Table 1b.
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | SD | Range | |
---|---|---|---|---|---|---|---|---|---|---|---|
XGBoost | Accuracy | 0.684 | 0.751 | 0.773 | 0.789 | 0.805 | 0.828 | 0.898 | 0.789 | 0.024 | 0.215 |
F1 | 0.686 | 0.748 | 0.771 | 0.787 | 0.803 | 0.826 | 0.897 | 0.787 | 0.024 | 0.210 | |
Sensitivity | 0.680 | 0.764 | 0.787 | 0.802 | 0.818 | 0.840 | 0.901 | 0.802 | 0.023 | 0.222 | |
Specificity | 0.592 | 0.750 | 0.773 | 0.789 | 0.805 | 0.827 | 0.947 | 0.789 | 0.024 | 0.354 | |
PPV | 0.680 | 0.782 | 0.803 | 0.818 | 0.833 | 0.855 | 0.958 | 0.818 | 0.022 | 0.277 | |
NPV | 0.567 | 0.720 | 0.744 | 0.761 | 0.777 | 0.801 | 0.930 | 0.761 | 0.025 | 0.363 | |
AUROC | 0.772 | 0.836 | 0.855 | 0.868 | 0.881 | 0.900 | 0.948 | 0.868 | 0.020 | 0.176 | |
Random Forest | Accuracy | 0.675 | 0.744 | 0.768 | 0.784 | 0.800 | 0.823 | 0.892 | 0.784 | 0.024 | 0.216 |
F1 | 0.687 | 0.746 | 0.769 | 0.785 | 0.801 | 0.824 | 0.884 | 0.785 | 0.024 | 0.198 | |
Sensitivity | 0.665 | 0.755 | 0.777 | 0.793 | 0.809 | 0.832 | 0.895 | 0.793 | 0.023 | 0.229 | |
Specificity | 0.584 | 0.731 | 0.754 | 0.771 | 0.787 | 0.811 | 0.927 | 0.771 | 0.024 | 0.344 | |
PPV | 0.676 | 0.773 | 0.795 | 0.810 | 0.826 | 0.848 | 0.948 | 0.810 | 0.023 | 0.271 | |
NPV | 0.555 | 0.709 | 0.733 | 0.750 | 0.767 | 0.791 | 0.908 | 0.750 | 0.025 | 0.354 | |
AUROC | 0.757 | 0.823 | 0.843 | 0.857 | 0.870 | 0.890 | 0.928 | 0.857 | 0.020 | 0.171 | |
Artificial Neural Network | Accuracy | 0.689 | 0.742 | 0.765 | 0.781 | 0.797 | 0.820 | 0.877 | 0.781 | 0.024 | 0.188 |
F1 | 0.677 | 0.735 | 0.758 | 0.774 | 0.791 | 0.814 | 0.888 | 0.774 | 0.024 | 0.211 | |
Sensitivity | 0.672 | 0.757 | 0.780 | 0.796 | 0.811 | 0.834 | 0.884 | 0.796 | 0.023 | 0.212 | |
Specificity | 0.591 | 0.728 | 0.752 | 0.768 | 0.785 | 0.808 | 0.928 | 0.768 | 0.024 | 0.337 | |
PPV | 0.659 | 0.771 | 0.793 | 0.808 | 0.824 | 0.846 | 0.940 | 0.808 | 0.023 | 0.281 | |
NPV | 0.550 | 0.708 | 0.732 | 0.749 | 0.766 | 0.790 | 0.912 | 0.749 | 0.025 | 0.361 | |
AUROC | 0.751 | 0.812 | 0.833 | 0.847 | 0.861 | 0.881 | 0.949 | 0.847 | 0.021 | 0.198 | |
Adaptive Boosting | Accuracy | 0.683 | 0.736 | 0.759 | 0.775 | 0.791 | 0.815 | 0.885 | 0.775 | 0.024 | 0.202 |
F1 | 0.674 | 0.735 | 0.758 | 0.775 | 0.791 | 0.814 | 0.890 | 0.775 | 0.024 | 0.216 | |
Sensitivity | 0.671 | 0.759 | 0.781 | 0.797 | 0.813 | 0.835 | 0.889 | 0.797 | 0.023 | 0.217 | |
Specificity | 0.585 | 0.732 | 0.756 | 0.772 | 0.789 | 0.812 | 0.941 | 0.772 | 0.024 | 0.356 | |
PPV | 0.676 | 0.780 | 0.802 | 0.817 | 0.832 | 0.853 | 0.951 | 0.817 | 0.022 | 0.274 | |
NPV | 0.567 | 0.709 | 0.733 | 0.750 | 0.767 | 0.791 | 0.929 | 0.750 | 0.025 | 0.362 | |
AUROC | 0.755 | 0.829 | 0.848 | 0.862 | 0.875 | 0.895 | 0.929 | 0.862 | 0.020 | 0.175 |
Note: Summary of model metrics for each of the four machine learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting) based upon the derived distribution using analytic formulas described within the study.
Abbreviations: AUROC, area under the receiver operator characteristic curve; NPV, negative predictive value; PPV, positive predictive value.