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Abstract
Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B 
genes that usually appears during adolescence. The Epm2a−/− and Epm2b−/− knock-out mouse models of the disease develop 
behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether 
early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the 
behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated 
the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administra-
tion in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and 
activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we 
conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. 
Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving 
neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegenera-
tion, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower 
progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two 
knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with 
slower deterioration of their daily living activities.

Keywords  Lafora disease · Epilepsy · Mouse models · Metformin · Drug repurposing · Early treatment

Introduction

Lafora disease (OMIM 254780; ORPHA501) is a rare form 
of progressive myoclonic epilepsy that generally appears 
early in adolescence. The main symptoms are seizures, and 
a general neurological deterioration with dementia that leads 

to death, usually 5 to 15 years after the onset of the disease 
(median of 11 years) [1]. There is no specific therapy, and 
patients can only be treated with antiseizure medications to 
temporarily control epileptic seizures [2–4].

The main histopathologic hallmark of Lafora disease 
is the presence of Lafora bodies (LBs), aberrant glycogen 
inclusions positive to periodic acid-Schiff (PAS) staining, 
which accumulate in the brain, heart, liver, and other tis-
sues [3]. Lafora disease is caused by mutations in EPM2A 
(OMIM 607566) [5, 6], which encodes laforin, a glucan 
phosphatase [7], or NHLRC1/EPM2B (OMIM 608072) 
[8] that encodes malin, an E3 ubiquitin ligase [9]. The 
Epm2a−/− and Epm2b−/− mouse models present most of the 
neurological alterations observed in patients, such as mem-
ory deterioration, alterations of spontaneous activity and 
motor coordination, abnormal postures, loss of neurons, and 
the presence of LBs in brain and other tissues [10–12]. They 
also exhibit increased sensitivity to the epileptogenic agent 
pentylenetetrazol (PTZ), a GABAA receptor antagonist [13], 
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which has been widely used to measure the epileptic activ-
ity of mouse models and the efficacy of antiseizure drugs 
[14–16]. This reflects the existence of neuronal hyperexcit-
ability in the two mouse models of Lafora disease.

Metformin is an AMPK activator [17] widely used as an 
anti-diabetic drug. Metformin can act as a neuroprotective 
agent [18] reducing oxidative stress, neuroinflammation, and 
mitochondrial dysfunction [19–22]. We and others have pre-
viously shown that treatment with metformin improves the 
histological picture and the neurological symptoms [23] and 
decreases susceptibility to PTZ in adult Epm2b−/− mice [24]. 
Subsequently, metformin obtained orphan drug designation 
for the treatment of Lafora disease from the FDA and the 
EMA. Furthermore, some positive results have been recently 
reported in the first retrospective study in patients [25].

To assess whether early treatment with metformin 
(E-MET) from conception to adulthood prevents or delays 
the formation of LBs and exceeds the improvements 
observed with late metformin treatment (L-MET), we 
administered metformin from conception to adulthood in 
the two mouse models of Lafora disease and analyzed the 
effect of metformin in a cohort of patients with Lafora dis-
ease, comparing metformin treated and untreated patients.

Methods

Experimental Animals

The Epm2a−/− and Epm2b−/− mouse models of Lafora dis-
ease were generated as previously described [10, 11], and 
age-matched wild-type animals (C57BL6) were used as 
controls. Mice colonies were bred in the Animal Facility 
Service of the Instituto de Investigación Sanitaria (IIS)-
Fundación Jiménez Díaz, housed in isolated cages with a 
12:12 light/dark cycle under constant temperature (23 °C), 
with free access to food and water. All experiments were car-
ried out using and sacrificing the minimum number of ani-
mals and minimizing their suffering. The experiments were 
conducted in accordance with the “Principles of laboratory 
animal care” (NIH publication No. 86–23, revised 1985), as 
well as with the European Communities Council Directive 
(2010/63/EU) and the Ethical Review Board of the Instituto 
de Investigación Sanitaria-Fundación Jiménez Díaz.

Metformin Treatment

Metformin treatment (12 mM) (Sigma Chemicals, St Louis, 
MI, USA) was administered in drinking water as previously 
described [23, 24]. Considering that the C57BL/6 strain 
generally drinks around 6 ml per day and weighs approxi-
mately 25 g, the estimated dose of metformin provided was 
372 mg/kg/day [26]. E-MET was supplied in drinking water 

to breeding pairs of WT, Epm2a−/−, and Epm2b−/− mice, 
since metformin crosses the placental barrier [27]. Since 
metformin is not present in human milk, breast-fed pups 
were daily treated with the same dose of metformin through 
one subcutaneous injection [28, 29]. Finally, metformin was 
supplied to the mice after weaning in drinking water ad libi-
tum until the completion of the study. L-MET was dispensed 
to 10-month-old mice, diluted in drinking water at the same 
dose (12 mM) for 2 months.

Sensitivity to PTZ

PTZ (Merck, Darmstadt, Germany) was used to analyze 
neuronal hyperexcitability in mice. PTZ was administered 
intraperitoneally in a single injection. Two different doses 
were used: 30 mg/kg (subconvulsive dose—hardly produces 
GTC seizures in WT animals) and 50 mg/kg (convulsive 
dose) [30]. The subconvulsive dose was used to assess the 
percentage of mice that had myoclonic jerks. The convulsive 
dose, which has been described to induce GTC seizures in 
50% of WT animals [30], was administered to evaluate the 
percentage of animals with GTC seizures, their length, and 
the latency to the first myoclonic or GTC seizure (from here 
referred as latency time). No animal presented more than a 
single GTC seizure after each injection. The lethality due to 
the administration of this dose was also calculated. Each ani-
mal was examined for 45 min by two different researchers.

Tail Suspension Test (TST)

This test evaluates the presence of abnormal posturing and 
dyskinesia by measuring the presence of abnormal hind limb 
clasping in response to vertical suspension of mice from 
their tails. Each animal was suspended vertically for 30 s and 
scored using a scale system. When both hind limbs were fully 
extended (normal posture), the score was “0.” When one or 
both hind limbs were discontinuously or persistently bent 
towards the body, the scale was scored “1” (abnormal posture).

Motor Coordination

The rotarod test (Harvard Apparatus, Holliston, MA, USA) 
was used to measure motor coordination and balance. Mice 
were trained for 2 consecutive days. On day 1, mice were 
placed on the rotarod for 60 s at a constant speed (4 rpm). On 
day 2, they were placed on the rotarod at 4 rpm and trained 
to stay at the cylinder at increasing speed (from 4 to 8 rpm). 
On the next 2 days, to minimize differences due to learning 
difficulties, only mice that were able to stay on the rod for 
60 s were analyzed in the test sessions. The latency time to 
fall down from the cylinder at an increasing speed from 4 to 
40 rpm was recorded in two sessions per day, for a maximum 
period of 5 min.
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Object Recognition Task (ORT)

This test was applied to study episodic memory retention. 
Mice were individually habituated to a dark open field box 
for 10 min. After 2 h, two identical objects (A and B) were 
placed in the center of the box. Each isolated mouse freely 
explored both A and B objects, and time examining both 
objects (tA and tB) was measured. The test was performed 
2 h later. A new object C was placed in the box instead of 
object B, and the exploration time of each object (tA and 
tC) was recorded. Exploration times were measured using 
several virtual timers generated by the XNote Stopwatch 
software and activated, while mice were inspecting the 
object from 2 cm or less. A discrimination index (D.I.) was 
calculated following this equation: D.I. = (tC-tA) / (tC + tA).

Spontaneous Locomotor Activity

The accumulated spontaneous movements were monitored 
with a computerized actimeter (Harvard Apparatus, Hollis-
ton, MA, USA). The device registers the number of times 
each mouse crosses the open field by measuring the number 
of infrared light beam breaks, and the SEDACOM 1.4 soft-
ware (Harvard Apparatus, Holliston, MA, USA) analyzed 
the spontaneous, rearing, and stereotyped movements after 
5, 10, 15, 30, 45, and 60 min.

Immunohistochemistry Assays and PAS Staining

Mice were anesthetized and transcardially perfused with 
4% phosphate-buffered paraformaldehyde. Brains were 
removed, dehydrated, and embedded in paraffin. The blocks 
were sectioned into consecutive 5-μm-thick sections. For 
PAS-diastase (PAS-D) staining, the sections were rehy-
drated in decreasing graded alcohols, processed using 
porcine pancreas α-amylase (5 mg/ml in dH2O) (Merck, 
Darmstadt, Germany) and the PAS Kit (Merck, Darmstadt, 
Germany), and counterstained with Gill No. 3 hematoxylin 
(Merck, Darmstadt, Germany). For immunohistochemistry, 
rehydrated sections were incubated in boiling 0.1 M sodium 
citrate buffer, pH 6.0, for antigen retrieval. Samples were 
incubated with a blocking buffer (1% bovine serum albumin, 
5% fetal bovine serum, 2% Triton X-100, diluted in PBS) 
and with primary antibodies diluted in blocking buffer. The 
primary antibodies used were the neuronal nuclei (NeuN) 
antibody (Cat. # MAB377) (1:100 dilution) (Millipore, 
Temecula, CA, USA) and the glial fibrillary acidic protein 
(GFAP) antibody (Cat. # MAB360) (1:1000 dilution) (Milli-
pore, Temecula, CA, USA). Subsequently, the sections were 
stained with the Vectastain ABC kit (Vector Laboratories, 
Burlingame, CA, USA). Immunoreactivity was developed 
using diaminobenzidine (Dako Cytomation, CA, USA) 
and H2O2. The sections were counterstained with Carazzi 

hematoxylin (Panreac Quimica, Barcelona, Spain). For all 
histological assays, samples from 4 mice per experimental 
group were used.

Two consecutive sections were stained and analyzed per 
animal in order to assure reproducibility. Images from the 
same area of the CA1 region of each hippocampus were 
acquired with a Leica DMLB 2 (Leica, Wetzlar, Germany), 
connected to a Leica DFC320 FireWire Digital Micro-
scope Camera (Leica, Wetzlar, Germany). Finally, LBs and 
NeuN- or GFAP-positive cells were quantified by two differ-
ent researchers using the ImageJ software (NIH, Bethesda, 
MD, USA). Each value represented is the mean of those 
quantifications.

Evolution of Patients With and Without Metformin

We studied the benefits of metformin by comparing the evo-
lution of treated and untreated patients. Clinical data were 
obtained at baseline, 6, 12, 18, and 24 months of follow-up 
from the LD-Registry (http://​www.​lafora.​es/). LD-Registry 
is a dynamic prospective world-wide registry maintained 
at our center. This registry aims to recruit all patients with 
Lafora disease who are eligible and willing to partici-
pate with the goal of enrolling all the affected population. 
There are no restrictions of gender, age, ethnicity, or race. 
Informed consent from the participant or legal representative 
is a pre-requisite for participation in the registry. We include 
symptomatic patients with a clinical diagnosis of Lafora 
disease and biallelic mutations in the EPM2A or EPM2B 
genes. If one or both mutations are previously undescribed, 
we require a positive biopsy with LBs. We also include pre-
symptomatic individuals if they are siblings of patients with 
a diagnosis of Lafora disease and have biallelic mutations 
in the EPM2A or EPM2B genes. These individuals were 
tested in preparation for a near future clinical trial. A scien-
tific board formed by José M. Serratosa (MD, PhD), María 
Machío-Castello (MD), Beatriz G. Giráldez (MD), and 
Juan González-Fernández (PhD) provide clinical expertise 
and supervision. Patients are recruited in centers that treat 
patients affected by Lafora disease. The principal investiga-
tor at each site identifies potentially eligible participants and 
inquires them about their willingness to participate. Informa-
tion about the LD-Registry is also disseminated through a 
website, support groups, and advocacy newsletters. Partici-
pants are free to withdraw from the study at any time. The 
registry includes 30-min follow-up visits every 6 months. 
Information is completed during in-person or teleconfer-
ence interviews. In the follow-up visits, functional and 
clinical situation, seizure types and their frequency during 
the last 6 months, and treatment and diagnostic procedures 
performed since last visit are recorded. The data obtained 
are entered electronically in an electronic case report form 
(eCRF) via secure internet-based technology. All accounts 

http://www.lafora.es/


233Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease﻿	

1 3

Ta
bl

e 
1  

C
lin

ic
al

 in
fo

rm
at

io
n 

of
 p

ar
tic

ip
an

ts
 in

 o
ur

 st
ud

y.
 W

e 
an

al
yz

ed
 th

e 
pr

og
re

ss
io

n 
of

 L
af

or
a 

di
se

as
e 

in
 p

at
ie

nt
s t

re
at

ed
 w

ith
 m

et
fo

rm
in

 (a
) a

nd
 w

ith
ou

t m
et

fo
rm

in
 (b

)

a Pa
tie

nt
G

en
e

D
N

A
 m

ut
at

io
n

Pr
ot

ei
n 

m
ut

at
io

n
A

ge
 o

f 
on

se
t 

(y
ea

rs
)

D
ur

at
io

n 
of

 
ev

ol
ut

io
n 

(y
ea

rs
)

C
om

or
bi

di
ty

A
dd

iti
on

al
 

tr
ea

tm
en

ts
N

eu
ro

im
ag

in
g

D
at

a 
pu

bl
ish

ed
M

et
fo

rm
in

 d
os

e
Si

de
 e

ffe
ct

s

P1
EP

M
2A

c.
87

7C
 >

 T
 

H
om

oz
yg

ou
s 

(e
xo

n 
4)

G
ln

29
3T

er
10

9
-

V
PA

, C
ZP

, 
PE

R
N

or
m

al
-

85
0 

m
g/

12
 h

-

P2
EP

M
2B

c.
20

3G
 >

 A
 

H
om

oz
yg

ou
s

C
ys

68
Ty

r
14

6
-

LE
V,

 C
ZP

, 
V

PA
Ve

no
us

 a
ng

io
m

a 
(n

o 
re

la
te

d 
w

ith
 

La
fo

ra
 d

is
ea

se
)

-
85

0 
m

g/
12

 h
-

P3
EP

M
2B

c.
20

3G
 >

 A
 

H
om

oz
yg

ou
s

C
ys

68
Ty

r
13

3
-

LE
V

 (i
ni

ci
o 

M
12

)
N

or
m

al
-

85
0 

m
g/

12
 h

—
>

 85
0 

m
g/

d
D

ia
rr

he
a

P4
EP

M
2B

c.
34

8C
 >

 A
, 

H
om

oz
yg

ou
s

C
ys

11
6T

er
13

5
-

V
PA

, L
EV

, 
C

ZP
, Z

N
S

N
or

m
al

-
10

00
 m

g/
12

 h
-

P5
EP

M
2B

c.
46

8_
46

9d
el

/
c.

20
3G

 >
 T

p.
G

15
8R

fs
*1

7/
p.

C
68

F
10

5
-

B
RV

 (s
ta

rte
d 

at
 M

12
)

N
on

ex
ist

en
t

-
85

0 
m

g/
d

D
ia

rr
he

a

P6
EP

M
2A

no
n-

se
ns

 c
.7

21
 

C
 >

 T
 (e

xo
n4

), 
de

l e
xo

n 
2

p.
A

rg
24

1*
/E

x2
de

l
15

9
-

C
B

D
, Z

N
S,

 
C

LN
, P

ER
N

or
m

al
-

50
0 

m
g/

8 
h

-

P7
EP

M
2A

no
n-

se
ns

 c
.7

21
 

C
 >

 T
 (e

xo
n4

), 
de

l e
xo

n 
2

p.
A

rg
24

1*
/E

x2
de

l
13

5
-

V
PA

, P
ER

, 
TP

M
, C

B
D

N
or

m
al

-
50

0 
m

g/
8 

h
-

P8
EP

M
2A

c.
51

2G
 >

 A
A

rg
17

1H
is

14
4

-
LZ

P,
 B

RV
, 

PE
R

, Z
N

S,
 

C
B

D

N
or

m
al

-
50

0 
m

g/
d—

>
 50

0 
m

g/
8 

h 
si

nc
e 

M
6

-

b Pa
tie

nt
G

en
e

D
N

A
 m

ut
at

io
n

Pr
ot

ei
n 

m
ut

at
io

n
A

ge
 o

f o
ns

et
 

(y
ea

rs
)

D
ur

at
io

n 
of

 
ev

ol
ut

io
n 

(y
ea

rs
)

C
om

or
bi

di
ty

A
dd

iti
on

al
 

tr
ea

tm
en

ts
N

eu
ro

im
ag

in
g

D
at

a 
pu

bl
ish

ed
M

et
fo

rm
in

 d
os

e
Si

de
 e

ffe
ct

s

P9
EP

M
2A

c.
50

8C
 >

 T
p 

H
om

oz
yg

ou
s

Pr
o1

70
Se

r
9

11
PE

R
, B

RV
, C

LB
N

on
ex

ist
en

t
O

n 
m

et
fo

rm
in

 fo
r 

3 
w

ee
ks

 a
nd

 
sto

pp
ed

 th
e 

tre
at

m
en

t
P1

0
? 

(p
en

di
ng

, 
po

si
tiv

e 
bi

op
si

a)
?

?
13

6
PH

T,
 C

ZP
, L

TG
N

or
m

al

P1
1

EP
M
2A

c.
32

2 
C

 >
 T

 
H

om
oz

yg
ou

s
A

rg
10

8C
ys

13
4

PE
R

, P
B

, V
PA

, 
ZN

S,
 p

ira
ce

ta
m

Te
m

po
ra

l 
ar

ac
hn

oi
d 

cy
sts

 
(n

ot
 re

la
te

d 
w

ith
 

La
fo

ra
 d

is
ea

se
, 

as
ym

pt
om

at
ic

)



234	 D. F. Burgos et al.

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

b Pa
tie

nt
G

en
e

D
N

A
 m

ut
at

io
n

Pr
ot

ei
n 

m
ut

at
io

n
A

ge
 o

f o
ns

et
 

(y
ea

rs
)

D
ur

at
io

n 
of

 
ev

ol
ut

io
n 

(y
ea

rs
)

C
om

or
bi

di
ty

A
dd

iti
on

al
 

tr
ea

tm
en

ts
N

eu
ro

im
ag

in
g

D
at

a 
pu

bl
ish

ed
M

et
fo

rm
in

 d
os

e
Si

de
 e

ffe
ct

s

P1
2

EP
M
2B

c.
65

6 
G

 >
 A

 / 
c.

45
1 

G
 >

 T
Tr

p2
19

Te
r /

 
Va

l1
51

Ph
e

10
10

Fe
br

ile
 se

iz
ur

e 
at

 
12

 m
on

th
s

LE
V,

 C
LB

, Z
N

S,
 

V
PA

, C
ZP

, P
ER

, 
ris

pe
rid

on
e

M
ild

 b
ra

in
 a

tro
ph

y

P1
3

EP
M
2A

c.
98

_1
21

de
l 

H
om

oz
yg

ou
s

G
lu

33
_

A
rg

41
de

lin
sG

ly
16

4
C

ZP
, B

RV
, 

ci
ta

lo
pr

am
N

on
ex

ist
en

t

P1
4

EP
M
2A

c.
29

0 
T 

>
 G

 
H

om
oz

yg
ou

s
Le

u9
7A

rg
14

14
LE

V,
 B

RV
, 

C
LB

, V
PA

, 
sti

rip
en

to
l, 

C
ZP

, 
ar

ip
ip

ra
zo

le

N
or

m
al

ht
tp

s:
//​d

oi
.​o

rg
/​1

0.
​

11
86

/​s
42

46
6-

​
01

9-
​00

40
-2

O
n 

m
et

fo
rm

in
 fo

r 
3–

4 
m

on
th

s

P1
5

EP
M
2A

c.
72

1 
C

 >
 T

 / 
c.

48
7 

A
 >

 G
R

24
1X

 / 
N

16
3D

14
10

no
C

LB
, V

PA
, Z

N
S,

 
LE

V,
 P

ER
N

or
m

al

P1
6

EP
M
2A

c.
70

 G
 >

 C
 

H
om

oz
yg

ou
s

G
ly

24
A

rg
10

10
Fe

br
ile

 se
iz

ur
e 

at
 

12
 m

on
th

s
LE

V
N

or
m

al

P1
7

EP
M
2A

c.
16

3 
C

 >
 T

 
H

om
oz

yg
ou

s
p.

G
ln

55
Te

r
10

3
no

V
PA

N
on

ex
ist

en
t

P1
8

EP
M
2A

c.
72

1 
C

 >
 T

 
H

om
oz

yg
ou

s
R

24
1X

12
5

no
PE

R
, B

RV
, V

PA
, 

C
LB

, C
LN

N
or

m
al

BR
V 

br
iv

ar
ac

et
am

, C
BD

 c
an

na
bi

di
ol

, C
LB

 c
lo

ba
za

m
, C

ZP
 c

lo
za

pi
ne

, L
EV

 le
ve

tir
ac

et
am

, L
TG

 la
m

ot
rig

in
e,

 L
ZP

 lo
ra

ze
pa

m
, P

ER
 p

er
am

pa
ne

l, 
PH

T 
ph

en
yt

oi
n,

 T
PM

 to
pi

ra
m

at
e,

 V
PA

 v
al

pr
oi

c 
ac

id
, Z

N
S 

zo
ni

sa
m

id
e

https://doi.org/10.1186/s42466-019-0040-2
https://doi.org/10.1186/s42466-019-0040-2
https://doi.org/10.1186/s42466-019-0040-2


235Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease﻿	

1 3

are password protected. Permissions are carefully main-
tained to allow only the required level of access to registry 
data, and access to the eCRF is protected by password and 
can only be granted by the study administrator after authori-
zation of the committee.

To grade the progression stage of Lafora disease, we 
designed a scale, the Lafora Epilepsy Severity Scale (LESS), 
where severity is graded from 0 (less severity) to 90 (more 
severity). This scale includes information on the frequency 
of GTC seizures, presence of rest and action myoclonus, 
gait, cognitive status, speech, and performance of basic 
activities of daily living (ADL). To analyze the evolution 
of patients treated with metformin, we excluded those 
who were in advanced stages (LESS score of 50 or above), 
patients with a slow-evolution type of Lafora disease, and 
carriers of mutations previously described in patients show-
ing a slower course of the disease, since they usually remain 
stable for periods longer than 1 year. Further information 
about how the scale is graded is disclosed in Supplemen-
tary Table S1, and additional clinical data of patients are 
included in Table 1.

Standard Protocol Approvals, Registrations, 
and Patient Consents

Animal maintenance and behavior experiments were per-
formed in agreement with the European Union Council 
Directive Guidelines (86/609/European Economic Com-
munity) and the Guide for the Care and Use of Laboratory 
Animals of the National Research Council of the National 
Academies of the USA [31]. The protocols were approved by 
the IIS-Jimenez Diaz Foundation Ethical Review Board. The 
humane endpoints were established following these guide-
lines based on monitoring exploratory activity, weight, and 
behavioral abnormalities. A qualified technician performed 
a weekly exam of the animals, and given any indication of 
pain or distress, measures to terminate, reduce, or mini-
mize those symptoms were taken. No adverse events were 
reported. Patients included in LD-Registry signed a consent 
form. The LD-Registry was approved by the IIS-Fundación 
Jiménez Díaz Ethical Review Board.

Data Collection

In order to ensure the experimental reproducibility and the 
reliability of the findings in the two mouse models, we fol-
lowed the recommendations for the study design and the 
reporting of results presented in the ARRIVE guidelines 
of the National Centre for the Replacement, Refinement & 
Reduction of Animals in Research [32]. Thus, an experi-
mental protocol was established before the beginning of 
the study. The number of animals for each experiment was 
considered by our experience and available resources. We 

performed our experiments when behavioral alterations are 
present in both models (12 months of age). For patients, we 
analyzed the course of the disease at 6 (n = 18), 12 (n = 18), 
18 (n = 15), and 24 (n = 8) months of follow-up using clinical 
data obtained prospectively from the “LD Registry.” Not all 
patients had reached the 18- or 24-month follow-up point. 
Data are summarized in Table 2.

Statistical Analysis

Values are given as mean ± standard error of mean (SEM) 
or as percentages. Differences between experimental groups 
were analyzed by one- or two-way ANOVA, Fisher’s exact, 
Kruskal–Wallis non-parametric, or Mann–Whitney tests, as 
indicated in each case. Statistical results were obtained using 
GraphPad Prism 6.0 (San Diego, CA). Statistical signifi-
cance thresholds were *p < 0.05, **p < 0.01, ***p < 0.001, 
and ****p < 0.0001.

Data Availability

Data supporting the findings of this study are available from 
the corresponding author, upon reasonable request.

Results

E‑MET Decreases Hypersensitivity to PTZ in Epm2a−/− 
and Epm2b−/− Mice and Improves L‑MET Benefits

In this work, we evaluated the benefits of E-MET compared 
to L-MET on PTZ sensitivity in 12-month-old Epm2a−/− and 
Epm2b−/− mice. We used a subconvulsive dose of PTZ to 
assess the effect on the percentage of mice with myoclonic 
jerks. We also injected a convulsive dose of PTZ to analyze 
the latency to the first myoclonic jerk, the percentage of 

Table 2   Summary of the number of mice and patients analyzed to 
assess the effect of metformin treatment in Lafora disease. We con-
ducted our experiments when neurological and histological altera-
tions are present in both mouse models (12 months). In patients, we 
evaluated the progression of Lafora disease in those with metformin 
(MET) and in patients without it (W/O MET)

Mouse models of Lafora disease

12 months
WT Epm2a−/− Epm2b−/−

w/o MET n = 25 n = 26 n = 24
E-MET n = 17 n = 19 n = 14
L-MET n = 7 n = 9

Patients with Lafora disease

6 months 12 months 18 months 24 months
MET n = 8 n = 8 n = 7 n = 5
W/O MET n = 10 n = 10 n = 8 n = 3
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mice with GTC seizures, and the latency to and the length 
of the GTC seizures.

PTZ‑Induced Myoclonic Seizures  With subconvulsive doses 
of PTZ, we observed myoclonic seizures in a low percent-
age of WT animals with/without E-MET. In Epm2a−/− and 
Epm2b−/− mice, the same dose resulted in a higher propor-
tion of animals with myoclonic jerks. After a convulsive 

dose, we observed a reduced latency to myoclonic jerks 
in the two Lafora disease mouse models compared to WT 
animals. E-MET decreased the percentage of mice with 
myoclonic seizures more efficiently than L-MET, whereas 
only E-MET increased the latency to myoclonic seizures 
in Epm2a−/− and Epm2b−/− mice (Fig. 1a, b). Remarkably, 
myoclonic jerks were absent in all 12-month-old Epm2b−/− 
mice with E-MET (Fig. 1a).

Fig. 1   E-MET improves L-MET effects decreasing susceptibility 
of Epm2a−/− and Epm2b−/− mice to PTZ-induced seizures. We ana-
lyzed the percentage of animals with myoclonic jerks at a PTZ dose 
of 30  mg/kg (a) and the latency to myoclonic jerks at a PTZ dose 
of 50  mg/kg (b) in 12-month-old wild type (WT), Epm2a−/− and 
Epm2b−/− mice. We also evaluated the percentage of mice with PTZ-
induced GTC seizures (c), their latency (d), length (e), and lethality 

(f), induced by a PTZ dose of 50 mg/kg in 12-month-old mice. Only 
one mouse treated with L-MET had a GTC seizure. When data are 
shown as a percentage, a Fisher’s exact test was performed between 
experimental groups. When data are shown as a mean ± SEM, a 
two-way ANOVA test was performed with Turkey’s multiple com-
parisons between the experimental groups. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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PTZ‑Induced GTC Seizures  After a convulsive dose of PTZ, 
we observed GTC seizures in 50% of WT mice without 
E-MET and in 35% percent of WT with E-MET (non- 
statistically significant). Lafora disease mouse lines exhib-
ited a higher percentage of animals with GTC seizures, 
longer seizure duration, and shorter latency to the first GTC 

seizure. After E-MET, PTZ did not induce GTC seizures 
in any of the Epm2b−/− mice (Fig. 1c), while L-MET only 
showed certain positive effects reducing the percentage of 
mice with GTC seizures (Fig. 1c) and increasing latency 
(Fig. 1d). Therefore, E-MET resulted in lower seizure sus-
ceptibility than L-MET in Epm2a−/− mice (Fig. 1c−e).
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PTZ‑Induced Lethality  The convulsive dose of PTZ was 
lethal for 30% of WT mice and for 5% of WT + E-MET 
animals. Lethality for Epm2a−/− and Epm2b−/−mice was 
30%. E-MET and L-MET completely eliminated lethality 
in 12-month-old treated Epm2b−/− mice (Fig. 1f).

E‑MET Enhances L‑MET Benefits Reducing the Severity 
of Abnormal Posturing in Epm2a−/− and Epm2b−/− 
Mouse Models

E-MET decreased the appearance of aberrant postur-
ing in Lafora disease mice, diminishing the percentage 
of Epm2a−/− and Epm2b−/− with abnormal posturing 
(Fig. 2a, b). Whereas both treatments improved the score of 
Lafora disease mice, a higher percentage of Epm2a−/− and 
Epm2b−/− mice treated with E-MET did not show abnormal 
hind limb posture at 12 months of age (Fig. 2a, b).

E‑MET Produces Greater Benefits in the Prevention 
of Motor Coordination and Memory Impairments 
in Epm2a−/− and Epm2b−/− Mice

We studied the effect of E-MET and L-MET on motor 
coordination in Epm2a−/− and Epm2b−/− mice (Fig. 2c, 
d). E-MET improved the latency time to fall from the rod 
compared to untreated mice in all attempts (Fig. 2c, d), 
whereas L-MET increased the amount of time that the two 
mouse models spent in the cylinder only in some attempts 
(Fig. 2c, d). Regarding cognitive decline, Epm2a−/− and 
Epm2b−/− mice receiving E-MET presented a higher D.I. 
average than mice treated with L-MET (Fig. 2e, f). More-
over, both mouse models treated with E-MET showed no 
memory decline (Fig. 2e, f).

E‑MET Outperforms the Positive Effect of L‑MET 
in Spontaneous Locomotor Activity Observed 
in Epm2a−/− Mice and Shows Similar Benefits 
in Epm2b−/− Mice

We also analyzed the beneficial outcome of both treatments 
on free movement in Epm2a−/− and Epm2b−/− mice (Fig. 3). 
Epm2a−/− mice treated with E-MET presented higher values 
than Epm2a−/− mice that received L-MET, although both 
experimental groups obtained a better score than untreated 
Epm2a−/− mice (Fig. 3a, c, e). E-MET and L-MET displayed 
almost identical positive results in Epm2b−/− mice (Fig. 3b, 
d, f).

E‑MET Ameliorates Formation of LBs in the Brain 
of Epm2a−/− and Epm2b−/− Mice and Improves L‑MET 
Effect

We analyzed the number of LBs detected in the CA1 
region of the hippocampus using PAS staining. When we 
compared both treatments in 12-month-old Epm2a−/− and 
Epm2b−/− mice, we observed that brains from mice treated 
with E-MET showed a lower number of LBs in the CA1 
region compared to animals treated with L-MET (Fig. 4).

E‑MET Decreases Neuronal Loss and Astrogliosis 
in Adult Epm2a−/− and Epm2b−/− Mice

We also evaluated the effect of E-MET in neurodegen-
eration and neuroinflammation using the NeuN antibody, 
a specific neuronal marker, and the GFAP antibody, a 
specific marker for astrogliosis. After quantifying the 
number of NeuN and GFAP-positive cells present in the 
CA1 field of Epm2a−/− and Epm2b−/− mice, we observed 
that brains from 12-month-old mice treated with E-MET 
showed a higher number of NeuN-positive cells and a 
lower quantity of GFAP-immunostained cells than mice 
treated with L-MET (Fig. 4). There were no significant 
differences between E-MET treated and non-treated wild-
type animals.

Metformin in Patients with Lafora Disease

We analyzed the evolution of patients with Lafora disease 
at 6, 12, 18, and 24 months of follow-up, in order to study 
the clinical effect of metformin (Supplementary Table S2). 
We included 18 patients (10 females and 8 males) from 16 
different families with mutations in the EPM2A or EPM2B 
genes. Mean age of disease onset was 11.5 years. The most 
frequently observed symptoms at onset were visual and GTC 
seizures. The initial number of patients receiving metformin 
was 8. Metformin was started a mean of 5.7 years after the 

Fig. 2   E-MET outperforms L-MET effect in ameliorating the behav-
ioral decline in adult Epm2a−/− and Epm2b−/− mice. We evaluated 
the improvements due to E-MET in the percentage of animals show-
ing normal or altered posture (a, b), motor coordination (c, d), and 
memory deterioration (e, f). In the abnormal posturing test (TST), 
two different scores were assigned. The animal was graded as 0 when 
both hind limbs were fully extended, which is considered a normal 
posture. When one or both hind limbs were intermittently or con-
tinuously bent close to the body, the mouse was scored as 1, which 
is defined as an abnormal posture. In the motor coordination test 
(rotarod), only the latency to fall from the cylinder recorded during 
the four attempts in the test sessions is shown. When data are shown 
as a percentage, a Fisher’s exact test was performed between exper-
imental groups. When data are shown as a mean ± SEM, a one-way 
ANOVA test was performed with a Turkey’s multiple comparisons 
test between experimental groups. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001. Statistical differences between groups in figures c and 
d are shown as * for Epm2a−/− vs Epm2a−/− + E-MET or Epm2b−/− 
vs Epm2b−/− + E-MET; # for Epm2a−/− vs Epm2a−/− + L-MET 
or Epm2b−/− vs Epm2b−/− + L-MET; + for Epm2a−/− + E-MET vs 
Epm2a−/− + L-MET or Epm2b−/− + E-MET vs Epm2b−/− + L-MET

◂
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Fig. 3   E-MET enhances L-MET preventing the loss of spontaneous 
locomotor activity in 12-month-old Epm2a−/− and shows similar effect 
than L-MET in 12-month-old Epm2b−/− mice. We studied the ben-
efits of E-MET in the appearance of spontaneous movement deteriora-
tion in 12-month-old mice. We evaluated the accumulated movement 
(a, b), the stereotyped movement (c, d), and the rearing movement 
(e, f) of both models. Data are shown as a mean ± SEM. A one-way 

ANOVA test was performed with a Turkey’s multiple comparisons 
test between experimental groups. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001. Statistical differences between groups in figures c and 
d are shown as * for Epm2a−/− vs Epm2a−/− + E-MET or Epm2b−/− 
vs Epm2b−/− + E-MET; # for Epm2a−/− vs Epm2a−/− + L-MET 
or Epm2b−/− vs Epm2b−/− + L-MET; + for Epm2a−/− + E-MET vs 
Epm2a−/− + L-MET or Epm2b−/− + E-MET vs Epm2b−/− + L-MET
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onset of the disease. Mean dose was 1325 mg/day. The dose 
was defined considering the standard prescription dose of 
metformin for patients with diabetes (1000–2000 mg/day) 
and adjusted depending on the appearance of side effects 
and discomfort. Metformin was well tolerated, with no seri-
ous adverse events leading to treatment discontinuation. The 
most common side effects were diarrhea and mild hypo-
glycemia. If patients felt the side effects of their metformin 
dosage were too severe, physicians reduced this dose. More 
clinical information is provided in Table 1.

In the 12-month follow-up, the LESS score worsened a 
mean of 4 points in metformin-treated patients compared 
to 14.6 points in non-metformin-treated patients. When we 
used the LESS score to assess the variation from the initial 
examination to follow-ups at 18 and 24 months, we found 
significant differences between the two groups. The LESS 
score worsened at 18 months by an average of 6.7 points in 
patients receiving metformin compared to those not taking 
the treatment, who had a 25.1-point difference. Despite the 
fact that we only have data from 5 patients who received 
metformin and 3 patients who did not, the differences at 
24 months were 13.2 points for the metformin group and 
36.7 points for the non-metformin group. Therefore, patients 
who received metformin had a slower progression of the 
disease (Fig. 5 and Supplementary Table S2).

Finally, when we analyzed the benefits of metformin 
administration in each LESS category, we observed that 
it was more effective in preserving speech skills, dressing 
autonomy, and personal hygiene care (Fig. 5c and Supple-
mentary Table S2). The effect of metformin in other catego-
ries is also reported (Supplementary Fig. S1).

Discussion

Currently, there is no specific treatment for Lafora disease. 
Patients can only be treated with antiseizure medications, 
with a low to moderate effect in controlling seizures. Death 
usually occurs 11  years after clinical onset [1]. While 
research and development of new drugs is a long, expensive, 
and high-risk procedure, most repurposed drugs can be used 
immediately and have a higher probability of obtaining an 
indication through expedited procedures [33, 34]. This can 
be appealing for rare diseases, as the number of patients is 
low and the return of investments in clinical trials and drug 
development is questionable.

In this work, we compare pre-symptomatic metformin 
treatment with treatment when neurological impairments 
have already manifested and show that E-MET improves 
the neurological outcomes of L-MET in mouse models of 
Lafora disease. In Lafora disease, seizures are one of the 
most severe symptoms and may lead to increased morbidity 

and mortality. If E-MET reduced their occurrence, patients 
would experience a significant improvement in their quality 
of life. Our experiments reveal that E-MET but not L-MET 
prevents the appearance of myoclonic and GTC seizures 
induced by PTZ injections in 12-month-old Epm2b−/− mice. 
In Epm2a−/− mice, E-MET reduced the hypersensitivity to 
PTZ. Unfortunately, we did not appreciate the same ben-
efits for myoclonic or GTC seizures in our patients treated 
with metformin. We also show that E-MET but not L-MET 
prevents the onset of cognitive problems in 12-month-old 
Lafora disease mice. E-MET also resulted in a better out-
come than L-MET in other neurological features, such as 
spontaneous locomotor activity, motor coordination, and 
postural impairments. E-MET also resulted in a lower 
amount of LBs in the hippocampus. Neuroinflammation 
and neurodegeneration were also reduced in mice receiving 
E-MET compared to L-MET.

We have confirmed that E-MET was safe from early 
development throughout life in mice. We did not observe 
developmental abnormalities or adverse reactions in mouse 
pups exposed to E-MET. In patients, safety of metformin 
in human embryos and placental passage has already been 
reported [28, 35]. Consequently, embryos are exposed to 
levels of metformin similar to those of adults. No tera-
togenic [27] or developmental abnormalities have been 
reported after in utero exposure [36]. In adults, only minor 
side effects have been reported, and these usually disappear 
after dose adjustments [37].

In our small cohort, patients treated with metformin had a 
slower progression than non-treated patients. When we ana-
lyzed the variation in the LESS score from the initial exami-
nation to the follow-ups at 18 and 24 months, we found sig-
nificant differences between the two groups. Speech skills, 
dressing, and personal hygiene were the most preserved 
ADL in treated patients resulting in a slower deterioration 
of our patients’ functional status.

Since we aimed to evaluate the effect of chronic met-
formin treatment, patients that had received metformin for 
short periods before being included in the study were not 
considered receiving chronic metformin treatment. At the 
initiation of the study, the metformin-treated group had 
a faster progression of the disease, as for a similar LESS 
score (mean 30.5 treated vs 31.7 non-treated), evolution 
was shorter in the treated group (mean years after onset 5.7 
vs 7.7 years). The faster evolution towards the same LESS 
score implies that patients treated with metformin were orig-
inally set on a more severe progression. Therefore, benefits 
reported in the metformin-treated group are likely related to 
the therapeutic effects of metformin.

In a recent retrospective study of patients with advanced 
Lafora disease, metformin showed a modest effect [25]. A 
clinical response, characterized by a reduction of seizure 
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frequency and global clinical improvement, was reported in 
3 out of 12 patients. The authors recommended that treat-
ment with metformin may be attempted as early as possible 
in the course of Lafora disease. In our cohort, metformin 
resulted in a greater benefit, probably because the age at 

treatment initiation was much lower (5.7 years from onset 
in our study vs 8 years in the previous retrospective study). 
This finding is consistent with our findings in the two mouse 
models of Lafora disease. However, to reach more definitive 
conclusions, a longer follow-up study including a compari-
son to a historical control group is needed.

The mechanisms of action of metformin are poorly under-
stood. It specifically inhibits mitochondrial respiratory-
complex I, which decreases cellular respiration and activates 
AMPK. This kinase is a key factor that regulates energy 
metabolism, promoting catabolic pathways and deactivating 
anabolic signaling [38, 39]. AMPK also regulates glycogen 
turnover through the phosphorylation and deactivation of the 
glycogen synthase [40]. Reduction of glycogen synthase activ-
ity has been proposed as a therapy for Lafora disease. In fact, 
positive results have been reported in conditional mouse mod-
els of Lafora disease targeting the downregulation of glycogen 
synthase [41, 42]. AMPK activation through metformin intake 

Fig. 4   E-MET improves the effect of L-MET on the reduction of 
neurodegeneration, astrogliosis, and formation of LBs in 12-month-
old Epm2a−/− and Epm2b−/− mice. We studied the number of NeuN 
and GFAP positive cells and LBs positive to PAS-D staining, in the 
CA1 area of the hippocampus in WT, Epm2a−/− (a, b) and Epm2b−/− 
mice (c, d). Data are shown as a normalized mean ± SEM. Means 
were normalized using WT control values in NeuN and GFAP immu-
nostaining assays, while the numbers of LBs detected in untreated 
Epm2a−/− or Epm2b−/− mice were used to normalize values in 
PAS-D staining. A Kruskal–Wallis non-parametric test followed by 
a Dunn’s multiple comparison test was performed. *p < 0.05; scale 
bar = 100 µm. NeuN, neuronal nuclear antigen; GFAP, glial fibrillary 
acidic protein; PAS-D, periodic acid–Schiff (PAS) stain used in com-
bination with diastase

◂

Fig. 5   Metformin treatment slows the course of Lafora disease in 
patients. We compared the evolution of patients with Lafora dis-
ease who were receiving metformin (MET), to patients who were 
not (w/o MET) (a). We calculated the variation in the LESS score 
from the initial examination to 6, 12, 18, and 24 months of follow-
up. Thus, to calculate all these variations, we always used the LESS 
score reported in the baseline follow-up as the reference (b). We 

show the most well-preserved alterations due to metformin admin-
istration (c). Data are shown as a mean of LESS score or a variation 
of these scores as received in the LESS ± SEM. A Student’s t-test 
was performed when we analyzed data at the initial examination and 
at 6, 12, and 18 months of follow-up. We used the Mann–Whitney 
non-parametric test when we studied data at 24  months. *p < 0.05; 
**p < 0.01
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may be a simple method to modulate glycogen synthase activ-
ity. It is also noteworthy that AMPK phosphorylates laforin, 
but does not interact with malin [43], which regulates laforin 
phosphatase activity and the ability to interact with its biologi-
cal targets [44]. The presence of laforin in the Epm2b−/− mice 
but not in the Epm2a−/− mouse model may underlie the differ-
ences of the effect of metformin observed between these two 
models. Other molecular pathways have also been proposed 
to explain the effects of metformin in Lafora disease [23–25] 
and other neurodegenerative diseases [45–50]. Some of them 
could be responsible for the discrepancies in the benefits of 
metformin in Epm2a−/− and Epm2b−/− mice. We observed no 
variability in the response of patients treated with metformin 
carrying mutations in EPM2A or EPM2B.

In conclusion, our studies clearly support the hypoth-
esis that future therapies should be started early in the 
course of Lafora disease or, if possible, in pre-symptomatic 
stages. E-MET enhanced the benefits of L-MET reducing 
behavioral, neurological, and epileptic impairments in two 
mouse models of Lafora disease. A slower evolution was 
also noticed in patients treated with metformin, although 
further controlled studies are required to sustain this obser-
vation. Our data supports the use of metformin in early 
stages of Lafora disease and in pre-symptomatic individu-
als such as siblings of Lafora disease patients. Starting to 
treat patients with metformin earlier than in this study may 
have a curative impact on myoclonic and GTC seizures, 
which remained unchanged during the study of the present 
patient cohort. Therefore, we recommend metformin in all 
pre-symptomatic patients.
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