Table 1a.
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | SD | Range | |
---|---|---|---|---|---|---|---|---|---|---|---|
XGBoost | Accuracy | 0.684 | 0.741 | 0.766 | 0.790 | 0.806 | 0.836 | 0.898 | 0.789 | 0.026 | 0.210 |
F1 | 0.686 | 0.750 | 0.774 | 0.784 | 0.810 | 0.835 | 0.897 | 0.787 | 0.031 | 0.204 | |
Sensitivity | 0.680 | 0.757 | 0.790 | 0.806 | 0.821 | 0.853 | 0.901 | 0.802 | 0.026 | 0.224 | |
Specificity | 0.592 | 0.708 | 0.749 | 0.786 | 0.815 | 0.852 | 0.947 | 0.789 | 0.037 | 0.348 | |
PPV | 0.680 | 0.761 | 0.787 | 0.818 | 0.847 | 0.884 | 0.958 | 0.818 | 0.035 | 0.273 | |
NPV | 0.567 | 0.676 | 0.722 | 0.753 | 0.785 | 0.829 | 0.930 | 0.761 | 0.046 | 0.354 | |
AUROC | 0.772 | 0.831 | 0.856 | 0.867 | 0.884 | 0.903 | 0.948 | 0.868 | 0.025 | 0.171 | |
Random Forest | Accuracy | 0.675 | 0.729 | 0.771 | 0.778 | 0.801 | 0.812 | 0.892 | 0.784 | 0.027 | 0.224 |
F1 | 0.687 | 0.740 | 0.771 | 0.776 | 0.809 | 0.816 | 0.884 | 0.785 | 0.030 | 0.201 | |
Sensitivity | 0.665 | 0.745 | 0.782 | 0.799 | 0.804 | 0.847 | 0.895 | 0.793 | 0.024 | 0.229 | |
Specificity | 0.584 | 0.709 | 0.748 | 0.784 | 0.803 | 0.845 | 0.927 | 0.771 | 0.041 | 0.340 | |
PPV | 0.676 | 0.740 | 0.779 | 0.813 | 0.846 | 0.857 | 0.948 | 0.810 | 0.045 | 0.270 | |
NPV | 0.555 | 0.661 | 0.720 | 0.736 | 0.772 | 0.826 | 0.908 | 0.750 | 0.045 | 0.359 | |
AUROC | 0.757 | 0.824 | 0.842 | 0.860 | 0.887 | 0.900 | 0.928 | 0.857 | 0.022 | 0.175 | |
Artificial Neural Network | Accuracy | 0.689 | 0.736 | 0.761 | 0.786 | 0.805 | 0.830 | 0.877 | 0.781 | 0.021 | 0.194 |
F1 | 0.677 | 0.732 | 0.750 | 0.783 | 0.790 | 0.818 | 0.888 | 0.774 | 0.027 | 0.211 | |
Sensitivity | 0.672 | 0.749 | 0.779 | 0.794 | 0.802 | 0.834 | 0.884 | 0.796 | 0.021 | 0.216 | |
Specificity | 0.591 | 0.707 | 0.749 | 0.768 | 0.799 | 0.835 | 0.928 | 0.768 | 0.035 | 0.327 | |
PPV | 0.659 | 0.748 | 0.780 | 0.809 | 0.835 | 0.859 | 0.940 | 0.808 | 0.029 | 0.274 | |
NPV | 0.550 | 0.665 | 0.718 | 0.752 | 0.772 | 0.817 | 0.912 | 0.749 | 0.047 | 0.361 | |
AUROC | 0.751 | 0.821 | 0.839 | 0.866 | 0.882 | 0.891 | 0.949 | 0.847 | 0.027 | 0.192 | |
Adaptive Boosting | Accuracy | 0.683 | 0.731 | 0.761 | 0.790 | 0.793 | 0.821 | 0.885 | 0.775 | 0.023 | 0.199 |
F1 | 0.674 | 0.739 | 0.760 | 0.774 | 0.801 | 0.828 | 0.890 | 0.775 | 0.029 | 0.224 | |
Sensitivity | 0.671 | 0.753 | 0.783 | 0.811 | 0.809 | 0.839 | 0.889 | 0.797 | 0.019 | 0.216 | |
Specificity | 0.585 | 0.694 | 0.746 | 0.777 | 0.803 | 0.853 | 0.941 | 0.772 | 0.045 | 0.354 | |
PPV | 0.676 | 0.742 | 0.772 | 0.805 | 0.843 | 0.861 | 0.951 | 0.817 | 0.045 | 0.277 | |
NPV | 0.567 | 0.664 | 0.717 | 0.751 | 0.784 | 0.825 | 0.929 | 0.750 | 0.047 | 0.358 | |
AUROC | 0.755 | 0.815 | 0.840 | 0.860 | 0.865 | 0.894 | 0.929 | 0.862 | 0.025 | 0.175 |
Note: Summary of model metrics within the test set for each of the four machine learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting) based upon bootstrap simulation.
Abbreviations: AUROC, area under the receiver operator characteristic curve; NPV, negative predictive value; PPV, positive predictive value.