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Abstract
Contagious disease pandemics, such as COVID-19, can cause hospitals around the world to delay nonemergent elective sur-
geries, which results in a large surgery backlog. To develop an operational solution for providing patients timely surgical care 
with limited health care resources, this study proposes a stochastic control process-based method that helps hospitals make 
operational recovery plans to clear their surgery backlog and restore surgical activity safely. The elective surgery backlog 
recovery process is modeled by a general discrete-time queueing network system, which is formulated by a Markov decision 
process. A scheduling optimization algorithm based on the piecewise decaying �-greedy reinforcement learning algorithm 
is proposed to make dynamic daily surgery scheduling plans considering newly arrived patients, waiting time and clinical 
urgency. The proposed method is tested through a set of simulated dataset, and implemented on an elective surgery backlog 
that built up in one large general hospital in China after the outbreak of COVID-19. The results show that, compared with 
the current policy, the proposed method can effectively and rapidly clear the surgery backlog caused by a pandemic while 
ensuring that all patients receive timely surgical care. These results encourage the wider adoption of the proposed method 
to manage surgery scheduling during all phases of a public health crisis.
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system · Markov decision process · Reinforcement learning · Operations research · Operations management

 * Yuanchen Fang 
 y.fang@scu.edu.cn

1 College of Management Science, Chengdu University 
of Technology, Chengdu, Sichuan, China

2 Department of Industrial Engineering and  Management, 
Business School, Sichuan University, Chengdu, Sichuan, 
China

3 Department of Mechanical & Industrial Engineering, 
Northeastern University, Boston, MA, USA

Highlights 

• A method for clearing and managing the backlog of elec-
tive surgeries following a pandemic is proposed.

• The elective surgery backlog recovery process is modeled 
by a queueing network system.

• A reinforcement learning-based backlog scheduling opti-
mization algorithm is proposed.

• The proposed method can rapidly clear the elective sur-
gery backlog while ensuring timely care for all patients.

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has 
caused hospitals around the world to temporarily delay 
nonemergent elective surgeries to reduce the infectious risk 
to both patients and providers while conserving hospitals’ 
capacities and available resources to take care of those 
patients who are the sickest due to COVID-19 [1]. This 
delay of surgeries has resulted in a backlog of uncompleted 
procedures that had been previously scheduled, as well as a 
dynamic backlog of surgeries that continue to be delayed as 
the health system experiences diminished capacity [2]. Stud-
ies have estimated that more than 28 million surgeries were 
either canceled or postponed during the first peak 12 weeks 
of the COVID-19 pandemic [3]. Taking the United States 
as an example, even under the most optimistic scenario, the 
United States may face a cumulative backlog of more than 
a million total joint and spine surgery cases and 1.1 million 
to 1.6 million cataract procedures by 2022, and the coun-
try may need up to 16 months to work through its back-
log of orthopedic care needs [4, 5]. The size of the backlog 
for large general hospitals is alarmingly high, since these 
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hospitals undertake a heavier load of daily practices and, at 
the same time, are more responsible for pandemic control.

It should be noted that continuing to delay these surgeries 
could result in increased disease progression and poor health 
outcomes for patients. Studies have shown that delays in sur-
gical care for osteoarthritis can result in the progressive loss 
of mobility and health-related quality of life; in addition, 
patients living with knee osteoarthritis have a higher risk 
of death than the general population, and their level of risk 
increases as their walking disabilities become more severe 
[6, 7]. In addition to having a potential impact on morbidity 
or mortality, delays in care could also lead to worse patient 
experiences. Given that some types of “elective” proce-
dures are more time sensitive than others, providers may 
need to determine how to prioritize care provided based 
on the urgency of the care required and whether a delay in 
care could lead to morbidity or mortality [8]. In addition, 
the deferment of medical care has a broader impact on the 
national economy. It has been reported that approximately 
half of the annualized 4.8% United States GDP that declined 
in the first quarter of 2020 was attributed to health care ser-
vices, especially delayed elective procedures [2].

Given the importance of surgical care on the health of 
patients and the financial health of hospitals, solutions to 
eliminate such large backlogs while maintaining the regular 
throughput of surgical cases are crucial to the operation of 
health care systems [9]. Since building additional operating 
rooms may not be practical for most systems given the capi-
tal costs, physical space, and associated workforce needed 
to do so, operators will need a robust strategic plan to effec-
tively schedule the cumulative backlog of elective surger-
ies and improve patient throughput. This paper considers 
optimizing the use of the existing capacity of large general 
hospitals to work through the backlog of elective surgeries 
without compromising patient outcomes.

In this paper, a planning method based on the opera-
tions management framework to help large general hospi-
tals rapidly and efficiently recover their surgical services 
is provided, and a scheduling algorithm for clearing elec-
tive surgery backlogs during the outbreak of a major epi-
demic is proposed. This method considers the balance 
between surgery backlogs and newly arrived patients who 
need elective surgeries based on waiting time and clinical 
urgency. It reschedules the surgeries in the backlog queue 
and schedules the newly arrived surgeries to ensure that all 
surgical services can be finished before their due day. This 
paper uses Markov decision process (MDP) to model the 
recovery process for surgeries that have been delayed due 
to epidemic outbreaks and designs a surgery queueing and 
planning algorithm based on piecewise decay �-greedy rein-
forcement learning (PDGRL). The proposed method can 
dynamically determine the daily optimal plan for managing 
the backlog of patients awaiting surgery in the wake of a 

pandemic and provide a system-based solution for deliver-
ing timely surgical care to patients and preparing for future 
pandemic waves.

The remainder of this paper is organized as follows. 
In Section 2, the relevant literature is reviewed. Section 3 
describes the queueing network system for modeling the sur-
gery backlog and recovery process. Section 4 presents the 
proposed stochastic scheduling optimization algorithm for 
surgery backlog management. Section 5 gives the simulation 
experimental results of implementing the proposed method 
on an elective surgery backlog example. Section 6 concludes 
the research.

2  Literature review

2.1  COVID‑19 surgical backlog

Since the outbreak of COVID-19, doctors and researchers 
from different countries have realized and studied the con-
sequences of surgical service delays caused by the cancel-
lation or postponement of nonemergent examinations and 
treatments. Uimonen et al. [10] collected and studied the 
data on urologist and elective urological procedures for 
2017–2020 in Finland and concluded that the health care 
lockdown due to COVID-19 decreased the availability of 
nonemergent specialized urological care; the authors also 
pointed out that even though these surgical services have 
started to recover from the delays induced by the pandemic, 
there is still an underlying backlog, which may result in 
more patients with severe conditions waiting for treatment. 
Fu et al. [11] presented the severe impacts of delays in sur-
gery during the COVID-19 pandemic on patent health out-
comes, hospital finances and resources, academic training 
and research programs, as well as health care providers. 
The authors suggested that the health care system should 
form an organized response to manage the disruption and 
delay of surgeries.

Many studies have used various techniques to estimate 
the size of backlogs, the rate of surgery rescheduling, and 
the reduction in outpatient and surgical activities [12], as 
well as the time to recovery for surgery procedures delayed 
due to COVID-19 [4, 13–15]. Salenger et al. [16] used sim-
ple mathematical formulations to estimate the daily backlog 
for cardiac surgeries during the COVID-19 pandemic and 
to predict the length of time required to clear this backlog. 
The results showed that the amount of time necessary to 
clear the backlog would range from 1 to 8 months based 
on varied estimates of postpandemic increased operational 
capacity and that the waiting list mortality rate could be as 
high as 3.7% at 1 month and 11.6% at 6 months. This study 
emphasized the necessity of planning for postpandemic 
volume and treating patients within an acceptable time 
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frame. Wilson et al. [17] used linear regression to quantify 
the volume of total hip arthroplasty and total knee arthro-
plasty cases delayed due to COVID-19 and to estimate the 
potential time required for the completion of backlogged 
cases. The proposed model suggested that the anticipatory 
planning of excess capacity and provisions for quickly and 
safely accommodating delayed patients are important. Wang 
et al. [18] used time series forecasting, queuing models and 
probabilistic sensitivity analysis to model the incremental 
surgical backlog that resulted from the COVID-19 outbreak 
in Ontario and to estimate the time and resources required 
to clear this backlog. It has been concluded that health care 
systems must employ innovative system-based solutions to 
provide patients with timely surgical care and prepare for 
future COVID-19 waves. Brandman et al. [19] developed 
an online tool to predict how long this process will take and 
what resources are required to address the impending back-
log of elective cases based on single-entry queue models. 
Felfeli et al. [20] proposed microsimulation modeling using 
historical population-based administrative and facility-level 
data drawn from Ontario from January 2019 to May 2021; 
this model incorporated the complex dynamic navigation 
of patients and the interaction between resource availability 
and population demand to provide a more accurate estima-
tion. The model was used to estimate the size and waiting 
time of the ophthalmology surgical backlogs caused by the 
COVID-19 pandemic and to predict the increase in provin-
cial monthly resources required to clear these backlogs by 
March 2023 and by March 2022.

To clear the backlog of elective surgeries resulting from 
COVID-19 disruption, several authors and professional 
associations have discussed many clinical aspects [21] such 
as expanding a hospital’s operating capacity by implement-
ing enhanced recovery after surgery (ERAS) [22], main-
taining capacity by adjusting the surgeon’s workforce [23], 
adopting digitalized health care systems using telemedi-
cine and artificial intelligence-assisted platforms [24–27], 
deploying technological advancements to provide friction-
less and customer-centric care [28, 29], forming dedicated 
teams to improve operating room efficiency and thereby 
simplify patients’ surgical care experience [2], and using 
surgeons’ knowledge to schedule surgeries appropriately 
[30]. A few studies have started to explore the methods 
for solving the backlog problem from an operational level. 
Gregory et al. [31] proposed a modified cardiac-enhanced 
recovery program (ERP) for implementation during the 
COVID-19 pandemic, which tailored the standard iterative 
process of ERP to fit the impact of the pandemic on patients 
and the health care system. Martin et al. [32] constructed 
not only a compartmental demand model to represent vari-
ous scenarios for increasing surgical capacity following 
the total cessation of surgical services in response to the 
COVID-19 pandemic but also 400 potential scenarios in 

which capacities were increased at different start times and 
rates were simulated. Valente et al. [33] applied a modified 
surgical waiting list infosystem (SWALIS-2020) based on 
the cumulative linear prioritization method to prioritize 
and schedule elective surgeries during COVID-19. Matava 
et al. [34] implemented a program based on the lean quality 
improvement concept to reduce the number of patients on 
the surgical waiting list by scheduling elective surgeries on 
the weekends. However, the research that addresses these 
surgery backlogs by optimizing the daily surgery sched-
uling and control and helping hospitals make operational 
decisions related to coping with public health emergencies 
is limited.

2.2  Application of reinforcement learning in health 
care management

To describe the stochastic and sequential decision processes, 
the system can be modeled by a set of system states and 
actions that are performed to control the system’s state. The 
state of the system changes over time. At any time, an action 
can be taken that may bring rewards to the system and cause 
a change in the system’s state. The objective is to control 
the system in such a way that a performance criterion is 
maximized. This model is called the Markov decision pro-
cess (MDP); such processes are an intuitive and fundamental 
formalism for reinforcement learning (RL). When no prior 
knowledge about the MDP is presented, RL is an effective 
algorithm for computing good or optimal policies for prob-
lems that are modeled as an MDP [35, 36]. In the RL algo-
rithm, an agent is connected to the system via perception and 
action. In each step, the agent receives information about 
the current state of the system, then the agent chooses an 
action that changes the system’s state and earns rewards. The 
agent’s behavior should aim to choose a sequence of actions 
that increases the long-run sum of rewards [37]. RL enables 
an agent to learn effective strategies in sequential decision-
making problems by engaging in trial-and-error interactions 
with his or her environment [38].

As one of the most efficient artificial intelligence tech-
niques, RL has undergone high levels of development in 
recent decades and has been applied to several health care 
domains. One application of the RL approach in the health 
care field is to support clinical decision-making, such as 
dynamic treatment regimes that develop a sequence of 
decision rules (including medication) for intervention to 
individualize treatments for patients based on their vary-
ing clinical characteristics and medical histories [39–46], 
automated clinical diagnoses that are driven by big data 
analysis to assist clinicians in more accurate and efficient 
decision-making [47–51], computer-assisted motor and 
cognitive rehabilitation therapies that aim to build optimal 
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adaptive rehabilitation strategies that are tailored to the 
needs of specific patients [52–54], intelligent medical imag-
ing [55–57], health care control systems for arm motion 
controllers, biomedical devices, chronic disease monitoring, 
anesthesia controllers, and so on [40, 58–60].

Compared to clinical decision-making, the study of 
applying RL in health care system operations manage-
ment is still in its early days. Huang et al. [61] proposed a 
reinforcement learning-based resource allocation mecha-
nism and used it to optimize the resource allocation in the 
radiology CT-scan examination process so that the process 
flow time is minimized. Schutz and Kolisch [62] modeled 
the capacity allocation problem for multiple classes of 
customers and multiple types of services by a continuous-
time Markov decision process which was solved by RL. 
They used radiology services booking system to illustrate 
the proposed method. Gomes [63] proposed a framework 
embedded with an Advantage Actor-Critic reinforcement 
learning algorithm for scheduling primary care doctor daily 
slots appointment. Lee and Lee [64] used deep RL to assign 
emergency department patients who need different types of 
treatment to available medical resources with the objective 
of minimizing the patient waiting time. These literatures 
have shown that RL is an effective way to solve dynamic 
and stochastic hospital operation optimization problem in 
which the resource allocation decisions have to be based 
both on the current and future states of the system. This 
paper extends the application of RL in postpandemic sur-
gery recovery management based on the optimization of 
dynamic and stochastic scheduling.

3  Methods

3.1  Reinforcement learning and Markov decision 
process

RL is a learning paradigm in sequential decision making 
problems. It has an agent to learn how to behave in a system, 
where the only feedback consists of a scalar reward signal, 
and perform actions that maximize the reward signal in the 
long run. MDP is an intuitive and fundamental formalism for 
learning problems in stochastic domains [65]. The canonical 
elements of an MDP include a set of system states S , a set 
of actions A , a transition probability matrix P and a reward 
function [66]. A state s ∈ S is a unique characterization to 
define the model. Actions a ∈ A can be applied in some 
particular state to control the system. By applying action 
a ∈ A in a state s ∈ S , the system transits from s to a new 
state s� ∈ S , based on the transition probability distribution 
P(s

� |s, a) which is defined over possible next states. The 
reward function specifies rewards for being in a state R(s) , 
performing an action in a state R(s, a) , or transitions between 

states R(s, a, s� ) . The goal is to find an optimal rule of actions 
placed on states �(s, a) , called policy, and gather maximal 
rewards. To estimate how good it is for the agent to be in a 
certain state or to perform a certain action in a state, value 
function V�(s) is defined to represent the expected return 
when starting in state s and following policy � thereafter, 
and state-action value function Q�(s, a) is defined to repre-
sent the expected return starting from state s , taking action 
a , and thereafter following policy �.

RL is used for computing an optimal policy for an MDP 
with incomplete information, so that sampling and explo-
ration are needed. The general algorithm for RL consists 
of interaction iterations in which the agent selects an 
action based on its current state, gets feedback based on 
the transient state and associated reward, and updates the 
estimated Ṽ  and Q̃ . The selection of action at each step is 
based on the current system state s and value function V  
or Q . The algorithm includes exploitation and explora-
tion mechanism to gain more reward through exploiting 
current knowledge around good actions, and trying out 
different actions to explore the system for potential better 
actions. Through these iterations, RL collects and updates 
knowledge about the system while trying and searching for 
better actions interactively.

3.2  Model of elective surgery backlog management 
system

The surgery backlog problem is modeled by a general 
discrete-time queueing network system M that can be for-
mulated by a countable-state MDP and targets that use the 
minimum amount of time to clear the elective surgery back-
log while making sure that all surgeries, including those in 
the backlog and those for new arrivals, are scheduled before 
their due days. There are 2 queues in this system. The first 
queue represents the patient backlog that has accumulated 
since the onset of a pandemic like COVID-19, which is 
named Q0, while the second queue represents the patients 
who have newly arrived at the hospital, which is named Q1. 
The patients in these two queues are waiting for available 
surgery chances, and surgeries are scheduled daily. There-
fore, the time slots are positioned on typical surgical days 
t = 0, 1, 2, 3,… , where t = 1 denotes the first day after the 
hospital start to resolve its surgery backlog. Initially, the 
patients in the first queue represent those patients whose 
surgeries were delayed because of the COVID-19 pandemic. 
Let L0 be the number of patients in Q0 at t = 0 . Let �t be 
the total number of new patients arriving at day t . Assume 
that the new patients arrive in Q1 as an independent and 
identically distributed (i.i.d.) sequence {�t, t = 0, 1,…} with 
a finite rate �1 = �(�t) . Each patient has an arrival day bij , 
which is defined as the day that the patient enters the queue, 
and a due day dij , which is defined as the day before which 
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the patient has to undergo surgery, where i = 0, 1 indicates 
the queue and j = 1, 2,… denotes the patient. The time 
remaining from the current day to the patient’s due day rep-
resents the patient’s critical level; therefore, the larger the 
critical level is, the less urgent the patient’s surgery is. Let 
T  be the time slot when all patients in Q0 are scheduled. 
Assume that the number of newly arrived patients in Q1 and 
the served patients at each time slot are both bounded. The 
system can be modeled as follows.

(1) State space S : The system state is given by the lengths 
of the two queues, that is, a 2-dimensional queue back-
log vector S =

(
S0, S1

)
 , S0 = 0, 1,… , L0 . Even though 

the number of newly arrived patients in Q1 at each 
time slot is finite, as the system changes over time, if 
the number of newly arrived patients in Q1 becomes 
larger than the number of scheduled patients in Q1 
at each time slot, then the number of patients accu-
mulated in Q1 could be infinite. Therefore, the sys-
tem has an unbounded state space, which is denoted 
as S = S0 × S1 =

{
0, 1,… , L0

}
× ℕ . Let St

0
 and St

1
 be 

the number of waiting patients in Q0 and Q1 at day t  , 
respectively.

(2) Action space A : The two queues compete for 
the services of the hospital; thus, the action is 
the number of patients scheduled from the two 
queues every day, A =

(
A0,A1

)
 . There is a maxi-

mum capacity for each surgical day, which repre-
sents the maximum number of elective surgeries 
that can be performed by the hospital, e.g., Lmax . 
Therefore, Ao + A1 ≤ Lmax , and the action space is 
A =

{
0, 1,… ,min

{
L0, Lmax

}}
×
{
0, 1,… , Lmax

}
 . Let 

A
t =

(
At
0
,At

1

)
 be the action taken at day t.

(3) State-transition probability P : Since the system dynam-
ics satisfy the Markov property, the probability of the 
system state transitioning into a state S′ only depends on 
the current state S, the selected action a and the number 
of newly arrived patients, p(S

′ |S, a) . Each surgical day, 
the hospitals schedule surgeries for A1 patients from the 
Q0 queue and A2 patients from Q1, and there are � newly 
arrived patients that enter the queue Q1:

where � follows the distribution of the number of newly 
arrived patients, which could be obtained from the his-
torical surgery scheduling data or the experts’ opinion.

(4) Cost C : The objective for this problem is to schedule all 
the patients in Q0 as soon as possible while making 
sure that no patient misses his or her due day and min-

P
(
S
� =

(
s
�
0
, s�

1

)|S =
(
s0, s1

)
, a =

(
a0, a1

))

=

{
1

0

if s�
0
= s0 − a0 and s

�
1
= s1 − a1 + �

otherwise

imizing the average backlog of Q1. Let xt
ij
 be the indica-

tor of each patient’s scheduled surgery time:

The objectives can be summarized by the following cost 
function:

where H(x) is the Heaviside step function whose value is 
zero for negative arguments and one for nonnegative argu-

ments, H(x) ≜
{

1

0

forx ≥ 0

forx < 0
 . At time t  , an action At is 

selected, and the system has three types of patients: (1) 
patients scheduled at time t , (2) patients who have not been 
scheduled up to time t  , and (3) patients who have been 
scheduled before time t . The first part of Eq. (1) represents 
the average waiting time of the patients who are scheduled 
at time t or have not been scheduled up to time t . The second 
part of Eq. (1) represents the average critical level of the 
patients who have not been scheduled up to time t  , where 
the critical level is represented by the remaining number of 
days before the due day for each unscheduled surgery. The 
smaller the critical level is, the closer the surgery is to its due 
day and the more urgent the surgery is. The third part of 
Eq. (1) is the penalty term for patients who are scheduled at 
time t  but have already missed their due day. M is a large 
positive penalty constant; even one overdue surgery will 
result in a large cost function so that the algorithm is able to 
prevent the occurrence of delaying a treatment. It should be 
noted that the cost could be negative if surgeries are sched-
uled long before their due days.

4  Algorithm

Since the problem has unbounded state spaces, we con-
struct the surgery backlog scheduling algorithm based on 
the piecewise decaying �-greedy reinforcement learning 
(PDGRL) algorithm proposed by Liu et al. [67] to find the 
optimal policy �∗ . This algorithm introduces an auxiliary 
system M̃ with bounded state space, in which each queue 
has buffer size U . In M̃ , for each queue, when the queue 

xt
ij
=

⎧⎪⎨⎪⎩

1

0

if patient j in Qi is scheduled at time t

otherwise
, i = 0, 1, j = 1, 2,… , t = 0, 1,…

(1)

Ct =

∑1

i=0

∑
j

�
1 −

∑t−1

�=1
x�
ij

��
t − bij

�

∑1

i=0

∑
j

�
1 −

∑t−1

�=1
x�
ij

�

−

∑1

i=0

∑
j

�
1 −

∑t

�=1
x�
ij

��
dij − t

�

∑1

i=0

∑
j

�
1 −

∑t

�=1
x�
ij

�

+

1�
i=0

�
j

xt
ij
M
�
1 − H

�
dij − xt

ij
t
��
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backlog reaches U , new arrivals are dropped. M̃ has the 
same action space and cost function as M . In this problem, 
U is selected to be greater than L0 , U > L0 to ensure that all 
patients in Q0 will be scheduled in M̃ . The state space of 
M̃ is �S ≜ {

S ∈ S ∶ S0, S1 ≤ U,U > L0
}
 . By exploring and 

exploiting the solutions within the auxiliary system while 
implementing the stabilizing policy outside the auxiliary 
system, the PDGRL algorithm provides a control policy 
that is close to the optimal result with a large U.

4.1  Stabilizing policy

The stabilizing policy is a policy under which the system is 
stable, that is, the system converges in the sense that:

where F(∙) is the cumulative distribution function on S . 
According to Foss et al. [68], for a two-component Markov 
chain {(Xt, Yt)} on the state space (X,Y) , where {Xt} forms 
a Markov chain itself with a stationary distribution �X , the 
system is stable if the following conditions hold:

A. The expectations of the absolute values of the 
sequence 

{
L2(Y

t)
}
 are bounded from above by a constant U:

where L2(∙) is a nonnegative measurable function that is 
defined on a sigma-algebra ̃Y of Y.

B. There exists a nonnegative and nonincreasing func-
tion h(N),N ≥ 0 such that h(N) ↓ 0 as N → ∞ , and 
a family of mutually independent random variables {
�
t
x

}
, x ∈ X, t = 0, 1,… such that

B1. for each t  , 
{
�
t
x

}
, x ∈ X, t = 0, 1,… are uniformly 

integrable;
B2. for each t  and x , 

{
�
t
x
, t = 0, 1,…

}
 are identically 

distributed with common distribution function Fx , which 
is such that Fx(y) is measurable as a function of x for any 
fixed y;

B3. the following inequality:

holds for all x ∈ X, y ∈ Y and t = 0, 1,… ; and
B4. functions f (x) = ��

1
x
 satisfy the following:

Since the objective of the surgery scheduling system is 
to schedule all patients in both queues as soon as possible, 

lim
t→∞

P[S(t) ≤ r] = F(r),∀r ∈ S

sup
x∈X,y∈Y

�x,y
|||L2

(
Yt+1

)
− L2

(
Yt
)||| ≤ U < ∞

L2
(
Yt+1

)
− L2

(
Yt
) ≤ �

t
Xt + h

(
L2
(
Yt
))

∫
X

f (x)𝜋Xdx = −𝜀 < 0.

it is obvious that Lmax surgeries will be scheduled every day 
as long as the total number of patients waiting in the system 
exceeds Lmax . Therefore, to simplify the proof of the stabi-
lizing policy, the working hours on each typical surgical day 
t  a r e  d i v i d e d  i n t o  t i m e  s l o t s 
t
�

= Lmax(t − 1) + 1, Lmax(t − 1) + 2,… , Lmaxt  a n d 
t = 1, 2,… . The new patient arrival rate at t′ of Q1 is 
��1 = �

(
�
t�
)
= �

(
�
t

Lmax

)
 , where �t

′

 is the total number of new 
patients who arrive at t′ . At each time t′ , one surgery, either 
from Q0 or from Q1, will be scheduled. Thus, the action at 
t
′ becomes the index of the queue being selected, 
A�t� ∈ {0, 1} ,  and the action taken at  day t  is 
A
t =

�
At
0
,At

1

�
=
�∑Lmaxt

t�=Lmax(t−1)+1

�
1 − A�t�

�
,
∑Lmaxt

t�=Lmax(t−1)+1
A�t�

�

Consider the longest connected queue (LCQ) policy, 
which schedules the patient from the queue with maximum 
length at time slot t′ as follows:

This is equivalent to the following:

Hence, proving the stability of 
{(

St
0
, St

1

)}
 is sufficient for 
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The proof of Theorem 1 is provided in the Appendix.
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in ̃S and applies the stabilizing policy �stable to each state in 
S∖̃S . In the exploitation stage, the reward matrix R is esti-
mated by the calculations made in the previous episodes 
and an MDP consisting of transition matrix P , after which 

an updated reward matrix R is solved, and the optimal pol-
icy �∗ is obtained. The algorithm applies �∗ to each state in 
Sin ≜ {

S ∈ S ∶ S0 + S1 ≤ U − Lmax

}
 and applies �stable to 

each state in S�Sin . The detailed algorithm is shown as follows.
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5  Computational experiments

5.1  Experiments on simulated datasets

The model and algorithm proposed in the previous sec-
tions are first tested on a series of simulated datasets, to 
verify its effectiveness and study the robustness of its 
performance. The main parameters of the problem are as 
follows:

1. Total number of backlogged elective surgeries by the 
time when hospital starts to recover its surgical services, 

L0 : The larger the hospital is, or the longer the peak 
weeks in one wave of pandemic, the larger L0 is. A larger 
L0 means that it will take a longer time to clear the back-
log, and the probability of patients missing their due 
days will be higher.

2. Number of elective surgeries that can be done every day 
from the hospital starts to recover its surgical services 
until the hospital fully recovers its capacity, Lmax : The 
larger Lmax is, the faster the backlog will be cleared.

3. Proportions of patients with different critical levels. In 
this research, based on the levels of clinical severity, the 
surgeries are classified into three types: due in 30 days, 
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due in 60 days, and due in 90 days. If there are a large 
proportion of surgeries with high critical level being 
delayed during the pandemic, the system may need 
to schedule more surgeries from the backlog queue to 
reduce the risk of increased disease progression and 
poor health outcomes. However, the chance of patients 
missing their due days will still be higher if the propor-
tion of patients with severe illness is increased.

4. Earliest original scheduled day of awaiting patients 
in the backlog queue: If the hospital stops or cuts its 
elective surgical services for a long time, the num-
ber of patients who have been waiting in the backlog 
queue passing their due days will be large. Even some 
patients with low critical levels will be close to their 
due days at the beginning of the hospital’s postpan-
demic recovery. Thus, there will be many patients who 
need to be scheduled immediately after the recovery 
plan starts, which may exceed the service capacity, 
and cause that more patients cannot be scheduled 
before their due days.

5. Mean of newly arrived patients every day after the hos-
pital starts to recover its surgical services: The proposed 

algorithm is designed to clear the backlog as soon as 
possible, while minimizing the number of surgeries 
scheduled after the due day. This procedure considers 
the critical level of surgeries both in the backlog queue 
and in the new arrivals queue. Therefore, the rate of 
new arrivals in queue Q1 will affect the time needed to 
clear the backlog. If the rate of new arrivals is extremely 
high, more patients with high critical levels need to be 
included in the schedule and compete for the limited 
service capacity with the backlogged patients.

Table 1 summarizes the setup of simulation experiments 
for evaluating the performance of the proposed method.

Each setup was run for 20 replications, and each replica-
tion was run for 1000 episodes to test the convergence. The 
statistics of the number of days to clear the backlog, the 
number of patients who miss their due day, and running time 
are summarized in Table 2.

The experiments were conducted with U = 50, l = 0.5 , 
and M = 1000 . These simulation setups include some 
extreme cases. Take the first experiment as an example. 
Compared to the number of surgeries that can be done each 
day, the size of the backlog is very large. Meanwhile, the 

Table 1  Simulation experiments setup

Experiment 
number

Total number  
of backlogged surgeries

Service capacity 
(per day)

Proportions of patients with 
different critical levels (due in 
30 days, due in 60 days, due in 
90 days)

Earliest original  
scheduled day of awaiting 
backlogged surgeries

Mean of newly 
arrived patients 
(per day)

1 10,000 100 (30%, 40%, 30%) -30 80
2 10,000 100 (10%, 30%, 60%) -15 80
3 6000 100 (30%, 40%, 30%) -30 80
4 6000 100 (10%, 30%, 60%) -15 80
5 10,000 100 (30%, 40%, 30%) -30 120
6 10,000 100 (10%, 30%, 60%) -15 120
7 6000 100 (30%, 40%, 30%) -30 120
8 6000 100 (10%, 30%, 60%) -15 120

Table 2  Comparison of simulation experiments

Experiment 
number

95% confidence interval of average number of 
days to clear the backlog (days)

95% confidence interval of average number of 
patients who miss their due day

95% confidence interval 
of average running time 
(seconds)

1 [124.42, 144.68] [12136.81, 12,223.79] [90820.32, 129,151.40]
2 [130.13, 136.17] [77.67, 158.63] [10092.77, 12,903.41]
3 [71.43, 80.67] [11.29,32.71] [17807.91, 34,905.78]
4 [62.18, 65.02] [0.07, 1.55] [18180.63, 34,349.12]
5 [140.21, 165.99] [13342.81, 13,346.69] [114977.29, [169723.80]
6 [138.18, 160.12] [75.92, 204.14] [122783.10, 17,188.43]
7 [77.37, 89.33] [20.96, 58.30] [17688.81, 34,637.51]
8 [65.46, 74.64] [0.04, 3.71] [17457.56, 25,682.46]
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proportions of surgeries with high critical levels are very 
large too. Therefore, in the simulated Q0 queue, there are 
more surgeries due on each day than the daily maximum 
surgical service capacity. For such cases, the optimal sched-
uling policy would be to schedule all surgeries in both Q0 
queue and Q1 queue based on their due days, even though 
the cases of missing due days would happen from the first 
day to the last day when all surgeries in Q0 queue have been 
cleared. Figure 1 gives the episode cost function of the first 
experiment to illustrate the convergence of the algorithm.

Based on the simulation experiments, it can be seen that 
the proposed elective surgeries backlog PDGRL algorithm 
is able to solve different problems with various settings of 
parameters, and can converge to the optimal solution within 
80 ~ 150 episodes. For extreme cases in which the size of the 

backlog is relatively large compared with the daily capac-
ity, and the proportions of high critical level patients are 
large, the algorithm can give solutions close to the optimal 
scheduling. For normal cases, the algorithm can give solu-
tions with very few surgeries missing the due day. However, 
the algorithm running time is sensitive to the size of the 
problem. As the size of the backlog and daily service capac-
ity increase, the computation speed decreases significantly 
because of the slower MDP solving for large state space and 
action space.

5.2  Numerical example

W Hospital, which is located in Western China, is one of the 
largest hospitals nationwide. During the peak weeks of the 
COVID-19 outbreak in China, elective surgery operations 
in W Hospital were delayed from January 27 to March 27, 
2020, and a total of 16,377 elective surgeries were awaiting 
by the end of March, which is when the hospital started to 
use its medical partnerships to recover its surgical services. 
Let t = 0 be the start time when the hospital started to clear 
the surgical backlog. Thus, t = −1. − 2,… denote one day, 
two days, and so on before the start time, and t = 1, 2,… 
denote one day, two days, and so on after the start time. 
The information pertaining to each surgery includes the 
arrival day, due day, and original scheduled day, as shown 
in Table 3. While the surgical backlog was cleared, there 
were newly arrived patients who needed elective surgeries 

Fig. 1  Episode cost function 
of simulation experiment 1 in 
Table 1

Table 3  Information of surgical backlog (Q0)

Surgery number Arrival day Due day Original 
scheduled 
day

1 -4 86 28
2 -57 33 26
3 -33 27 -19
4 -11 49 16
5 -7 83 32
⋮ ⋮ ⋮ ⋮
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every day. Based on the historical data, the number of newly 
arrived patients every day follows a Poisson distribution 
with a mean of 300, in which 19.3%, 39.1%, and 41.6% of 
these patients needed their surgeries to be conducted within 
30 days, 60 days, and 90 days, respectively.

The 16,377 elective surgeries form queue Q0, and the 
newly arrived surgeries form queue Q1. The algorithm pro-
posed in the previous section is applied to reschedule the 
surgeries in Q0 and to schedule the newly arrived surgeries 
in Q1; the overall objective is to clear the Q0 backlog as 
soon as possible while ensuring that the number of patients 
who miss their due day is minimized. The capacities of W 
Hospital and its branch health center locations determine 
that the number of elective surgeries that can be performed 
each day is 390 on average.

The benchmark policies to compare with are the first-
come first-served (FCFS), the earliest due date (EDD), 
and the real policy that had been implemented in W Hos-
pital during their surgical service recovery after the peak 
weeks of the COVID-19 pandemic, which was done ad hoc. 
The FCFS policy schedules the surgeries according to the 
sequence patients arrive. The EDD policy schedules the sur-
geries according to the due dates of surgeries. The real ad 
hoc policy used by W hospital scheduled those backlogged 
surgeries first based on the original scheduled arrangement, 
and didn’t start to schedule newly arrived patients until all 
backlogged surgeries have been cleared. Approximately 
9.72% of the backlogged patients was worsened precipi-
tously, so that they left the waiting queue and took emer-
gency operations.

First, the proposed method is implemented with a pri-
ority placed on following the original scheduled arrange-
ment. Second, the proposed method is implemented with 
a priority placed on the due days, that is, the surgeries 
that are closer to their due days are scheduled first. The 
algorithm was conducted with U = 50, l = 0.5 , M = 1000 , 
and K = 200 . Table 4 shows the comparison of real data, 

real ad hoc policy used by W Hospital, FCFS policy, EDD 
policy, the optimal policy obtained by the elective sur-
geries backlog PDGRL algorithm with a priority placed 
on following the original scheduled arrangement, and the 
optimal policy obtained by the elective surgeries backlog 
PDGRL algorithm with a priority placed on due days.

The real data was collected from March 30, 2020 to 
May 25, 2020 when the backlog had been cleared, to 
show the real situation that happened after the pandemic 
outbreak. According to the head nurse who was in charge 
of elective surgery scheduling, the main reasons for the 
difference between real data and read ad hoc policy used 
are: (1) Some doctors were not available at the beginning 
of the service recovery phase, which delayed the surger-
ies they were in charge of. (2) Some patients left the 
waiting list. They might go to hospitals near their place 
of residence to receive faster treatments. This caused the 
number of patients in the Q0 queue to be less than 16,377.

From Table 4, it can be seen that the optimal policy 
obtained by the proposed elective surgeries backlog 
PDGRL algorithm with a priority placed on due days 
could clear the backlogged surgeries in a shorter time 
while minimizing the number of patients missing their 
due days.

Unlike Q0, in which all the surgeries waiting are 
known when the hospitals start to clear their backlog 
and no newly arrived surgeries are entering this queue, 
the surgeries in Q1 are newly arrived and unknown at the 
beginning of the clearing process. Therefore, scheduling 
decisions are dynamically made every day based on the 
surgeries remaining unscheduled in Q0 and the number 
of surgeries waiting in Q1 on the previous day. To exam-
ine the performance of the proposed method, 100 Q1 
cases are simulated, and the obtained optimal strategy 
is implemented for each case. Based on the compari-
son shown in the Table 4, the elective surgeries backlog 
PDGRL algorithm with a priority placed on due days 

Table 4  Comparison of different surgery backlog clearing strategies

Real data Real ad hoc policy 
used by W Hospital

First-come, 
first-served 
(FCFS)

Earliest due 
date (EDD)

Best policy obtained by 
elective surgeries back-
log PDGRL algorithm 
with priority placed on 
following the original 
scheduled arrangement

Best policy obtained by 
the elective surger-
ies backlog PDGRL 
algorithm with priority 
placed on due days

Total cost 3,279,066.14 4,072,710.73 3,694,767.41 572.91 9044.91 -1319.46
Number of days to clear 

the backlog
56 42 42 60 47 49

Number of patients 
missing their due days 
(including surgeries 
both in Q0 and Q1

3288 4071 3693 0 10 0
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for the randomly selected cases outperforms the algo-
rithm with a priority placed on following the original 
scheduled arrangement. Figures 2 and 3 show the optimal 

scheduling strategy obtained by the elective surgeries 
backlog PDGRL algorithm with a priority placed on due 
days for the randomly selected cases.

Fig. 2  Optimal policy: number of surgeries scheduled every day for Q0 and Q1 from the randomly selected cases

Fig. 3  Optimal policy: timeline of 100 randomly selected surgeries from Q0
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Figure 2 plots the number of surgeries scheduled every 
day for Q0 and Q1. Figure 3 plots the timeline of the 100 
randomly selected surgeries from Q0, where the arrival day 
of each surgery is marked by a gray number, the due day of 
each surgery is marked by an orange number, the original 
scheduled day of each surgery is marked by a green num-
ber, and the rescheduled day of each surgery is marked by a 
blue number. If there is any surgery that has missed its due 
day, its rescheduled day is marked in red. By summariz-
ing the 100 simulated cases, it is found that the mean time 
that it will take W Hospital to clear its elective surgery 
backlog is 51.72 days (95% confidence interval: (51.01, 
53.47)), and the average number of surgeries (both in Q0 
and Q1) that are not scheduled before their due day is 0.02 
(95% interval: (0, 0.048)). The histograms of performance 
measures of the 100 simulated cases are shown in Fig. 4.

5.3  Summary and discussion

Through simulation experiments and real data numeri-
cal example, the proposed elective surgeries backlog 
PDGRL algorithm has shown good potential of tack-
ling surgery backlog caused by a pandemic such as 
COVID-19. In the simulation study, extreme cases in 
which the number of backlogged surgeries closing to 
due days is too large was tested, and the results show 
that the proposed algorithm can quickly converge to the 
optimal solution. The performance of the algorithm is 
not sensitive to the parameters of the problem, except 
that the running time is greatly affected by the size of 
the problem.

Compared to the ad hoc procedure which was used 
in the hospital, the proposed elective surgeries backlog 
PDGRL algorithm could improve the after-pandemic 
surgery backlog scheduling performance by reducing the 
average waiting time of patients as well as the risk of 
missing the best treatment time. The ad hoc procedures 
are designed to schedule the backlog first following the 
original scheduled arrangement, without considering the 

newly arrived patients and the critical levels of patients. 
This leads to a short backlog clearance time, but a large 
number of patients who miss their best treatment oppor-
tunity, and an increasing waiting time for all patients 
in the system. The proposed algorithm could find an 
optimal balance between these factors. However, the dif-
ference between the calculated policy with the real data 
indicates that more realistic factors such as the patients’ 
behavior, the after-pandemic recovery plans for differ-
ent hospitals, and the doctors’ preference, need to be 
included in the algorithm in the future to create an accu-
rate surgery backlog management system.

The most serious problem with the proposed elective 
surgeries backlog PDGRL algorithm is that its computation 
speed is highly affected by the size of the backlog and the 
maximum number of surgeries that can be done every day, 
since the increase in these two parameters will significantly 
increase the volume of state space S and action space A , 
which in turn makes the search space exponentially grow-
ing. For a problem with 10,000 backlogged surgeries to be 
cleared, it may take more than a day to run the algorithm for 
1000 episodes, compared to five hours for the problem with 
6000 backlogged surgeries. This would limit the application 
of this algorithm when fast decisions are required, which 
needs future work to improve the computation speed.

6  Conclusion

A large number of elective surgeries are postponed due to 
disruptions caused by pandemics, such as COVID-19, which 
results in serious backlogs. Continuing to delay these surgeries 
could result in disease progression and poor health outcomes 
for patients, as well as financial losses for health care systems 
and nations. This paper presented a stochastic control process-
based method that aims to help large hospitals make opera-
tional recovery plans to clear their elective surgery backlog and 
restore surgical activity safely. The proposed solution uses the 
MDP model and reinforcement learning algorithm and shows 

Fig. 4  Histogram of (a) number 
of days to clear the backlog Q0 , 
and (b) number of surgeries 
missing due days for the optimal 
policy with 100 Q1 simulated 
cases
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effectiveness in managing elective surgeries during pandemics. 
It can be adapted to a hospital’s decision support system using 
local data to assist with health care system recovery planning 
and help hospitals prepare for future pandemic waves. For 
future work, the algorithm could be extended to allow dynamic 
changes in hospital capacities so that the stochastic scheduling 
optimization can realize the real-time management of elec-
tive surgeries during public health emergencies, include more 
factors in the algorithm such as doctors’ preferences and sur-
gery due date windows to make the system more accurate and 
practical, and consider the patients’ choices in case that some 
patients are not available on their scheduled days.
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Proof of Theorem 1
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