 
composition, undergoing continuous remodelling processes in the cir-
culation.33 This remarkable heterogeneity of the HDL particle family 
may explain why HDL cannot always be considered ‘anti-atherogenic’, 
but can sometimes become dysfunctional or even ‘pro-atherogenic’. 
Thus, it is not surprising that recent studies have shown that measures 
of various possible HDL functions, such as CEC and HDL inflammatory 
index (i.e. the capacity of HDL to inhibit the oxidation of LDL), or the 
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number of circulating HDL particles are better predictors of CV events 
than just the cholesterol content of HDL.34–41

Is high-density 
lipoprotein-cholesterol all we need 
to measure?
High-density lipoprotein structure and 
composition
HDL is the smallest circulating lipoprotein and is found near all cells. 
HDL contains both proteins and lipids (Figure 1), but the unique ar-
rangement of its two main constituents in different HDL particle sub- 
species provides insights into understanding its various physiological 
roles. Lipids in HDL are arranged in a micelle-like configuration, with 
the abundant amphipathic lipids (phospholipids and free cholesterol) 
forming a surface monolayer and the more hydrophobic or neutral li-
pids (cholesteryl esters and triglycerides) in the particle core. 
Particles with a hydrophobic neutral lipid core form spherical-like struc-
tures approximately 8–11 nm in diameter (referred to as α-migrating 
HDL, based on their migration on agarose gel), whereas particles de-
pleted of neutral lipids form disc-like structures.42

Among the two major components of HDL, proteins and lipids, 
some are abundant whereas others are present in small amounts 
(Figure 1), with concentrations spanning 4–5 orders of magnitude and 
ranging from sub-micromolar ([ipid transfer proteins, apolipoprotein 
(apo) L1, sphingosine-1-phosphate, bile acids] to millimolar (choles-
terol, phosphatidylcholine).42 Based on the average plasma concentra-
tion of 20 µmol/L, a representative HDL particle carries 50–100 
molecules of esterified or unesterified cholesterol or phosphatidylcho-
line and 2–3 molecules of apoA-I. However, <5% of the particles each 
carry one molecule of minor constituents.42

The most abundant apolipoprotein on HDL is apoA-I, which contri-
butes to the maintenance of HDL structure and to the removal of 
excess cellular cholesterol through the ATP-binding cassette 
transporter-1 (ABCA1).42 The typical large spherical form of HDL 
has at least three molecules of apoA-I in a trefoil-like configuration,43

whereas discoidal HDL has two copies of apoA-I wrapped around 
the side of the disc, shading the hydrophobic acyl chains of its phospho-
lipid bilayer.44 The low-abundant proteins on HDL can be further di-
vided into lipoprotein-specific proteins and ancillary proteins. 
Lipoprotein-specific proteins include lecithin:cholesterol acyltransfer-
ase (LCAT), CETP, and paraoxonase-1 (less than one copy per par-
ticle). Most of the ancillary HDL proteins, which now number over 
200,45,46 are even less abundant and, for the most part, are only loosely 
associated with HDL. Although low in abundance, these ancillary pro-
teins may, nevertheless, have important biological functions: as an ex-
ample, haptoglobin or haptoglobin-related protein enables HDL to 
act as a potent trypanosome-lytic factor,47 and alpha-1 antitrypsin (an 
acute-phase protein)48 may enable a more efficient HDL delivery to 
sites of tissue damage where it suppresses inflammation.

Phospholipids are abundant, key structural components of HDL and 
often have been considered just structural, but this is an overly simplis-
tic view. For example, in the absence of HDL due to LCAT deficiency, 
excess phospholipids generated during lipolysis of apoB-containing lipo-
proteins reorganize as multi-lamellar vesicles called lipoprotein-X 
(Lp-X).49 Lp-X particles get trapped in the glomerulus and can cause 
end-stage kidney disease, thus one potentially important role of HDL 
is to prevent this outcome. Moreover, they are substrates for enzymes 

(e.g. LCAT or endothelial lipase) that generate lysophospholipids and 
hence bioactive molecules. Although not as abundant as triglycerides 
on apoB-containing lipoproteins, the transfer of triglycerides to HDL 
by CETP may extend the time for the delivery of triglycerides for lipoly-
sis in the post-prandial state and, because of the small size of HDL and 
its ability to enter extracellular fluid, it may enhance the delivery of tri-
glycerides on HDL to peripheral tissues.50 Low-abundant lipids (or 
lipid-like substances) on HDL, like sphingosine-1 phosphate (S1P),51

as will be discussed below, may also have important effects because 
they are potent biological signalling molecules. HDL can even bind to 
miRNAs and other types of short nucleic acid fragments but the patho-
physiological significance of this is not clear.52

High-density lipoprotein sub-fractions
Given the compositional complexity of HDL, it is not surprising that there 
are numerous sub-fractions or ways to further sub-divide HDL into differ-
ent structural or functional categories. The main impetus behind this effort 
was to identify sub-fractions of HDL that may be diagnostically important 
for predicting CV disease risk, but it also has obvious implications for devel-
oping drugs that modulate HDL for the prevention of CV disease or other 
diseases. Historically, HDL was first sub-fractionated based on the density 
of lighter (and larger) HDL2 and heavier (and smaller) HDL3 sub- 
fractions.53 Another early classification of HDL sub-fractions was based 
on the presence or absence of apoA-II, the second most abundant protein 
in HDL. These types of classifications had, however, limited impact on rou-
tine diagnostic testing, because of lacking evidence for superiority. 
Separation of HDL into discrete HDL size fractions can now be readily 
done by nuclear magnetic resonance (NMR) spectroscopy in clinical la-
boratories, providing the ratio of large-to-small HDL, which may be useful 
for assessing not only CV risk but also insulin resistance and other condi-
tions.53 Recent advances in mass spectrometry allow the comprehensive 
quantification of the proteome in total HDL as well as distinct sub- 
classes.45,46,54,55 At this time, there is only limited commercial availability 
of these advanced HDL sub-fractionation tests and hence they are not 
widely used but they are being actively investigated for their clinical utility.

High-density lipoprotein function
Recent proteomic analyses and metabolic turnover studies provided 
evidence that distinct HDL sub-classes have a pre-defined core-protein 
composition that remains relatively stable throughout their life-
cycle.56,57 Interestingly, these HDL sub-classes frequently contain spe-
cialized proteins that fulfil related or complementary functions, for 
example, in haemostasis, protease inhibition, or the complement sys-
tem.45,46,56 One notable example is the complex consisting of apoA-I, 
haptoglobin-related protein, and apoL1 by which haptoglobin-related 
protein provides the binding to Trypanosoma and the internalized 
apoL1 elicits the lysosomal swelling, ultimately killing Trypanosoma.58

By contrast, the lipid composition of HDL particles is highly dynamic. 
ABCA1 fluxes glycerophospholipids and cholesterol from cell mem-
branes, especially to lipid-free apoA-I as well as to small, lipid-poor 
HDL. LCAT generates cholesteryl esters and lysophosphatidylcholines 
by the transfer of sn-2 fatty acids from phosphatidylcholines to the 
3-OH group of cholesterol. Endothelial lipase and hepatic lipase hydro-
lyse phosphatidylcholines and triglycerides of HDL, respectively, gener-
ating free fatty acids, lysophosphatidylcholines, and diacylglycerols, 
which also are bioactive molecules. CETP exchanges cholesteryl esters 
of HDL for triglycerides from apoB-containing lipoproteins and 
phospholipid transfer protein (PLTP) transfers phospholipids from 
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apoB-containing lipoproteins to HDL as well as between different 
HDLs.59 In addition, lipids are fluxed between HDL and cells and be-
tween HDL and other lipoproteins following concentration gradients 
or affinity. For example, unesterified cholesterol is readily accepted 
by HDL from both lipolysed triglyceride-rich lipoproteins (TGRLs) or 
cell membranes but also transferred from HDL to LDL or cells60,61

(Figure 2). S1P is readily effluxed from erythrocytes or endothelial cells, 
especially by HDLs that contain its chaperone apoM.62,63

Thus, HDLs are modular scaffolds that combine structural specificity 
with plasticity. Thereby, HDLs exert multiple functions that protect the 
organism from chemical or biological harm or help to repair the tissue 
damage caused by noxious agents. HDLs do so by three principal 
mechanisms.

Cholesterol transport
The most intensively investigated function of HDL is reverse choles-
terol transport (RCT). According to this model, HDLs elicit cholesterol 
efflux from macrophage foam cells of atherosclerotic plaques either 
specifically, via sequential interactions with ABCA1 and ABCG1, or 
by aqueous diffusion, through a process facilitated by scavenger recep-
tor BI (SR-BI) (Figure 2).64 Virtual HDL-deficiency in Tangier disease as 
well as in mice with systemic or hepatocyte-specific knock-out of 
ABCA1, illustrates the rate-limiting importance of ABCA1 for the bio-
genesis of HDL.59,65 Free cholesterol is then esterified by LCAT and 
cleared by the liver, either directly, by selective uptake through SR-BI, 
or indirectly after CETP-mediated transfer to apoB-containing lipopro-
teins which are then internalized by the LDL receptor.65 In addition, 
HDL particles as such are taken up by hepatocytes through a yet poorly 
understood mechanism (Figure 2).66

Of note, HDL-C levels reflect neither the capacity nor the intensity 
of RCT.67 Neither do increased HDL-C levels upon treatment with 
CETP inhibitors indicate enhanced RCT.68 Especially in the context 
of LDL receptor activation through the concomitant statin therapy, 
the interference with cholesteryl ester transfer from HDL to LDL 
blocks RCT by preventing the removal of cholesterol by the LDLR 

pathway. The doubling of HDL-C levels upon CETP inhibition indicates 
that the blockage of this indirect pathway is not compensated by the 
direct removal of HDL and its cholesterol cargo.

RCT is of special relevance for the removal of cholesterol from macro-
phages: following cholesterol accumulation, macrophages exert several 
pro-inflammatory activities which are dampened by HDL-mediated chol-
esterol efflux.69 Also, adipocytes are enriched with cholesterol to form 
the biomembranes surrounding lipid droplets. Hydrolysis of triglycerides 
in white adipocytes upon fasting or in brown adipocytes upon heat pro-
duction is accompanied by a breakdown of these membranes and the re-
lease of considerable amounts of cholesterol for RCT. At least in mouse 
models, HDL or ABC transporters were shown to play an important 
role in this process.70,71

HDLs also accept unesterified cholesterol from TGRLs, a process 
enhanced upon hydrolysis of triglycerides by lipoprotein lipase and in-
dependent of phospholipids (Figure 2).72

Communication with cells
HDLs regulate the differentiation, proliferation, migration, survival, and 
function of many cell types. HDLs modulate the inflammatory action of in-
nate and adaptive immune cells,69 support the integrity and functionality of 
endothelial barriers, stimulate angiogenesis,73 and secure energy homeosta-
sis by stimulating insulin synthesis and secretion by pancreatic beta cells as 
well as glucose uptake by adipocytes and myocytes.74 Principally, these cel-
lular responses result from either altered cholesterol homeostasis due to 
fluxes of cholesterol between cells and HDL, specific molecular interac-
tions between HDL and cells, or combinations thereof.

First, cholesterol efflux alters the cholesterol content of specific plas-
ma membrane domains, so-called rafts, that are enriched with signalling 
molecules, resulting in different effects depending on the cell type. 
Examples are the activation of endothelial nitric oxide synthase 
(eNOS) by HDL/SR-BI interaction in caveolae of endothelial cells75 as 
well as the dampening of toll-like receptor-4 response in monocytes76

or T-cell receptor signalling in lymphocytes;77 cholesterol efflux also al-
ters the transcription of sterol-regulated genes.78

Figure 1 High and low abundant lipids and proteins in high-density lipoprotein particles. Apo, apolipoprotein; LCAT, lecithin:cholesterol acyltrans-
ferase; CETP, cholesteryl ester transfer protein; PONI, paraoxonase 1; S1P, sphingosine-1-phosphate.
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Second, the interactions of HDL with SR-BI or apoA-I with ABCA1 
induce signal transduction via the recruitment of intracellular proteins, 
which in turn activate different cellular responses such as eNOS activa-
tion in endothelial cells or glucose uptake into myocytes.79,80

Third, HDLs transport agonists of specific signalling receptors; the 
interaction of S1P with S1P receptors activates diverse signalling cas-
cades and results in many protective effects on endothelial functions, 
including the induction of nitric oxide (NO) production and the main-
tenance of the endothelial barrier integrity.73,81 Furthermore, S1P facil-
itates the trans-endothelial transport of HDL and thereby entry into 
extravascular tissues and spaces, where HDL exerts its protective activ-
ities.82 S1P also modulates inflammatory effects on macrophages and 
lymphocytes and promotes the survival of hearts and kidneys exposed 
to hypoxia, ischemia-reperfusion injury, or toxic drugs.81

Fourth, HDLs deliver cargo into cells either by selective uptake, i.e. 
independently of the entire particle, or via holoparticle uptake.66

SR-BI mediates the selective uptake not only of lipids but also 
microRNAs (miR) carried by HDL.83 HDL-holoparticle uptake in the 
liver plays an important role in the metabolism of HDL.84 In addition, 
monocyte-derived macrophages and enterocytes also internalize entire 
HDL particles, but the mechanism or the consequence of this is not 
understood.85,86

In summary, HDLs elicit a plethora of cellular responses by employ-
ing several modes of communication. Some mechanisms, for example, 
S1P receptor activation or cholesterol efflux, lead to many diverse re-
sponses in different cell types. Vice versa, identical responses can be 
evoked by several modes of action.

Inactivation of biohazards
By its amphiphilic structure and its cycling between extravascular and intra-
vascular compartments, HDLs bind potentially toxic substances, such as 
bacterial lipopolysaccharides, oxidized lipids, as well as some lipophilic xe-
nobiotics.87,88 In plasma, potentially hazardous molecules are either elimi-
nated by reverse transport to the liver or inactivated directly on the 
surface of HDLs. The best-investigated example for the latter situation is 
the hydrolysis of oxidized phospholipids by paraoxonase 1, 
lipoprotein-associated phospholipase A2, and LCAT.89–91 HDLs also exert 
direct antimicrobial effects on viruses and even protozoa.58,88,92 At least in 
vitro, HDL or apoA-I interfere with the entry or fusion of viruses with target 
cells.92 Of note, SR-BI is an entry route of several viruses, including 
SARS-CoV-2, into cells93 and this process may be competed by HDLs.94

Finally, the proteome of HDLs is enriched with proteases and 
protease inhibitors which modulate platelet aggregation, coagulation, 
fibrinolysis, complement activation, and tissue degradation. They help 
to counteract downstream adverse effects of injuries, infections, and in-
flammation and support wound healing.48 Of note, functionally related 
proteins tend to cluster within distinct sub-populations of HDL.45,46

High-density lipoprotein 
dysfunction
HDLs can lose protective functions and even gain adverse functions in 
chronic diseases, such as rheumatic and autoimmune diseases, CHD, 
diabetes, chronic kidney disease, or in the course of infectious 

Figure 2 Cholesterol transfers between high-density lipoprotein, very-low-density lipoprotein, low-density lipoprotein, and cells. ABCA1, 
ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; 
FC, free cholesterol, unesterified cholesterol; HDL, high-density lipoprotein; HL, hepatic lipase; LCAT, lecithin:cholesterol acyltransferase; LDL, low- 
density lipoprotein; LPL, lipoprotein lipase; PLTP, phospholipid transfer protein; SR-B1, scavenger receptor B1.
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diseases.42,95 HDL dysfunctions include reduced capacities to stimulate 
cholesterol efflux from macrophages, inhibit LDL oxidation, and regu-
late apoptosis, NO production, monocyte chemotactic protein-1, or 
vascular cell adhesion molecule expression in endothelial cells 
(Figure 3). A systematic investigation of HDLs’ structure–function rela-
tionships in CHD and diabetes showed that the different functionalities 
of HDL are not correlated with each other and are determined by dif-
ferent features and molecules of HDLs.96 HDLs of patients with CHD 
or chronic kidney disease inhibit rather than stimulating NO production 
because upon interaction with the lectin-like oxidized LDL receptor 
LOX-1 and the toll-like receptors TLR2 and TLR4 they induce the 
phosphorylation of inhibitory rather than activating sites in eNOS. 
The gain of these adverse receptor binding properties results from 
the accumulation of oxidized phospholipids and apoA-I, serum amyloid 
protein A (SAA), or symmetric dimethylarginine.97,98

Biomarkers of high-density 
lipoproteins’ function or 
dysfunction
From a functional point of view, HDL-C is not a causal marker because 
the many functions of HDL are exerted either by entire particles or 
specific components other than cholesterol. Moreover, low HDL-C 
is strongly associated with increased levels of TGRL (Figure 4). 
Therefore and because HDL-C levels decrease upon disturbed 
lipolysis-induced transfer of unesterified cholesterol from TGRL to 
HDL100 as well as enhanced CETP-mediated transfer of cholesteryl es-
ters from HDL to TGRL (Figure 4), low HDL-C levels are nowadays 
widely considered as an indirect and non-causal biomarker of elevated 
ASCVD risk reflecting the atherogenicity of elevated plasma levels of 
TGRL and their remnants.101 Any chance for future exploitation of 
HDL as a therapeutic target will depend on the availability of direct bio-
marker(s) reflecting a causal contribution of HDL to the pathogenesis 
of atherosclerosis and other diseases.

A recent meta-analysis reported that the total number of HDL parti-
cles, as well as numbers of small and medium, but less so large HDL 
particles, are associated with incident ASCVD.102 A recent Mendelian 
randomization study found genetically causal associations of coronary ar-
tery disease with the concentrations of medium and small HDL particles, 
but not with large HDL.103 This heterogeneity is potentially important 
since lipid-modifying drugs cause diverse changes in HDL particle size, 
number, and composition: treatment with nicotinic acid and CETP inhi-
bitors increases HDL-C levels more profoundly than HDL-P, while treat-
ment with fibrates increases HDL-P more strongly than HDL-C.104

The plasma concentration of apoA-I is the most obvious candidate as a 
direct biomarker of HDL function, because it is an essential structural HDL 
component, but also exerts several biological activities. In epidemiological 
and clinical studies, apoA-I levels show inverse associations with ASCVD 
events, which however are not stronger than those of HDL-C.8,105

Neither did a Mendelian randomization study, based on a single SNP of 
APOA1, unravel any causal genetic relationship between apoA-I levels 
and ASCVD.106 Nevertheless, we believe it is still worthwhile to further 
validate apoA-I as a biomarker through observational and more compre-
hensive Mendelian randomization studies, also concerning endpoints other 
than ASCVD.

Cross-sectional studies identified several proteins and lipid species in 
HDL, which differ quantitatively between patients with various diseases 
(including CHD) and healthy control subjects.42,95,96 However, only a 
few of them were validated in prospective studies.42,45 The presence 
or absence of distinct proteins was found to determine the association 
of apoA-I levels with incident CV events. For example, apoA-I levels in 
particles that contain apoE or apoC-I but not their apoE- or 
apoC-I-free counterparts, or apoA-I levels in apoC-III-free particles 
but not in apoC-III-containing particles are inversely associated with in-
cident ASCVD events.54 Enrichment of HDL with SAA was associated 
with mortality in CHD patients as well as patients with diabetic end- 
stage nephropathy.107,108 However, it is not clear whether the enrich-
ment of HDL with apoC-III or SAA are direct measures of HDL dys-
function or indirect reporters of apoC-III’s adverse role in the 
metabolism of TGRL or the presence of inflammation. In support of 

Figure 3 Structure–function relationships of high-density lipoprotein in health and disease. RNA, ribonucleic acid.
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the latter, apoC-III interferes with the capacity of HDL to inhibit the 
apoptosis of endothelial cells and to promote efflux from macrophages 
and SAA disturbs HDL’s ability to activate eNOS.107,109

As integrative measures of HDL function, also bioassays were vali-
dated in population and clinical studies. CEC was investigated most ex-
tensively, using apoB-depleted plasma or serum as a surrogate of HDL. 
Despite the heterogeneity of results, a recent meta-analysis revealed 
that CEC is inversely associated with ASCVD events independently of 
HDL-C.110 However, the assay is difficult to standardize and is not suit-
able for clinical routine.111 Moreover, CEC is no overall proxy of HDL 
functionality, because other functions of HDL neither correlate nor share 
molecular determinants with CEC.96 Although increasing CEC either as 
monotherapy or as a combination therapy with statins, treatment with 
evacetrapib did not prevent ASCVD events.112 Despite these limitations, 
CEC has been used as a reference to develop molecular biomarkers that 
can be measured in clinical laboratories. One example is the derivation of 
an algorithm that integrates the information of differently sized HDL par-
ticles as measured by NMR. The estimated NMR-based CEC correlated 
very well with the in vitro measured CEC. However, in contrast to initial 
encouraging results, the validation of the CEC estimation algorithm failed 
in large multicentric replication studies.113 Another example is a prote-
omic score integrating the information of apolipoproteins A-I, C-I, C-II, 
C-III, and C-IV, which showed a good correlation with CEC as well as sig-
nificant association with the presence of coronary artery disease and CV 
mortality independently of clinical risk factors including conventionally 
measured concentrations of apoA-I and apoB.114 Replication studies 
are needed to validate these surrogate scores of CEC.

High-density lipoprotein in 
mortality
Both low and extremely high HDL-C levels are associated with an in-
creased risk of all-cause mortality30 (Figure 5). Whereas the association 
with low HDL-C levels concurs with the repeatedly observed increased 
risk of ASCVD,8 the increased mortality at extremely high HDL-C levels 

is less easily understood. This finding, however, derives from many stud-
ies30,115–117 and raises the question of whether extremely high HDL-C 
levels have deleterious effects. Demonstrating a causal effect is very 
difficult, as conventional Mendelian randomization studies assume linear 
effects (the higher the level, the higher the risk over the entire 

Figure 4 Lipoprotein-cholesterol as a function of increasing levels of non-fasting triglycerides. Based on 60 000 individuals from the Copenhagen 
General Population Study. CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; TG, triglycerides. Adapted from Chapman et al.99

Figure 5 High-density lipoprotein levels on a continuous scale and 
risk of all-cause mortality in men and women from the Copenhagen 
General Population Study. Adapted from Madsen et al.30
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concentration range, or vice versa). Non-linear Mendelian randomization 
designs can be used for U-shaped observational associations, but such 
studies need even more statistical power, and hitherto no such studies 
have examined whether extremely high HDL-C levels are causally related 
to increased mortality. Naturally, this limitation is also valid for low 
HDL-C associated with increased mortality, as well as for the other 
U-shaped relationships described in the following.

The largest observational studies showed that extremely high HDL-C 
levels were not associated with a higher risk of cancer mortality, but rather 
with CV and/or other mortalities.30,116,117 There are several possible expla-
nations behind these associations. First, 11% of individuals with high HDL-C 
carry rare genetic variants that not only have a strong effect on HDL-C le-
vels,118 but may also have concomitant detrimental health effects possibly 
through dysfunctional HDL, including an altered ability to remove excess 
cholesterol from cells.115 Second, the association could be driven by con-
founding, e.g. extremely high HDL-C levels are found in people with very 
high alcohol consumption, which could be the actual cause of high mortal-
ity.30,115 Third, high HDL-C levels result from delayed catabolism. On the 
one hand, this may indicate disturbed delivery of cholesterol to the liver for 
excretion. On the other hand, like for LDL, the prolonged residence time 
will promote modifications of the molecular composition and components 
of HDL, ultimately resulting in HDL dysfunction. At high HDL-C levels, the 
particle size is larger than normal. Therefore, it is at least theoretically pos-
sible that these large, likely dysfunctional HDL particles become trapped in 
the arterial intima, leading to cholesterol accumulation and eventually to 
atherosclerosis and ASCVD.115 Finally, in observational analyses, it is never 
possible to rule out reverse causation, that is, poor health leading to early 
death could also lead to extremely high HDL-C levels.

High-density lipoprotein in 
non-cardiovascular morbidity: 
from epidemiology to genetic and 
trial evidence
Both low and high HDL-C levels are associated with an increased risk of 
infectious disease31,119 (Figure 6, upper panel) as well as mortality from 
sepsis.88,92,121,122 There is genetic support for this function of HDL 
from gain-of-function variants in CETP associated with both lower 
HDL-C levels and higher mortality in sepsis.123 Possible mechanisms in-
clude the inactivation of bacterial lipopolysaccharides,88,92 but also 
beneficial effects of HDL on multiple organs and systemic responses, 
for example, in haemostasis and complement activation which are dys-
functional in hyperinflammation.48,69,73

Low HDL-C levels are associated with an increased risk of auto-
immune disease124 (Figure 6, middle panel) and cancer115,120,125,126

(Figure 6, lower panel); for cancer, the risk increase was more pro-
nounced for low apoA-I than for low HDL-C,120 suggesting that HDL 
particles rather than their cholesterol content drive this association. 
Currently, there is no convincing genetic evidence linking low HDL-C 
levels causally to the risk of autoimmune disease or cancer.115

Low HDL-C is not only frequently found in individuals with manifest 
diabetes mellitus Type 2 but is also associated with an increased risk of 
developing diabetes. There is genetic evidence that low HDL-C levels 
may be causally related to an increased risk of diabetes in two large 
studies,127,128 but not in a third.129 In randomized trials, CETP inhib-
ition, leading to a 28–132% increase in HDL-C levels, improved gly-
caemic control and/or reduced the risk of new-onset diabetes.130,131

The beneficial glycaemic effects could, however, be due to pleiotropic 

effects of CETP inhibition beyond HDL-C increases. However, infusion 
of artificial HDL acutely improved glycaemia in patients with dia-
betes.132 Moreover, both in vitro and in animal experiments, HDL 
was found to exert potentially anti-diabetic effects on pancreatic beta 
cells, insulin signalling and glucose metabolism.74

Observational133–135 and genetic136–138 data show that low HDL-C 
is associated with decreased kidney function.115 Finally, smaller studies 
have linked lower HDL-C levels with asthma; however, there are no 
genetic studies to support any claim for causality,115 although overex-
pression of ApoA1 or treatment with reconstituted HDL (rHDL) 
showed beneficial effects in several animal models of lung diseases.139

The risk of age-related macular degeneration also increases with ele-
vated HDL-C and apoA1, according to both observational and genetic 
studies.140–144 Genetically, well-known genes involved in HDL metabolism 
(ABCA1, LIPC, CETP, and APOE) are drivers of the increased risk of 
age-related macular degeneration,140 the most common cause of blindness 
in the elderly. The use of drugs that specifically increase HDL levels is there-
fore of concern, and a recent genetic study estimated that the number of 
individuals who are potentially harmed by developing age-related macular 

Figure 6 High-density lipoprotein levels on a continuous scale and 
risk of infectious disease, autoimmune disease, and cancer in indivi-
duals from the Copenhagen General Population Study. Adapted 
from Madsen et al.31 and Pedersen et al.120
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degeneration via HDL-C increases due to CETP inhibition was of the 
same order of magnitude as the number of individuals who may have 
benefited from reduced ASCVD, as a consequence of lowering of 
non-HDL-C144 (Figure 7). However, in the REVEAL study treatment 
with anacetrapib did not cause any significant increase in the incidence 
of age-related macular degeneration (AMD), loss of visual acuity, or blind-
ness.9 That said, REVEAL participants were followed for 4 years from a 
median age of 67 years during which time 298 cases of AMD were diag-
nosed, that is, the study had limited power to exclude an increased risk of 
AMD if these participants were treated beyond the median age of 72 
years where AMD typically develops.144 Since the retina like the brain 
is separated from the bloodstream by a tight barrier, one must envisage 
that HDL-C levels in peripheral blood are only indirectly related to the 
functions of the HDL genes in the pathogenesis of AMD. For example, 
the targeted knock-out of ABCA1 and ABCG1 in retinal pigment epithe-
lium led to retinal degeneration in mice as seen in human AMD.139 As 
interference with LDL metabolism in the liver for example by PCSK9 in-
hibition does not affect brain function, interference with HDL metabol-
ism in the periphery may have no impact on retina function.

High-density lipoprotein across 
species, in search for a role through 
evolution
HDL is present in essentially all living species: in invertebrates including 
insects, crabs, and lobsters, different types of HDL-like lipoproteins 

represent the bulk of lipoproteins in haemolymph (the equivalent of hu-
man blood)145–147 (Figure 8). In contrast to vertebrates, invertebrates 
use only HDL-like lipoproteins for both exogenous and endogenous li-
pid transport: while circulating in haemolymph between different cells 
in different tissues, HDL alternately delivers and takes up lipids without 
being internalized or degraded. Besides lipid transport, haemolymph 

Figure 7 Estimated benefit and harm due to genetically lower non-high-density lipoprotein-cholesterol and genetically higher high-density 
lipoprotein-cholesterol due to inhibition of cholesteryl ester transfer protein. Based on individuals in the Copenhagen General Population Study. 
Lower non-high-density lipoprotein-cholesterol by 0.44 mmol/L (17 mg/dL) and higher high-density lipoprotein-cholesterol by 1.12 mmol/L 
(43 mg/dL) correspond to the changes observed through anacetrapib treatment compared with placebo in the REVEAL trial.9 AMD, age-related macu-
lar degeneration; HDL, high-density lipoprotein; Δ=difference. Adapted from Nordestgaard et al.144

Figure 8 Examples of relative mass distribution of different lipopro-
tein fractions in different invertebrate and vertebrate species. HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; VLDL, 
very-low-density lipoprotein. Values adapted from Chapman145 and 
Van der Horst and Rodenburg.147
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HDL is involved in bacterial lipopolysaccharide binding, clot formation, 
and wound healing, and oocyte maturation in females.145–147

The lipoprotein systems of the most primitive vertebrates approach 
those of mammals and humans, including both HDL and the larger apo-
lipoprotein B-containing lipoproteins like human chylomicrons, 
very-low-density lipoproteins (VLDLs), and LDL.145–147 The relative 
plasma content of HDL, LDL, and VLDL (including chylomicrons) dif-
fers between different vertebrates; however, in many species, HDL is 
the dominant lipoprotein145–147 (Figure 8).

This suggests that, through evolution, HDL particles appeared early, 
while chylomicrons, VLDL, and LDL first developed in vertebrates. 
HDL transports lipids to and from different cells like a reusable ferry, 
while the larger chylomicrons, VLDL, and LDL mediate more targeted 
delivery including triglyceride hydrolysis via lipases and cholesterol via 
receptor-mediated lipoprotein uptake. In this regard, it is important 
to remember that LDL plays an important role in RCT by accepting 
both unesterified and esterified cholesterol from HDL for 
LDL-receptor-mediated removal by the liver.60,148 However, for 
some organs and functions, for example the steroidogenesis in adrenals, 
the delivery of cholesterol by HDL rather than by LDL appears to be 
rate-limiting.149 As CV disease occurs after reproductive age and mainly 
in humans, it is unlikely that HDL and RCT, the most intensively inves-
tigated function of HDL particles, have developed during evolution to 
protect from atherosclerosis. It is more likely that HDL evolved as a 
multimolecular and multifunctional platform and part of the innate 
host defence to overcome acute crises in early life, such as infection 
and wounding. In this regard also RCT plays an important role, as tissue 
degradation, but also the physiological turnover of erythrocytes and 
platelets as well as lipolysis in the adipose tissue upon prolonged fasting 
mobilize cholesterol, which is taken up and transported by HDL for bil-
iary excretion.

Therapies modulating high-density 
lipoprotein
Based on the earlier observations from epidemiological studies, it was 
assumed that increasing HDL-C levels would produce CV protection. 
As a consequence, many clinical trials have been conducted with drugs 
capable of increasing significantly the plasma levels of HDL-C. The results 
of such clinical trials have been, however, disappointing. Adding niacin to 
statin therapy did not provide any incremental clinical benefit among pa-
tients with ASCVD, despite a 25% increase in HDL-C levels.10 Several 
CETP inhibitors have now been tested in clinical trials, most of which 
failed to show a reduction in CV risk despite significant increases in 
HDL-C levels,12,13,150 except for anacetrapib; the latter significantly re-
duced CV events by 9%,9 although such reduction was attributed to 
the observed LDL-C lowering rather than the increase in HDL-C le-
vels.151 Several studies have also aimed to find further explanations for 
these results, but neither changes in CEC of HDL13,112,152 nor variations 
in HDL sub-fractions,112,153,154, could provide clear explanations for the 
trial results. In addition, different patient populations and different quan-
tification methods were used in these studies, thus further complicating 
this picture. A recent study showed that the treatment with torcetrapib 
and evacetrapib increases HDL sub-fractions that are associated with an 
increased CHD risk, such as those containing apoC-III, suggesting that 
the pharmacological increase of HDL-C would not be beneficial if an in-
crease in dysfunctional HDL particles is achieved.155 In contrast with 
these observations, genetic variations in the CETP gene determining 
higher HDL-C levels were associated with a reduced risk of 28-day 

mortality from sepsis, and inhibition of CETP with anacetrapib preserved 
HDL-C levels decreased the severity of endotoxemia, and improved sur-
vival after caecal ligation and puncture in mouse models of sepsis.123 In 
post hoc analyses of large trials, CETP inhibitors were also found to im-
prove glycaemic control and delay the onset of diabetes.130,131

Although pharmacologically increasing HDL-C levels has so far not 
shown any clinical benefit, several efforts have been launched to de-
velop rHDL that are expected to improve specifically the 
HDL-mediated RCT rather than increasing its level. These were based 
on the observation that HDL infusion, as well as the overexpression of 
apoA-I in experimental animal models, were associated with the pre-
vention or regression of atherosclerosis.156–158 Over time, three 
HDL mimetics have been developed and tested in humans.

ApoA-IMilano is a naturally occurring variant of apoA-I determining 
very low levels of HDL-C and apoA-I and high triglyceride levels but as-
sociated with a very low prevalence of CV disease.159,160 Sera from 
apoA-IMilano carriers exhibit a higher CEC compared with wild-type 
apoA-I161; this observation has led to the development of a complex 
(MDCO-216) consisting of purified apoA-IMilano and phospholipids. In 
one study, MDCO-216 produced significant regression of coronary 
atherosclerosis, in the absence of any demonstrable change in 
HDL-C levels, suggesting an improvement in HDL function;162 this ob-
servation, however, was not confirmed in another study.163 The devel-
opment of MDCO-216 has now been halted.

Following an acute coronary syndrome (ACS) event, cholesterol ef-
flux is significantly reduced, showing the lowest levels at 2–5 days 
post-event and returning to baseline approximately after 30 days.164

Thus, an approach that acutely increases apoA-I and CEC might be 
beneficial among post-acute myocardial infarction patients. CSL-111 
was an early formulation of rHDL consisting of human apoA-I with soy-
bean phosphatidylcholine; although it did not produce significant reduc-
tions in coronary atheroma volume in post-ACS patients, 
improvements in plaque characterization index and coronary score 
by quantitative coronary angiography were observed.165 The develop-
ment of CSL-111 was halted due to adverse hepatic events. CSL-112 is 
a modified formulation of rHDL. It has threefold less phospholipid than 
CSL-111, did not show any major organ toxicity or immunogenicity,166

and is capable of increasing substantially ABCA1-mediated cholesterol 
efflux from cells.167 Compared with placebo, CSL-112 was associated 
with an improvement in measures of CEC (>3-fold).168 Similar results 
were reported in another Phase 2a trial.169 The ongoing Phase 3 
AEGIS-II trial is evaluating 4 weekly infusions of CSL-112 can lower 
the short-term rates of recurrent events among post-AMI patients.170

CER-001 is a negatively charged lipoprotein complex, consisting of 
phosphatidylcholine, sphingomyelin, and recombinant human 
apoA-I. Although CER-001 promoted the regression of diet-induced 
atherosclerosis in a mouse model,171 no changes in coronary athero-
sclerosis were observed among patients with a recent ACS.172 It is con-
ceivable that the infusion with HDL mimetics cannot reduce plaque 
burden beyond the effect induced by intensive statin therapy. Of 
note, CER-001 was proven to be effective in protecting kidneys in pa-
tients with familial LCAT deficiency,173,174 and intravenously adminis-
tration of CER-001 in a severe COVID-19 patient increased apoA-I 
levels while HDL-C levels decreased, accompanied by significant de-
creases in many inflammatory markers and cytokines,175 suggesting po-
tential utilization for diseases other than CV disease.

As LCAT plays a key role in HDL metabolism and RCT, ongoing 
studies are currently evaluating the effect of increasing LCAT activity 
not only for CV disease but also for other conditions such as familial 
LCAT deficiency and fish-eye disease. A Phase 2a study in subjects 
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with stable CHD showed that recombinant human LCAT (MEDI6012) 
added to statin therapy increased HDL-C and apoA-I levels, increased 
non-ABCA1-mediated cholesterol efflux while reducing apoB levels 
and total and small LDL particle number.176 A Phase 2b trial is currently 
evaluating the safety and efficacy of MEDI6012 in patients presenting 
with an acute ST-elevation myocardial infarction (clinicaltrials.gov/ct2/ 
show/NCT03578809).

Final considerations
Taken together, HDL is a dynamic multifaceted lipoprotein that can 
serve several physiological roles, most of which have been preserved 
throughout evolution for other reasons than protection from athero-
sclerosis (Graphical Abstract). Clinically, low HDL-C remains a strong 
and important risk marker for increased risk of ASCVD, likely due to 
the inverse association with increased levels of triglyceride-rich rem-
nant lipoproteins. For patients with extremely high HDL-C, the docu-
mented increased risk of infectious disease and all-cause mortality 
should inform patients and doctors alike of the possible negative prog-
nostic consequences of high HDL-C. Finally, the observed increased 
risk of AMD observationally and causal, genetically for any increase in 
HDL levels is of concern. Future efforts to pharmacologically modulate 
HDL should likely focus on functional metrics of HDL function rather 
than HDL-C and other clinical indications besides ASCVD.
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