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Abstract
Background Hybrid imaging became an instrumental part of medical imaging, particularly cancer imaging processes in 
clinical routine. To date, several radiomic and machine learning studies investigated the feasibility of in vivo tumor charac-
terization with variable outcomes. This study aims to investigate the effect of recently proposed fuzzy radiomics and compare 
its predictive performance to conventional radiomics in cancer imaging cohorts. In addition, lesion vs. lesion+surrounding 
fuzzy and conventional radiomic analysis was conducted.
Methods Previously published 11C Methionine (MET) positron emission tomography (PET) glioma, 18F-FDG PET/com-
puted tomography (CT) lung, and 68GA-PSMA-11 PET/magneto-resonance imaging (MRI) prostate cancer retrospective 
cohorts were included in the analysis to predict their respective clinical endpoints. Four delineation methods including 
manually defined reference binary (Ref-B), its smoothed, fuzzified version (Ref-F), as well as extended binary (Ext-B) 
and its fuzzified version (Ext-F) were incorporated to extract imaging biomarker standardization initiative (IBSI)-conform 
radiomic features from each cohort. Machine learning for the four delineation approaches was performed utilizing a Monte 
Carlo cross-validation scheme to estimate the predictive performance of the four delineation methods.
Results Reference fuzzy (Ref-F) delineation outperformed its binary delineation (Ref-B) counterpart in all cohorts within 
a volume range of 938–354987  mm3 with relative cross-validation area under the receiver operator characteristics curve 
(AUC) of  +4.7–10.4. Compared to Ref-B, the highest AUC performance difference was observed by the Ref-F delineation 
in the glioma cohort (Ref-F: 0.74 vs. Ref-B: 0.70) and in the prostate cohort by Ref-F and Ext-F (Ref-F: 0.84, Ext-F: 0.86 
vs. Ref-B: 0.80). In addition, fuzzy radiomics decreased feature redundancy by approx. 20%.
Conclusions Fuzzy radiomics has the potential to increase predictive performance particularly in small lesion sizes com-
pared to conventional binary radiomics in PET. We hypothesize that this effect is due to the ability of fuzzy radiomics to 
model partial volume effects and delineation uncertainties at small lesion boundaries. In addition, we consider that the lower 
redundancy of fuzzy radiomic features supports the identification of imaging biomarkers in future studies. Future studies 
shall consider systematically analyzing lesions and their surroundings with fuzzy and binary radiomics.
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Introduction

Cancer is one of the leading causes of death worldwide 
[1]. Medical imaging became an instrumental part of can-
cer detection, with positron emission tomography (PET) 
playing an important role in the imaging of metabolic 
activities, and the characterization of tumor heterogene-
ity in vivo [2]. Hybrid imaging systems relying on PET/
computed tomography (CT) are considered the gold stand-
ard of cancer imaging, while PET/Magnetic resonance 
imaging (MRI) is in the process of wide-scale adoption 
worldwide [3, 4].

While imaging is routinely employed to detect tumors, 
to date, it is mainly used for visual inspection and for 
basic imaging biomarker measurements such as meta-
bolic tumor volume [5]. In contrast, various studies 
proposed the utilization of radiomics—the approach 
to extract different imaging features from tumors—for 
analysis [6, 7]. Contrary to promising results, radiomic 
studies had been challenged by their poor reproducibil-
ity due to various factors such as biological and imag-
ing differences, delineation, radiomic feature extraction 
equation variations as well as their parameters (e.g., reso-
lution, bin size, binning method) [7, 8]. An important 
consolidation phase had been started with the proposal of 
the Imaging Biomarker Standardization Initiative (IBSI) 
[9]. However, IBSI does not cover all important aspects 
of radiomics such as delineation, which has a profound 
effect on radiomic features [2, 10–12] and it appears to 
be mainly affected by multi-observer variabilities and 
cohort, as well as imaging characteristics [10]. Conse-
quently, delineation of tumor lesions had been exten-
sively investigated in the corresponding literature [10, 
13]. While various tumor delineation approaches had 
been proposed [14–16], certain studies looked into ana-
lyzing not only the lesions, but also their surroundings 
[17, 18]. Recently, deep learning (DL) has been demon-
strated as a powerful technique to delineate suspicious 
lesions in PET for subsequent analysis with e.g., radiom-
ics and machine learning (ML) [13, 19–22]. However, the 
common property of all the above approaches is that they 
result in a binary delineation mask or volume of interest 
(VOI) for radiomic analysis, meaning, that a particular 
PET voxel is either part of the analysis or not, regardless 
of how certain its membership in the given VOI is. This 
approach has various drawbacks. First, operating with 
binary masks renders the radiomic analysis sensitive to 
PET partial volume effects (PVE) especially at lesion 
boundaries [23]. Second, delineation errors may result 
in suboptimal radiomic analysis at lesion boundaries, 
regardless of PVE, and third, multi-observer variations 
result in different radiomic outcomes, which makes the 

repeatability of reported studies challenging [10, 13, 
16]. Fuzzy radiomics had been presented as a potential 
approach to handle voxel membership uncertainties by 
relying on non-binary probability masks [24]. However, 
to date, it has not been utilized and evaluated in real 
clinical cancer settings.

In theory, fuzzy radiomics has numerous advantages. First, 
it can model and encompass PVE in the given mask as to the 
properties of the given imaging system. Second, it can also 
encode multiple observer’s delineations as a weighted mask. 
Third, it can consider not just the given lesion, but its sur-
roundings with appropriate weights for the analysis. Last, it 
can directly handle DL delineation masks that are inherently 
probabilistic, but are routinely post-processed and dichoto-
mized by a threshold to provide a binary mask for subsequent 
analysis [19, 20, 22, 25].

In light of the above, the aim of this study was to com-
pare the effect of binary and fuzzy delineation masks in 
both lesions and their surroundings, through investigat-
ing the performance of ML prediction models built in 
various cancer cohorts to predict their clinical endpoints. 
Specifically, this study had the following objectives: (a) 
to collect various cancer imaging cohorts having differ-
ent characteristics regarding the imaging systems and 
PET tracers involved; (b) to perform classic and fuzzy 
radiomic feature extraction relying on binary and fuzzy 
probability masks of lesions as well as their surroundings; 
and (c) to compare ML performance of predicting cohort-
specific clinical endpoints relying on the above feature 
extraction approaches.

Methods

Cohorts

This study relied on already delineated lesions from three 
retrospectively available cancer imaging cohorts including 
11C methionine (MET) PET glioma, 18F-FDG PET/CT 
lung and 68GA-PSMA-11 PET/MRI prostate cancer cases. 
For details of how these delineations were done, see Sec. 
Delineation. All cohorts had been previously investigated 
and presented in various ML studies [26–30] with follow-
up up to 3 years. This study included lesions from the above 
cohort databases that fulfilled the minimum 64 voxel number 
constraint [31], resulting in 105, 543 and 121 delineated 
lesions in glioma, lung and prostate cases respectively.

All cohorts had been approved for analysis by their 
respective institutional review boards and the need for 
informed consent was waived in retrospective studies. The 
clinical endpoints were 3-years survival, 2-years survival 
and low-vs-high risk in glioma, lung and prostate cohorts, 
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respectively. See Supplemental: Patient Cohorts and Sup-
plemental Table S1-S3 for patient and clinical characteris-
tics of the utilized cohorts. See Fig. 1 for the CONSORT 
diagram of this study.

Delineation

This study did not intend to promote a new delineation 
approach, but intended to compare binary vs. fuzzy masks 
of lesions as well as their surroundings regarding their per-
formance in predicting clinical endpoints. Therefore, this 
study included four delineation approaches to compare in 
each cohort, where the existing delineation of each cohort 
was serving as reference binary (Ref-B) mask provided 
by clinical experts in consensus. The number of clinicians 

involved in this step was cohort-specific (See Supplemental: 
Table S4).

The delineation of cohort-specific lesions was originally 
performed in the Hermes Hybrid 3D software ver. 4.0.0 
(Hermes Medical Solutions, Stockholm, Sweden) relying 
on standard three-dimensional (3D) iso-count VOIs [26, 
27, 32]. Where needed, manual slice-by-slice modifications 
were performed to result in the final Ref-B VOI. See Fig. 2 
for example screenshots of the delineation in each cohort. 
In addition to the above, a reference background region for 
tumor-to-background ratio (TBR) normalization of PET 
images was also available for each case (see Supplemental 
Table S4 for details).

Based on the Ref-B VOI of each case, three addi-
tional delineation masks were generated: a reference 
fuzzy mask, by smoothing Ref-B by a 3D Gaussian 

Fig. 1  The CONSORT diagram of preparing and analyzing the 
cohorts of this study. Already delineated glioma, lung and prostate 
lesions (Ref-B) were collected from databases that were analyzed and 
published in prior studies [27–29]. Glioma and lung cohorts had one 
lesion per patient, while the prostate cohort contained multiple lesions 
per patient. Reference labels for glioma, lung and prostate lesions were 
3-years survival, 2-years survival and low-vs-high risk, respectively. 
Three additional delineations were generated form Ref-B delinea-

tions: a fuzzy mask (Ref-F), an extended binary mask (Ext-B) and an 
extended fuzzy (Ext-F) mask. Fuzzy masks were generated by a three-
dimensional Gaussian filtering, relying on the physical resolution of 
each cohort's PET imaging system. Samples having no variations or 
invalid radiomic values (e.g., by low-uptake lesions) were excluded 
from all delineation-specific databases to ensure a harmonized com-
parison among them. The resulted four databases per cohort under-
went the comparative analysis (see the “Methods” section)
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filter [28] with a cohort-specific full-width half-max-
imum (FWHM), which corresponded to the physical 
resolution of the given imaging system in 3D (Ref-
F); an extended binary mask by morphological dilat-
ing [33] Ref-B with 3 voxels in 3D (Ext-B), and an 
extended fuzzy mask by smoothing Ext-B mask with 
a 3D Gaussian kernel by applying the cohort-specific 
FWHM as smoothing parameter (Ext-F). The Gaussian 
FWHM for the 3D smoothing in case of both the ref-
erence (Ref-F) and extended (Ext-F) fuzzy mask gen-
erations were 5 mm, 4.7 mm, and 4.6 mm for glioma, 
lung and prostate cohorts respectively, according to 
the manufacturer-reported physical resolutions of their 
imaging systems (see Supplemental Table S4). For a 
visual comparison of an example lesion as well as the 
four masks, see Fig. 3.

Feature extraction and normalization

All extracted VOIs were resampled to 2 × 2 × 2 mm voxel 
resolution by using Kriging interpolation in 3D [26, 34] and 
the PET standardized uptake values (SUV) were normalized 
by the mean of their respective background regions (See 
Supplemental Table S4 for details). Each TBR PET lesion 
VOI was subject to radiomic feature extraction following 
the IBSI guidelines where only features of “very strong” 
and “strong” multi-centric consensus as of the IBSI [9] were 
extracted. The above steps were performed for each of the 
four delineation masks (Ref-B, Ref-F, Ext-B and Ext-F) and 
resulted in 153 features per sample. In case either of the four 
delineation-specific radiomics database had invalid numbers 
or numbers with no variations (e.g., due to too small uptake 
in lesions in relation to the bin width), the given sample 

Fig. 2  Manual delineation (Ref-B) example views of the cohorts 
involved in this study. A Glioma tumor (axial view, inverted gray 
palette with range 0–7 SUV); B Lung tumor (sagittal view, PET 
hot metal palette with range 0–5 SUV, CT gray palette with range 

-100.200 HU); C Prostate tumor (oblique-axial view, PET hot iron 
palette with range 0–9 SUV, T2w MRI grey palette). PET—Posi-
tron Emission Tomography; SUV—Standard Uptake Value; T2w—
T2-weighted magnetic resonance imaging (MRI)

Fig. 3  A Axial view of an 
example lesion in the Glioma 
cohort (MET-PET, Hot iron 
palette with palette ranges 0–6 
SUV). B Magnified axial view 
of the tumor C Reference binary 
delineation (Ref-B). D Refer-
ence fuzzy delineation (Ref-F). 
E Extended binary delineation 
(Ext-B). F Extended Fuzzy 
delineation (Ext-F). MET—
methionine; PET—positron 
emission tomography; SUV—
standard uptake value. Note 
that images C-F are delineated 
masks with 2 × 2 × 2 mm resam-
pling for the radiomic analysis
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was removed from all four databases. This was necessary to 
ensure that the harmonized cross-validation split configura-
tion had identical train-test split samples for all four delinea-
tion processes for comparison. This step resulted in 84, 335, 
and 75 samples in glioma, lung and the prostate cohorts, 
respectively (see Fig. 1).

Due to the properties of fuzzy radiomics, its feature cal-
culation equations are identical to those defined by IBSI. The 
only difference between fuzzy and binary radiomics is that 
fuzzy radiomics takes weights with any value between 0.0 
and 1.0 into account when calculating intermediate metadata 
e.g., textural matrices [6]. In contrast, classic radiomics con-
sider that the weight of a voxel is 1.0 if it is part of the given 
delineation mask, and 0.0 otherwise. Therefore, classic radi-
omics is a special variant of fuzzy radiomics in case the 
mask only has 0.0 and 1.0 values (See Supplemental: Fuzzy 
vs. Classic Radiomics for details). As of this relationship, 
this study only utilized the IBSI-validated fuzzy radiomics 
engine to calculate both binary (Ref-B and Ext-B) and fuzzy 
(Ref-F and Ext-F) radiomic values for further analysis (See 
Supplemental Table S4 for details).

Feature redundancy reduction

Since radiomic features are generally highly-redundant [35, 
36], this study performed redundancy reduction (RR) in each 
of the four radiomic data tables corresponding to the four 
delineation methods of each cohort. The RR was performed 
by correlation matrix analysis with Spearman correlation 
coefficient 0.9 as threshold to identify redundant feature 
clusters [37]. From each redundant cluster, all features 
except the one with the highest variance were deleted per 
delineation type in each cohort.

Harmonized cross‑validation scheme and data 
preprocessing

Hundred fold Monte Carlo (MC) cross validation with 
90–10% train-test ratio was utilized to generate training-test 
subsets per cohort [32]. While the splitting was random, only 
unique folds were allowed to be generated, and no lesions 

from the same patient were allowed to be part of a train-
test split at once, to avoid patient-level data leakage. This 
step was necessary for the prostate cohort, where patients 
had multiple lesions [27]. The fold split configuration was 
harmonized within the given cohort for all four delineation-
specific radiomic datasets to avoid split-specific predictive 
performance variations during the performance evaluation 
step of the study. The 10% test ratio was calculated for the 
minority subgroup of each cohort, followed by selecting 
equal number of test samples according to this ratio in order 
to ensure that each prediction label subgroup had the same 
test subgroup count [32]. This way, each training subset 
remained imbalanced. To handle class imbalance, Synthetic 
Minority Oversampling Technique (SMOTE) was utilized to 
obtain equal numbers of subgroups in each training subset 
[38]. In order to remain in the original IBSI feature space for 
supporting imaging biomarker identification and analysis, 
this study did not employ dimensionality reduction [39], but 
feature selection. Feature selection in the training subset was 
performed by R-squared ranking [32] where the number of 
selected features f was calculated by Eq. 1:

where M represents the number of samples in the major-
ity group within the given dataset. Since each cohort had 
a binary label to predict and the training subset ratio was 
90%, 0.9 * 2 multiplier ensured that the number of features 
selected followed the curse of dimensionality rule [40] 
in relation to the number of samples in the preprocessed, 
SMOTE-extended training subset of each MC fold. See 
Table 1 for details of the collected cohorts in relation to 
sample counts and class imbalance ratios.

Prediction models

To minimize method-specific bias and the effect of bias-
variance trade-off [41], mixed ensemble learning consist-
ing of four different Random Forest (RF) [32, 42] and one 
multi-Gaussian (MG) [26] classifiers was built by analyzing 
each training subset of the given MC fold and for all four 

f =
√

0.9 ∗ 2 ∗ M

Table 1  Imaging modalities, sample counts and clinical endpoints to 
predict in the collected cohorts of this study. For clinical and patient 
characteristics of each cohort, see Supplemental Table S1-S3. Origi-
nal sample counts refer to the number of cases this study incorporated 
to its analysis. Harmonized sample counts refer to the number of sam-

ples that were mutually-present as valid across all four delineation-
specific radiomic databases. Class imbalance ratio refers to the ratio 
of the minority subclass vs. the number of all samples in the harmo-
nized radiomic datasets

Cohort Imaging Sample count 
(original)

Sample count (harmo-
nized)

Class imbalance ratio 
(harmonized)

To predict

Glioma 11C-MET PET 105 84 39% 3-years survival
Lung 18F-FDG PET/CT 543 335 39% 2-years survival
Prostate 68GA-PSMA PET/MRI 121 75 40% Low-vs-high risk
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delineation-specific datasets (see Supplemental: Table S5 for 
parameters of the ML approaches). Each model predicted its 
cohort-specific binary label as of Table 1. The final predic-
tion for a given input sample was provided as the majority 
vote of all RF and MG model instances. The above approach 
also allowed to eliminate the effects of hyperparameter 
variations when comparing the four delineation approaches 
across a harmonized cross-validation scheme, as the five 
model instances operated with a fixed hyperparameter set.

Performance evaluation

The number of true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) cases were calcu-
lated across the test subsets of each ML fold utilizing their 
respective ML models. Confusion matrix analytics includ-
ing sensitivity (SNS), specificity (SPC), positive predictive 
value (PPV), negative predictive value (NPV), accuracy 
(ACC), and area under the receiver operator characteristics 
curve (AUC) were calculated for each of the four delinea-
tion-specific radiomic models in each cohort. The 100-fold 
cross-validation AUC values in-between Ref-B vs. Ref-F, 
Ext-B and Ext-F were correlated by ANOVA analysis where 
p < 0.05 was considered as significance threshold to reject 
the null hypothesis. In addition, cross-validation AUC con-
fidence intervals (CI) with 95% confidence ranges were cal-
culated for each ML prediction model.

Further to the above, aggregate performance increase 
analysis of the four delineation methods across the cohorts 
within a standardized volume range of 938–354987  mm3 
(or approx. 117–4500 voxels per lesion respectively, with 
2.0 mm uniform voxel resolution for IBSI analysis—See 
Supplemental Table S4 for details) was performed. This step 
categorized volumes into 10 percentile clusters and the num-
ber of correct classifications for each delineation-specific 
predictive model were calculated per percentile cluster.

Results

Effect of delineation on feature redundancy

A consistent pattern across the different delineation methods 
(Ref-B, Ref-F, Ext-B and Ext-F) was identified regarding 
their effect on feature redundancy. As such, fuzzy radiom-
ics decreased feature redundancy after performing RR com-
pared to binary radiomics (see Table 2). The highest non-
redundant feature count was identified in the prostate group 
for Ext-F (n = 52) compared to Ref-B (n = 35) delineations. 
For the list of high-ranking features per delineation approach 
in each cohort, see Supplemental: Feature Ranking.

Effect of delineation on feature ranking 
and selection

High-ranking feature distributions accumulated across the 
four delineation types per cohort are shown in Fig. 4. In all 
cohorts, the highest-ranking aggregate features were also 
selected as high-ranking across all four delineation types 
in all cohorts (Fig. 4). Across all cohorts, two features were 
selected as high-ranking across all four delineations. Three, 
seven and three additional features were present in three 
delineation types as high-ranking in glioma, lung and pros-
tate cohorts, respectively.

The per-delineation feature rankings (Supplemental: Fea-
ture Ranking), demonstrated a diverse distribution of feature 
importance across cohorts. Nevertheless, delineations that 
resulted in high predictive performance also tended to have 
a more-balanced feature rank distribution compared to those 
that had a skewed feature ranking distribution (Table 3).

Performance evaluation

Predicting 3-year survival in the glioma cohort was high-
est with the Ref-F delineation (AUC: 0.74, ACC: 0.71) vs. 
all other approaches (AUC: 0.70–0.74, ACC: 0–66-0.70). 
Similarly, predicting 2-year survival in the lung cohort dem-
onstrated the highest performance with the Ref-F delineation 

Table 2  Number of IBSI radiomic features per cohort and per deline-
ation method across feature extraction and data preprocessing steps 
including redundancy reduction and feature selection. Note that the 
number of IBSI features per-image extracted was 153 (See Supple-
mental Table  S4); however, features having no variation or hav-
ing invalid values (e.g., due to low uptake in the given lesion) were 
removed from the original IBSI features across all four delineation-
specific datasets to ensure a unified comparison. IBSI imaging bio-
marker standardization initiative; Ref-B reference binary; Ref-F refer-
ence fuzzy; Ext-B extended binary; Ext-F extended fuzzy delineation

Cohort Delineation 
method

#Features
(original)

#Features
(Redundancy 
reduced)

#Features
(Ranked 
and 
selected)

Glioma Ref-B 153 31 10
Ref-F 39 10
Ext-B 35 10
Ext-F 41 10

Lung Ref-B 153 24 20
Ref-F 36 20
Ext-B 23 20
Ext-F 34 20

Prostate Ref-B 153 35 9
Ref-F 42 9
Ext-B 35 9
Ext-F 52 9
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Fig. 4  Aggregated high-ranking features in glioma (A), lung (B), 
and prostate (C) cohorts across radiomics features extracted by four 
delineation approaches utilized. Feature names are composed of 
the modality (PET, CT) type, followed by the IBSI-standard feature 

identified [9]. Feature occurrences (y-axis) are in the range of 0–100 
with units of %. Ext-B—extended binary; Ref-B—reference binary; 
Ext-F—extended fuzzy; Ref-F—reference fuzzy delineation

Table 3  Performance values for glioma, lung and prostate cohorts 
relying on four delineation approaches to evaluate test cases within 
the harmonized 100-fold Monte Carlo cross-validation scheme. 
P-values represent the ANOVA analysis results in-between the ref-
erence binary delineation (Ref-B) and the other three delineation 
methods across the cross-validation area under the receiver opera-
tor characteristics curves (AUC). SNS Sensitivity; SPC specificity; 
PPV positive predictive value; NPV negative predictive value; ACC  
accuracy; CI confidence interval; Ext-B extended binary; Ref-B refer-

ence binary; Ext-F extended fuzzy; Ref-F reference fuzzy delineation. 
Color scale is normalized between the lowest (white) and the high-
est (blue) values in each category, where SNS – AUC, AUC CI (±%) 
and p-value form their own categories. Note that since the test subsets 
in the cross-validation scheme were balanced and the training subsets 
underwent class imbalance correction, ACC values reflect on a bal-
anced classifier and they are in line with balanced accuracy (a.k.a. the 
average SNS and SPC)

Cohort Delineation 
method SNS SPC PPV NPV ACC AUC AUC CI 

(±%) p-value 

Glioma 

Ref-B 0.76 0.63 0.67 0.72 0.70 0.70 5.3 - 

Ref-F 0.76 0.65 0.68 0.73 0.71 0.74 5.0 0.201 

Ext-B 0.76 0.64 0.68 0.73 0.70 0.74 4.5 0.103 

Ext-F 0.69 0.63 0.65 0.67 0.66 0.73 5.1 0.377 

Lung 

Ref-B 0.72 0.67 0.69 0.71 0.70 0.73 2.3 - 

Ref-F 0.74 0.72 0.72 0.73 0.73 0.76 2.3 0.076 

Ext-B 0.75 0.68 0.70 0.73 0.71 0.74 2.2 0.474 

Ext-F 0.75 0.66 0.69 0.72 0.71 0.74 2.4 0.809 

Prostate 

Ref-B 0.77 0.78 0.78 0.77 0.78 0.80 4.2 - 

Ref-F 0.83 0.80 0.81 0.83 0.82 0.84 3.7 0.051 

Ext-B 0.78 0.74 0.75 0.77 0.76 0.79 4.5 0.755 

Ext-F 0.87 0.83 0.83 0.86 0.85 0.86 3.6 0.057 
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(AUC: 0.76, ACC: 0.73) compared to other approaches 
(AUC: 0.73–0.74, ACC: 0–70-0.71). Predicting low-vs-high 
risk in the prostate cohort yielded the highest performance 
by utilizing Ext-F (AUC: 0.86, ACC: 0.85) and Ref-F (AUC: 
0.84, ACC: 0.82) compared to the other approaches (AUC: 
0.79–0.80, ACC: 0.78–0.76). See Fig. 5 for the receiver 
operator characteristics (ROC) curve comparisons of each of 
the four delineation approaches in the cohorts. See Table 3 
for the detailed test confusion matrix results of the four 
delineation methods in each cohort. ANOVA p-value analy-
ses revealed that the null hypothesis of performance values 
having no differences cannot be rejected (p-value ranges 
0.051–0.809). Nevertheless, in case of prostate, p = 0.051 
between Ref-B vs. Ref-F and p = 0.057 between Ref-B vs. 
Ext-F were near the significance level. In these cases, the 
performance values were demonstrating the highest differ-
ences as well (see Table 3). A similar pattern was visible in 
case of lung with p = 0.076 between Ref-B vs. Ref-F.

Aggregated performance increase across volume per-
centiles revealed that reference fuzzy (Ref-F) delineations 
outperformed reference binary (Ref-B) delineations within 
a common volume range across glioma, lung and prostate 
cohorts with an aggregate AUC of  +4.7–10.4. (see Fig. 6). 
Nevertheless, the least significant differences among the 
four delineation approaches were present in the lung cohort, 
which was in line with the overall performance variations in 
this cohort when considering all its volume ranges (Table 3). 
The glioma cohort demonstrated that the advantage of fuzzy 
(Ref-F, Ext-F) delineations over binary ones (Ref-B, Ext-
B) was already present in small lesions (~5000  mm3,  ~625 
voxel count) and further increased afterwards. The prostate 
cohort revealed that the advantage of fuzzy delineations 

Fig. 5  Receiver operator characteristics (ROC) curves of cohort-spe-
cific prediction models as of their respective delineation methods. A 
Glioma cohort. B Lung cohort. C Prostate cohort. Ext-B—extended 

binary; Ref-B—reference binary; Ext-F—extended fuzzy; Ref-F—
reference fuzzy delineation; AUC—area under the ROC curve

Fig. 6  Aggregate performance increase of the four delineation 
types (Ref-B, Ref-F, Ext-B, Ext-F) across glioma, lung and prostate 
cohorts categorized to 10 percentile volume clusters within the com-
mon volume range of 938–354,987  mm3 or approx. 117–4500 voxels 
per lesion respectively. Ext-B—extended binary; Ref-B—reference 
binary; Ext-F—extended fuzzy; Ref-F—reference fuzzy delineation
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– Ext-F in particular – became prominent at approx. 8000 
 mm3 or  ~1000 voxel counts within lesions.

Discussion

The effect of delineation on radiomic analyses in PET has 
been extensively investigated. To date, reports regarding 
reproducibility of predictive performance across various 
delineation approaches have been inconclusive and often 
cohort-specific [10, 43]. This study investigated the effect 
of conventional binary as well as fuzzy radiomics in both 
lesions and their surroundings by predicting clinically rel-
evant endpoints in PET and hybrid imaging cancer cohorts. 
Across all cohorts, reference fuzzy (Ref-F) delineations out-
performed reference binary (Ref-B) delineations with 3–4% 
AUC. We consider that this phenomenon is due to the fact 
that our fuzzy masks were specific to the given PET imaging 
system's physical resolutions, which allowed the modeling 
of partial volume effects (PVE) directly in the radiomics 
calculations. While the ANOVA p-value analysis could not 
reject the null hypothesis (a.k.a. performance values have no 
differences), cohort-specific predictive performance varia-
tions demonstrated a diverse pattern.

Specifically, the glioma MET-PET cohort had the high-
est AUC (0.74) and ACC (0.71) with the reference fuzzy 
(Ref-F) radiomics to predict 3-year survival. The second 
highest AUC (0.74) and ACC (0.70) was achieved by the and 
extended binary (Ext-B) delineation. We hypothesize that 
the relevance of Ext-B in this cohort is due to the infiltrating 
behavior of glioma [29, 44], which can be better character-
ized by employing extended binary radiomics.

In the lung 18F-FDG PET/CT cohort, Ext-B and fuzzy 
(Ext-F) delineations slightly increased predictive perfor-
mance of 2-year survival, however, the highest performance 
increase was identifiable with the Ref-F delineation (Ref-F 
AUC: 0.76 vs. Ref-B AUC: 0.73). Since the PET acquisi-
tions utilized no motion compensation, acts [45–48]. There-
fore, we argue that the reference delineations were already 
subjects to overestimation of the true metabolic tumor 
volumes in this cohort. Consistently, further extending the 
reference could not significantly increase predictive perfor-
mance (p = 0.474–0.809). This implies that fuzzy radiomics 
may not be able to counter-balance motion artefact-related 
smoothing effects, which is logical, as motion may signifi-
cantly alter the heterogeneity pattern within tumors, not only 
at the tumor boundaries [48].

Contrary to the above, the 68GA PSMA-11 PET/MRI 
study yielded the highest AUC of 0.86 with Ext-F, followed 
by the AUC of 0.84 with Ref-F delineation against binary 
delineations (Ext-B AUC: 0.79, Ref-B AUC: 0.80). While 
the generic superiority of reference fuzzy delineations was 

consistently demonstrated in this study, the highest per-
formance of Ext-F delineation is considered to be due to 
the lowest feature redundancy achieved with this deline-
ation. Specifically, the Ref-B delineation resulted in 35 
non-redundant features before feature ranking and selec-
tion. In contrast, Ref-F and Ext-F resulted in 42 and 52 
non-redundant features, respectively. Having a higher 
number of non-redundant features supports the identifica-
tion of more high-ranking features, thus, may potentially 
yield high-performing models. Overall, the highest predic-
tive performance was achieved in the prostate cohort. We 
consider the following reasons for this phenomenon: First, 
this cohort utilized a relatively new hybrid camera system 
and a high PET target resolution (2.08 × 2.08 × 2.03 mm) 
and here, reference binary delineations relied on full-mount 
histopathology slices [30, 49]. However, delineation was 
still performed on the PET images. This means, that in this 
cohort, the partial volume effect had the most-significant 
contribution to the delineation of prostate lesions [50]. 
Cohorts operating with relatively small lesions are more 
prone to delineation effects than, for example, binning [51]. 
This is logical, given, that small lesions are also more prone 
to the PVE [50, 52] or more sensitive to the absence of 
point-spread function (PSF) modelling [53]. The PVE was 
most prominent in our prostate cohort as it had the small-
est lesions as well (average lesion volume in prostate: 10.9 
 cm3 vs. 113  cm3 in lung and 93  cm3 in glioma respectively), 
where a Ref-F delineation resulted in  +4% cross-validation 
AUC. This finding was in line with those from Cysouw et al. 
[53] who investigated the predictive performance of vari-
ous delineations in [18F]DCFPyL PET-CT prostate patients 
in combination with analyzing the effect of partial volume 
correction. The above findings imply that fuzzy radiomics 
can be ideal to not only handle delineation uncertainties 
at lesion edges, but to also model partial volume effects 
directly in the radiomic calculations themselves. Regardless 
of lesion size, following EARL guidelines and relying on 
imaging systems operating with FPS modelling has been 
proven to generally increase radiomic predictive perfor-
mance in the context of delineation variations [13, 54, 55].

The aggregate performance analysis across the four 
delineation methods and cohorts within a common lesion 
volume range revealed that reference fuzzy (Ref-F) deline-
ations in  <35,000  mm3 lesions systematically outperformed 
the reference binary (Ref-B) delineations in all cohorts. 
While disease-specific imaging characteristics (e.g., infil-
trating behavior) may influence these results, it is important 
to emphasize that all three cohorts were delineated by dif-
ferent clinicians, thus, our findings may also be subjects to 
interobserver variability bias. This implies that while fuzzy 
radiomics on its own has added value compared to conven-
tional binary radiomics—especially in small lesions—future 
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studies shall not exclude the analysis of extended fuzzy or 
binary regions around lesions within their investigations.

While fuzzy radiomics could naturally model a weighted 
average of multiple clinician-defined delineations, auto-
mated approaches have been repeatedly presented as more 
robust compared to manually-defined delineations that are 
prone to multi-observer variabilities [13, 14, 43, 56, 57]. In 
this regard, the study of Hatt et al. [10] investigated a wide-
range of automated PET delineation approaches and con-
cluded that while automated approaches have more accurate 
delineation's compared to simpler manual or semi-automated 
ones, the potential magnitude of advantage is mainly spe-
cific to the given cohort, the scanner and the imaging pro-
tocol. Recently, novel deep learning approaches have been 
reported to provide highly accurate and automated deline-
ation in a wide range of lesion types [13, 58–62]. In the 
context of automated, especially DL approaches, we wish 
to emphasize that this study does not promote a particular 
fuzzy delineation approach, only the concept of incorporat-
ing probability weights into standard radiomics calculations. 
Deep learning is a naturally probabilistic approach; how-
ever, its output delineation is routinely post-processed and 
further dichotomized by a threshold to analyze the lesions 
by conventional radiomics afterwards [19, 20, 25, 61]. This 
step introduces an uncertainty into the dichotomized deline-
ation mask [63–65], and overall, results in information loss. 
Dichotomization does not only influence analyzed lesion 
boundaries, but may also excludes lesions with relatively 
lower DL probabilities, that may otherwise be important for 
predicting the given clinical endpoint. Fuzzy radiomics on 
the other hand can organically fit the naturally probabilistic 
output of DL delineation approaches and can minimize the 
above uncertainties originated by utilizing thresholds.

Further to the above, fuzzy radiomics systematically 
decreased redundancy across radiomics features in all three 
involved cohorts by approximately 20%. Due to the natu-
rally high redundancy of various radiomics features [66, 
67], they need to undergo redundancy reduction prior to 
building machine learning models. Redundancy reduction 
approaches routinely select one from redundant clusters of 
features having the highest variance [2]. This, however, does 
not guarantee that the selected feature is the most predictive. 
Since fuzzy radiomics decreases redundancy, it may sup-
port the identification of precise imaging biomarkers in the 
future by better discriminating features that are otherwise 
prone to be redundant. Nevertheless, feature redundancy is a 
phenomenon which is not only affected by inherently similar 
radiomic calculations, but also by the volume effect [63, 
68] which is feature-specific [17, 33]. In this regard, future 
studies shall investigate how fuzzy radiomics contributes 
to volume effects, given, that its contribution to decrease 
feature redundancy is significant.

When looking at the per-delineation feature ranking, a 
balanced feature rank distribution of high-ranking features 
was associated to a higher performance which is in line with 
prior reports [26, 69, 70]. Nevertheless, our aggregated fea-
ture ranking analysis suggests that features being high-rank-
ing across multiple delineation types are able to characterize 
cohort-specific clinical endpoints, regardless of the chosen 
delineation type. Therefore, we consider such high-ranking 
features as robust properties of the given cohort to character-
ize the given clinical endpoint.

According to our findings, we consider that the advan-
tages of fuzzy radiomics are the results of two phenomena: 
on the one hand, the ability to model imaging system-spe-
cific PVE in the radiomic models allows to handle delinea-
tion uncertainties, especially in small lesions. On the other 
hand, the higher number of non-redundant features increases 
the likelihood of identifying more high-ranking features for 
building prediction models when relying on fuzzy radiomics.

This study had limitations, namely, that it only utilized 
single-center cohorts. Nevertheless, the collected cohorts 
were from different camera systems and relied on various 
tracers. In addition, this study relied on a high, 100-fold 
Monte Carlo (MC) cross-validation scheme to estimate the 
predictive performance of its models built on its delineations 
and radiomics evaluations in order to minimize the chances 
of false discoveries. While we employed train-test splits 
across our MC folds, we relied on mixed ensemble learning 
to minimize the effects of bias-variance trade-off and we 
also avoided variations of hyperparameters that could have 
skewed differences among the four delineation variations.

Conclusions

Fuzzy radiomics can result in prediction models that out-
perform conventional binary radiomics-based models, espe-
cially in imaging cohorts operating with small lesion sizes. 
Nevertheless, cohort-specific investigations shall continue to 
investigate the impact of both fuzzy-vs-binary and lesion-vs-
extended lesion volumes in future studies.
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