Skip to main content
. 2023 Apr 20;6(4):e1214. doi: 10.1002/hsr2.1214

Table 1a.

Summary of model metrics.

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean SD Range
XGBoost Accuracy 0.684 0.741 0.766 0.790 0.806 0.836 0.898 0.789 0.026 0.210
F1 0.686 0.750 0.774 0.784 0.810 0.835 0.897 0.787 0.031 0.204
Sensitivity 0.680 0.757 0.790 0.806 0.821 0.853 0.901 0.802 0.026 0.224
Specificity 0.592 0.708 0.749 0.786 0.815 0.852 0.947 0.789 0.037 0.348
PPV 0.680 0.761 0.787 0.818 0.847 0.884 0.958 0.818 0.035 0.273
NPV 0.567 0.676 0.722 0.753 0.785 0.829 0.930 0.761 0.046 0.354
AUROC 0.772 0.831 0.856 0.867 0.884 0.903 0.948 0.868 0.025 0.171
Random Forest Accuracy 0.675 0.729 0.771 0.778 0.801 0.812 0.892 0.784 0.027 0.224
F1 0.687 0.740 0.771 0.776 0.809 0.816 0.884 0.785 0.030 0.201
Sensitivity 0.665 0.745 0.782 0.799 0.804 0.847 0.895 0.793 0.024 0.229
Specificity 0.584 0.709 0.748 0.784 0.803 0.845 0.927 0.771 0.041 0.340
PPV 0.676 0.740 0.779 0.813 0.846 0.857 0.948 0.810 0.045 0.270
NPV 0.555 0.661 0.720 0.736 0.772 0.826 0.908 0.750 0.045 0.359
AUROC 0.757 0.824 0.842 0.860 0.887 0.900 0.928 0.857 0.022 0.175
Artificial Neural Network Accuracy 0.689 0.736 0.761 0.786 0.805 0.830 0.877 0.781 0.021 0.194
F1 0.677 0.732 0.750 0.783 0.790 0.818 0.888 0.774 0.027 0.211
Sensitivity 0.672 0.749 0.779 0.794 0.802 0.834 0.884 0.796 0.021 0.216
Specificity 0.591 0.707 0.749 0.768 0.799 0.835 0.928 0.768 0.035 0.327
PPV 0.659 0.748 0.780 0.809 0.835 0.859 0.940 0.808 0.029 0.274
NPV 0.550 0.665 0.718 0.752 0.772 0.817 0.912 0.749 0.047 0.361
AUROC 0.751 0.821 0.839 0.866 0.882 0.891 0.949 0.847 0.027 0.192
Adaptive Boosting Accuracy 0.683 0.731 0.761 0.790 0.793 0.821 0.885 0.775 0.023 0.199
F1 0.674 0.739 0.760 0.774 0.801 0.828 0.890 0.775 0.029 0.224
Sensitivity 0.671 0.753 0.783 0.811 0.809 0.839 0.889 0.797 0.019 0.216
Specificity 0.585 0.694 0.746 0.777 0.803 0.853 0.941 0.772 0.045 0.354
PPV 0.676 0.742 0.772 0.805 0.843 0.861 0.951 0.817 0.045 0.277
NPV 0.567 0.664 0.717 0.751 0.784 0.825 0.929 0.750 0.047 0.358
AUROC 0.755 0.815 0.840 0.860 0.865 0.894 0.929 0.862 0.025 0.175

Note: Summary of model metrics within the test set for each of the four machine learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting) based upon bootstrap simulation.

Abbreviations: AUROC, area under the receiver operator characteristic curve; NPV, negative predictive value; PPV, positive predictive value.