Skip to main content
. 2023 Apr 20;6(4):e1214. doi: 10.1002/hsr2.1214

Table 1b.

Summary of model metrics for each of the four machine learning techniques.

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean SD Range
XGBoost Accuracy 0.684 0.751 0.773 0.789 0.805 0.828 0.898 0.789 0.024 0.215
F1 0.686 0.748 0.771 0.787 0.803 0.826 0.897 0.787 0.024 0.210
Sensitivity 0.680 0.764 0.787 0.802 0.818 0.840 0.901 0.802 0.023 0.222
Specificity 0.592 0.750 0.773 0.789 0.805 0.827 0.947 0.789 0.024 0.354
PPV 0.680 0.782 0.803 0.818 0.833 0.855 0.958 0.818 0.022 0.277
NPV 0.567 0.720 0.744 0.761 0.777 0.801 0.930 0.761 0.025 0.363
AUROC 0.772 0.836 0.855 0.868 0.881 0.900 0.948 0.868 0.020 0.176
Random Forest Accuracy 0.675 0.744 0.768 0.784 0.800 0.823 0.892 0.784 0.024 0.216
F1 0.687 0.746 0.769 0.785 0.801 0.824 0.884 0.785 0.024 0.198
Sensitivity 0.665 0.755 0.777 0.793 0.809 0.832 0.895 0.793 0.023 0.229
Specificity 0.584 0.731 0.754 0.771 0.787 0.811 0.927 0.771 0.024 0.344
PPV 0.676 0.773 0.795 0.810 0.826 0.848 0.948 0.810 0.023 0.271
NPV 0.555 0.709 0.733 0.750 0.767 0.791 0.908 0.750 0.025 0.354
AUROC 0.757 0.823 0.843 0.857 0.870 0.890 0.928 0.857 0.020 0.171
Artificial Neural Network Accuracy 0.689 0.742 0.765 0.781 0.797 0.820 0.877 0.781 0.024 0.188
F1 0.677 0.735 0.758 0.774 0.791 0.814 0.888 0.774 0.024 0.211
Sensitivity 0.672 0.757 0.780 0.796 0.811 0.834 0.884 0.796 0.023 0.212
Specificity 0.591 0.728 0.752 0.768 0.785 0.808 0.928 0.768 0.024 0.337
PPV 0.659 0.771 0.793 0.808 0.824 0.846 0.940 0.808 0.023 0.281
NPV 0.550 0.708 0.732 0.749 0.766 0.790 0.912 0.749 0.025 0.361
AUROC 0.751 0.812 0.833 0.847 0.861 0.881 0.949 0.847 0.021 0.198
Adaptive Boosting Accuracy 0.683 0.736 0.759 0.775 0.791 0.815 0.885 0.775 0.024 0.202
F1 0.674 0.735 0.758 0.775 0.791 0.814 0.890 0.775 0.024 0.216
Sensitivity 0.671 0.759 0.781 0.797 0.813 0.835 0.889 0.797 0.023 0.217
Specificity 0.585 0.732 0.756 0.772 0.789 0.812 0.941 0.772 0.024 0.356
PPV 0.676 0.780 0.802 0.817 0.832 0.853 0.951 0.817 0.022 0.274
NPV 0.567 0.709 0.733 0.750 0.767 0.791 0.929 0.750 0.025 0.362
AUROC 0.755 0.829 0.848 0.862 0.875 0.895 0.929 0.862 0.020 0.175

Note: Summary of model metrics for each of the four machine learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting) based upon the derived distribution using analytic formulas described within the study.

Abbreviations: AUROC, area under the receiver operator characteristic curve; NPV, negative predictive value; PPV, positive predictive value.