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Prioritizing exhausted T cell marker
genes highlights immune subtypes in pan-cancer

Chunlong Zhang,1,2,4 Qi Sheng,1,4 Xue Zhang,1,4 Kang Xu,1 Xiaoyan Jin,1 Weiwei Zhou,1 Mengying Zhang,1

Dezhong Lv,1 Changbo Yang,1 Yongsheng Li,3,* Juan Xu,1,* and Xia Li1,3,5,*

SUMMARY

Exhausted T (TEX) cells are main immunotherapy targets in cancer, but it lacks a
general identification method to characterize TEX cell in disease. To assess the
characterization of TEX cell, we extract signature of TEX cell from large cancer
and chronic infection cohorts. Based on single-cell transcriptomes, a systematic
T cell exhaustion prediction (TEXP) model is designed to define TEX cell in cancer
and chronic infection. We then prioritize 42 marker genes, including HAVCR2,
PDCD1, TOX, TIGIT and LAG3, which are associated with T cell exhaustion.
TEXP could identify high TEX and low TEX subtypes in pan-cancer of TCGA.
The high TEX subtypes are characterized by high immune score, immune cell infil-
tration, high expression of TEX marker genes and poor prognosis. In summary,
TEXP and marker genes provide a resource for understanding the function of
TEX cell, with implications for immune prediction and immunotherapy in chronic
infection and cancer.

INTRODUCTION

When T cells are exposed to antigen for a long time, the expression of inhibitory receptors continues to

increase. Then functional T cells are converted into exhausted T (TEX) cells, and their immune function,

transcription and metabolism would be abnormal.1 This specific state of T cell is first investigated in a

mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection, but recent studies have

also discovered TEX cells in human chronic infection and cancers, which leads to the dysfunction of immune

response for cancer patients.2,3 Immune checkpoint blockade therapy (PDCD1 andCTLA4) is subsequently

developed to help restore T cell function, further demonstrating the importance of immune checkpoints in

dysfunctional T cells. The immune checkpoint blocking therapy has shown to work well in few patients for

melanoma, non-small-cell lung carcinoma, and kidney cancer, but not in most patients, and it is hard to pro-

vide an extensive and long-lasting effect for patients.4–6 This phenomenon may be caused by the diversi-

fication of inhibitory receptors in TEX cells during the tumor progress and the complicated tumor microen-

vironment.7 Moreover, some tumor-infiltrating T cells are exhausted status even without the high

expression of PDCD1 or CTLA4.8

To characterize the features of TEX cells deeply, the gene expression patterns for TEX cells have been

widely investigated across various cancer types or diseases with chronic infection. Different gene lists

are identified as candidate marker genes based on their relatively high/low expression in TEX cells

compared to other T cell types. Typically, the inhibitory receptors, such as PDCD1, HAVCR2 (TIM3) and

TIGIT, are upregulated in TEX cells of cancer and chronic infection, which have been validated by different

biological experimental methods.9,10 Besides, the transcription factor TOX which plays an important role

during thymic development of CD4+ T lineage cells, natural killer and innate lymphoid cell is differentially

expressed compared TEX cells with normal T cells in chronic infection model, melanoma, breast cancer,

and lung cancer based on RNA-seq expression data.11TOX is also significantly overexpressed in melanoma

and non-small cell lung cancer based on single-cell expression data.12 However, a large proportion of

candidate marker genes are not always with consistent expression directions, such as KLRG1, CD160,

LAG3, CTLA4, TBET, and EOMES.13,14 EOMES, a transcription factor, is highly expressed in chronic infec-

tion diseases but lowly expressed in liver cancer model.15 On the contrary, EOMES is overexpressed in lym-

phoma model and it has been demonstrated to exert bimodal functions in effector CD8+T cells and TEX

cells in tumors.16 These results suggest that filtering stable marker genes of TEX cell is important, but

many studies only focus on their interested direction and ignore the functional diversity. Moreover, these
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studies are mainly dependent on their own data, whose heterogeneity interferes with their reliability and

prevents the identification of common markers. Therefore, it is essential to integrate currently available

TEX transcriptomes across cancers and chronic infections to identify stable TEX markers.

With the development of single-cell technology, many studies have assayed the transcriptome profiles of

immune cells in tumor microenvironment and identified immune cells including TEX cells. For example,

Zhang et al. utilized single-cell expression profiles to identify different immune cell types in liver cancer,

lung cancer, colorectal cancer and many other cancers, which used few marker genes to define immune

cells such as LEF1 for naive T cell, CX3CR1 for effector T cell, LAYN for TEX cell and so on.17–20 Then we

collected the exhaustion-related genes from Zhangs’ studies of liver cancer, lung cancer and colorectal

cancer. The gene number was 82, 117, and 68 in liver cancer, lung cancer and colorectal cancer respectively,

and the overlap of three sets was only 34. Marker genes in single-cell expression data were first identified by

unsupervised clustering analysis, then they analyzed the differentially expressed genes as marker genes.

This analysis process for single-cell data was also lack of commonality for marker genes. Therefore, marker

genes identified by single-cell data needed to be further optimized, which could obtain robust information,

accurately assess the influence of exhausted T cell state in tumor immune microenvironment and promote

immune therapy.

In this study, a systematic T cell exhaustion prediction (TEXP) model was developed to prioritize TEX

marker genes and further explored TEX states in cancers (Figure 1). In the TEXP model, TEX-related

gene list was obtained by searching PubMed. Then, Gene Set Enrichment Analysis (GSEA) and robust

rank aggregation (RRA) were applied to filter genes based on multiple expression datasets from chronic

infection in cancer, chronic hepatitis virus and chronic LCMV. Third, robust and stable gene signature

was further refined by stepwise regression analysis based on single-cell transcriptomic data. Finally, the

gene signature was used to predict the TEX tendency for TCGA transcriptomic data. The gene signature

Keywords
T-lymphocyte T cell

Exhaust Exhausted Exhaustion

1295 Candidate Genes

limma

RS=-log(pi)*
sign(log2(fci))

GSEA

High

Low

TSm= ComCoefi*Expressionim
j

Consistently Positive
Regression Genes

Ⅰ)Preparing Candidate TEX Genes and Expression Profiles

Ⅱ)Prioritizing TEX Marker Genes

Ⅲ)Training Model Based on Single Cell Sequencing

High

Low

Keywords

Cancer Chronic infection

T-lymphocyte T cell

Rank RRA Score

Gene

TE
X

no
nT

EX

Leading Edge Genes
Significant 

Leading Edge Genes

Stepwise
Regression

Candidate
Genes

Regression
Coefficient

Coefij

sum(|Coef1j|+……+|Coefnj|)
NorCoefij=

0
jComCoefi=
NorCoefij

yi=
N

n
βnxin+εi

Fi=max{F1,……,Fn}

Gene PMIDType Desc

Gene1

Gene2

Type1

Type2

…… …… …… …… ……

Desc2

Desc1 PMID1

PMID2

……

……

……

G
en

e

ComCoef

Validation on scRNA-seq of Cancer and Chronic Infection

R
R

A

R
S

Si
gn

ifi
ca

nt
 

Le
ad

in
g 

Ed
ge

 G
en

es

Six Immune Single Cell
Expression Profiles

18 TEX Expression Profiles

Figure 1. Schematic illustration of three steps of TEXP for the identification of exhausted pattern

ll
OPEN ACCESS

2 iScience 26, 106484, April 21, 2023

iScience
Article



and framework contributed a novel resource that could serve future studies and improve the understanding

of exhaustion in chronic infection and cancer.

RESULTS

TEX candidate genes tend to be upregulated in chronic infection and cancer

To extract the candidate genes associated with TEX cells, a combination of different key words of TEX and

cell type was employed to search PubMed and 1,295 candidate genes were collected (Figure 2A). These

candidate genes concluded 57 cytokines and their receptors, 16 inhibitory receptors and 100 transcription

factors. After calculating the literature number, we found 1.16% candidates recurrently occurred in more

than 10 literature, such as PDCD1, HAVCR2, TIGIT, CTLA4, LAG3, CD274, CD244, CD160, EOMES and

IL10, indicating their key roles for TEX cells (Figure 2B). For example, inhibitory receptors PDCD1 and

CTLA4 were the common targets for immune checkpoint blocking therapy, and LAG3, CD244, CD160

and HAVCR2 have also been regarded as inhibitory receptors to inhibit the immune process.21,22 These re-

sults suggested that inhibitory receptors played a major role in TEX cells. Besides, EOMES with different

expression level in different datasets were also highly frequent in our gene lists.16 Therefore, it was neces-

sary to integrate different datasets to explore the mechanism of TEX cells.

To characterize the consistent expression performance of candidate genes in TEX cells, 18 mRNA expres-

sion profiles for TEX cells in chronic infection and cancer were downloaded from GEO, which were

composed of 5 human expression profiles and 13 mouse expression profiles23–39 (Figure 2C). First, the

Pearson correlation coefficients among TEX samples were calculated through the candidate genes
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(Figure S1). The result showed that the datasets in different species and diseases had the similar expression

pattern and could be used to explore the TEX phenotype. In addition, tomeasure whether candidate genes

were upregulated in TEX cells, differential analysis between TEX and nonTEX samples were made for all

datasets. The differential analysis was made through 18 mRNA expression profiles, respectively. Therefore,

the different species and batches didn’t influence our result. The p value and fold-change were converted

to an RS score for each gene in every dataset and genes in every dataset were ranked based on their own RS

scores. Next, the activity of candidate genes was computed in all datasets through GSEA.40 The result

showed that the candidate genes were significantly enriched in upregulated genes for all datasets

(NES>0 and FDR<=0.05) (Figure 2D). For example, candidate genes were significantly enriched in upregu-

lated genes in human colon cancer andmouse LCMV (Figures 2E and S2). This result also demonstrated the

strong relationship between candidate genes and TEX cells. Leading edge analysis of GSEA could help

determine the bona fide critical genes, but there were ranking differences for candidate genes in different

datasets (FigureS3). Therefore, it was necessary to analyze their performance across these datasets

comprehensively.

Prioritizing TEX marker genes

To filter the marker genes in TEX phenotype, it was hypothesized that marker genes should be stably acti-

vated in TEX state, so the RRA method was used to evaluate the consistently upregulated expression pat-

terns.41 According to the RS score, we sorted the genes in descending order for 18 datasets and extracted

genes in top-rank location of aggregated rank list. 156 genes were selected with the threshold value<=0.05

(Figures 3A and 3B). RRA assessed genes strongly contributing to the enrichment, including PDCD1, LAG3,

CTLA4, TOX, CD38, TIGIT and HAVCR2, and their expressions were consistently upregulated in TEX sam-

ples (Figure 3D). Besides, some other genes rarely reported to be associated with immune response were

top-ranked as well (Figures 3B and 3C). For example,MKI67 was highly expressed in 18 datasets, which was

demonstrated to be upregulated in PD1 high TIM3+ CD8 T cells in the AT-3 tumor model and was

associated with the immune tolerance signature in breast cancer.42,43 BUB1 was reported to be related

to the tumor immune and immune infiltration.44,45 Therefore, some genes in TEX cells without highlighting

in previous research were identified through our criteria.

TEX marker genes involved in immune functions

To assess the function of 156 stable marker genes, we made functional enrichment analysis with Enrichr

(https://maayanlab.cloud/Enrichr/) to validate their relevance with TEX functions (adjusted pvalue %0.05).

These genes were significantly enriched in 67 biological processes, which were mainly involved in

immune functions (Figure 4A), such as cytokine-mediated signaling pathway (p = 7.26E-07), regulation

of B cell proliferation (p = 4.98E-05), positive regulation of immunoglobulin production (p = 0.004), regu-

lation of regulatory T cell differentiation (p = 0.005), inflammatory response (p = 0.007), positive regula-

tion of defense response (0.029) and so on. Then, to systematically characterize the effect of candidate

genes on biological processes, the biological processes were categorized based on the upstream-down-

stream relationship of gene ontology, and cytokine regulation (23 subclasses), metabolic process

regulation (12 subclasses) and T cell regulation (10 subclasses) were dominant in several broad cate-

gories (Figure 4A). Previous studies have demonstrated that various cytokines and immunomodulatory

factors could be produced through the stimulation of chronic inflammation, which would stimulate

other immunosuppressive cells, eliminate the metabolites related to T cell function, and produce en-

zymes to strengthen the immunosuppressive effect. Abnormalities in immune metabolic process could

influence the fate of immune cells and regulate immunity, which was often used as a key to the cancer

treatment. Besides, the candidate genes were also enriched in 33 KEGG pathways (Figure 4B), such as

cell cycle (p = 7.66E-08), cytokine-cytokine receptor interaction (p = 5.62E-05), inflammatory bowel dis-

ease (p = 5.63E-05), Th17 cell differentiation (p = 9.96E-05), natural killer T cell regulation (p = 3.87E-

04), TNF signaling pathway (p = 0.019), multiple cancer pathways (non-small-cell lung carcinoma, mela-

noma, Glioma, leukemia), and multiple viral infections (Kaposi sarcoma-associated herpes virus infection,

Epstein-Barr virus infection and hepatitis C virus infection). The results showed that candidate genes

not only played regulatory roles in helper T cell and effector T cell pathway, but also participated in

cell cycle and cancer-related pathways. In addition, these genes were involved in a variety of viral infec-

tion-related pathways, suggesting that they were related to exhaustion of chronic infection and tumor

development.46,47 Therefore, abnormalities of candidate genes could lead to dysregulation of immune

response and inflammatory response, and might eventually lead to exhaustion of immune cells and

escape of cancer cells.
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Validation of TEX marker genes in single-cell transcriptomes

Single-cell transcriptomehadmore precise and reliable expression pattern than bulk expression data, so six

human single-cell expression profiles were utilized to characterize the TEX cells.17,18,48–50 To visualize the

complex phenotypes between TEX cells and nonTEX cells, a UniformMani-fold Approximation and Projec-

tion for Dimension Reduction (UMAP)-based dimensionality reduction approach was used to integrate the

expression information of 156 marker genes based on single-cell expression profiles51 (Figure 5). The result

showed that TEX and nonTEX cells could be divided into two groups and have distinct phenotype respec-

tively (Figure 5A). Then the UAMP result displayed the expression pattern of marker genes. These genes

were highly expressed in TEX cells (Figure 5B). Besides, cells locating in the intermediate position showed

intermediate expression pattern and might play a role in transition between TEX cells and nonTEX cells.
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color represented the RS score and log2(fold change). The right bar plot represented the overlap of leading edge genes in 18 expression profiles.
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Marker genes have been demonstrated to play an important role in TEX cells and immune response.

Because of the precision of single-cell transcriptome, six single-cell expression profiles were used to vali-

date marker genes. First, 156 marker genes and 6 single-cell expression profiles were used to make mul-

tiple stepwise linear regression analysis (p value<=0.05). The marker genes were divided into three cate-

gories based on the regression coefficients in six expression profiles: (1) 42 consistently positive

regression genes; (2) 26 consistently negative regression genes; and otherwise. Positive regression genes

represented the positive relationship between gene expression and TEX level. Recent infiltration-related

studies often used positive regression genes to analyze the tumor immune environment and demonstrated

the reliability and stability of positive regression genes.52,53 Therefore, 42 consistently positive regression

genes were selected to construct classifier model (Figure 6A and Table S1). The combined regression co-

efficient (ComCoef) was calculated based on coefficients in six single-cell expression profiles and was used

to compute the TEX score (TS) for each cell. The classifier model was applied in six single-cell expression

profiles. The result showed that the AUCs were greater than 0.85, which demonstrated the model efficiency

on separating TEX and non-TEX cells (Figure 6B). In addition, most marker genes were significantly differ-

ential between TEX cells and nonTEX cells (P<=0.001, nonparametric rank-sum test), and more than 60%

genes showed differentially expressed in six single-cell expression profiles respectively (Figures 6A and
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Figure 4. The result of functional enrichment analysis

(A) The heatmap was the result of biological process.

(B) The heatmap was the result of KEGG pathway. The row and column of heatmap represented the gene and functional name, respectively. The right bar

plot was the p value of functional enrichment analysis. The bottom bar plot was the enriched gene number in each function. The Sankey diagram represented

the upstream-downstream relationship of biological processes.
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6C). For example, LAG3, MKI67, PDCD1, CTLA4, CSF1, TOX, TIGHT, ENTPD1, KLRC1, and HAVCR2 were

all highly expressed in TEX cells. Interestingly, the marker genes were more likely to show expression

perturbation than other genes across most profiles (p< 0.01 in five out of six profiles, two-sided Fisher’s

exact test) (Figures 6D and 6E). All marker genes were differential in GSE98638, GSE99254, GSE108989

and GSE120575, which revealed the perturbation of marker genes in TEX cells. In summary, marker genes

could accurately assess TEX cells and provide diagnostic and therapeutic evidence for immunotherapy

based on single-cell transcriptomes of human cancer.

Studies have also found that chronic infection was often regarded as a precursor to cancer, and more and

more research confirmed that patients with chronic inflammatory disorders would develop into cancer

eventually. To explore the TEX mechanism in chronic infection, single-cell transcriptome (GSE131535)

from mouse LCMV chronic infection was collected to validate the role of marker genes.54 The AUC value

was 0.903 and demonstrated the role of marker genes in mouse chronic infection model (Figure 6F).

Besides, the expression feature of marker genes was also estimated, which displayed a similar trend like

human cancer model (Figures 6G and S4). For example, CTLA4, ENTPD1, HAVCR2, KLRC1, LAG3,

MKI67, PDCD1, TIGIT, and TOX were highly and differentially expressed in TEX cells. The marker genes
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Figure 5. The UMAP result of single-cell expression profiles

(A) The cell distribution of TEX and nonTEX cells. The yellow and blue were the TEX and nonTEX cells.

(B) The expression distribution of HAVCR2 in GSE98638 and GSE99254.

(C) The expression distribution of PDCD1 in GSE98638 and GSE99254. The dark color represented high expression.
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were also more disturbed than other genes in this dataset. Collectively, TEX model was a useful pipeline to

identify the TEX feature in chronic infection and cancer.

TEX marker genes highlight immune subtypes in pan-cancer

To estimate the TEX application on bulk transcriptomes, 32 expression profiles were downloaded from

TCGA and classifier was used to calculate the TSs for each patient. There was no pre-defined TEX classifi-

cation for TCGA, therefore we utilized the TSs to define patient samples as follows: (1) High TEX subtype

was defined as those with more than three-quarters of the quartile TS. (2) Low TEX subtype was defined as

those with less than one-quarter of the quartile TS.

To assess the difference in immune effects between high TEX and low TEX subtypes, both subtypes were

evaluated through multiple immune scores: MHC (major histocompatibility complex), CYT (cytotoxic

activity), and CTL (cytotoxic T lymphocyte).55–58 These scores were defined as the average of marker genes

as follows:HLA-A,HLA-B,HLA-C, TAP1, TAP2,NLRC5, PSMB9, PSMB8 and B2M for MHC;GZMA and PRF1

for CYT;GZMA, PRF1 andGZMB for CTL. The result showed that high TEX subtype had significantly higher

MHC, CYT and CTL scores than low TEX subtype among pan-cancer samples (P<=2.2e-16, Kolmogorov-

Smirnov Test) (Figure 7A). In addition, we used one-quarter quantile and three-quarter quantile to divide

samples for individual cancer, and the immune score of high TEX subtype was higher than that of low TEX

subtype. These results further suggested that the relationship between high exhaustion and immune score

was uniform in different cancers (Figure 7B). Previous studies have demonstrated that CYT and CTL were

positively correlated with the levels of TEX cells and inhibitory receptors (PDCD1, PDL1, CTLA4, LAG3,

TIM3 and IDO1).55,59 In addition, the relationship between TEX subtypes and immune infiltration was exam-

ined. The immune infiltration tools and methods included TIMER2.0 and ImmuCellAI. TIMER2.0 has inte-

grated xCell, MCP-counter, EPIC, QuanTIseq, CIBERSORT and TIMER.52,53,60–65 We next extracted

T cell-related score and all kinds of T cells such as CD4+T cell, CD8+T cell, CD8+ Memory T cell, CD8+

Effector T cell, CD4+ naive T cell and exhausted T cell. In summary, 37 kinds of scores and immune infiltra-

tion levels were collected. Almost all results showed significantly higher infiltrating levels in high TEX sub-

type than low TEX subtypes for pan-cancer and individual cancer (Figure 7C). The stromal score demon-

strated the positive correlation between TEX level and tumor malignant level.66,67 The T cell infiltration

and immune-related score indicated that immune infiltration was accompanied by exhaustion of functional

immune cells in cancer patients. And the infiltration score of TEX cell in ImmuCellAI was also consistent with

our TEX score, which proved the reliability of our result. Previous studies have found that although cancer

patients had a high level of immune infiltration, the functional immune cells were induced into dysfunc-

tional status.68 The effect of immunotherapy did not achieve the desired result. Therefore, our hypothesis

was that the T cell exhaustion would disturb therapeutic effect and prognosis for cancer patients.

To explore the role of TEX marker genes in clinical application, the malignant level and patients’ prognosis

were used to evaluate the exhausted score. There were two criteria for tumor malignant level: grade and

stage. The tumors were classified into four levels: well differentiated G1, moderately differentiated G2,

poorly differentiated G3, and poorly differentiated G4. Based on the TNM stage (T: Primary Tumor Range,

N: Peripheral Lymph Node Metastasis, M: distal metastasis), the stages of TCGA tumors were divided into

four levels: Stage I, stage II, stage III and stage IV. This tumor clinical information came from the Eighth

Figure 6. The characterization of single-cell expression data for human cancer and mouse chronic infection

(A) The regression coefficients of marker genes. The top bar plot represented the ComCoefs of marker genes. The middle heatmap represented the

regression coefficients of marker genes in each single-cell expression profiles. The bottom heatmap represented the p-value of marker genes in stepwise

regression analysis.

(B) The AUC value of six single-cell expression profiles.

(C) The left heatmap showed the proportion of differentially expressed genes in all genes and marker genes respectively. The right panel showed the odds

ratios in six single-cell expression profiles. *** meant P<=0.001, ** meant 0.01%P%0.001, two-sided Fisher’s exact test.

(D) The significance of marker genes between TEX and nonTEX cells in six single-cell expression profiles. Threshold value P<=0.001, nonparametric

rank-sum test.

(E) The expression levels of marker genes between TEX and non-TEX samples in six single-cell expression profiles. The xaxis shows the different cell types,

and the yaxis shows the expression levels.

(F) The AUC value of mouse single-cell expression profile. The heatmap and panel represented the proportion of differentially expressed genes and odds

ratios as well.

(G) The significance of marker genes between TEX and non-TEX cells in mouse single-cell expression profiles. Threshold value P<=0.001, nonparametric

rank-sum test.
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Edition AJCC Cancer Staging Manual.69 10 cancers had grade information (CESC, ESCA, HNSC, KIRC,

LGG, LIHC, OV, PAAD, STAD and UCEC), and 22 cancers had stage information (ACC, BLCA, BRCA,

CESC, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, MESO, OV, PAAD, READ, SKCM, STAD,

TGCT, THCA, UCEC, and UVM). G1 and G2 were defined as low grade level, G3 and G4 as high grade level.

Stage I and Stage II were defined as low stage level, and stage III and stage IV as high stage level. Based on

the pan-cancer subtypes, high TEX subtype had more malignant patients than low TEX subtype (grade:

0.57 versus 0.42; 0.52 versus 0.37) (Figure 8A). Then survival analysis was applied to assess the relationship

between survival prognosis and TEX subtypes, and high TEX subtype displayed poorer prognostic status

than low TEX subtype (Figure 8B). Next, we estimated the malignant level and survival prognosis in individ-

ual cancer. Grade in HNSC, KIRC, LGG and STAD and stage in KIRC and KIRP had more malignant patients

in high TEX subtype than in low TEX subtype (P<=0.05, two-sided Fisher’s exact test) (Figures 8C and 8D).

Besides, high TEX subtype had poorer prognostic status than low TEX subtype in GBM, LGG, KIRC and

UVM (P<=0.05, Logrank Test) (Figure 8E). Previous studies found that PD-1/PD-L1 checkpoint blockade

therapy have not achieved breakthroughs in treating glioblastoma because of its low immunogenic

response and immunosuppressive microenvironment. Moreover, the phenotypes of tumor infiltrating

lymphocytes (TILs) in glioma specimens were found to be rich in CD95, PDCD1, PDL1, CTLA4, LAG3,

and TIM3.70 Studies also showed a link between immunity and progression of kidney cancer. Kidney

cancer might mediate immune dysfunction by inducing immunosuppressive cells to infiltrate the tumor

microenvironment, and several possible mechanisms have also been identified to explain how these
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Figure 7. The immune score and infiltration of different TEX subtypes

(A) The immune score in different TEX subtypes for pan-cancer.

(B) The immune score in different TEX subtypes for individual cancer.

(C) The immune infiltration in different TEX subtypes. The top line plot represented the immune infiltration in different TEX subtypes for pan-cancer. The

middle color bar represented the different tool sources of immune infiltration. The bottom heatmap represented the immune infiltration in different TEX

subtypes for individual cancer.
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tumor-infiltrating cell types impeded the development of an anti-tumor immune response, including regu-

lating the activity of effector T cell and antigen-presenting cell by inhibiting factors such as checkpoint mol-

ecules.71 Furthermore, inhibitory receptors CTLA4 and LAG3 have been demonstrated to be associated

with poor prognosis in kidney cancer.72 Collectively, these results exhibited the negative role of TEX in clin-

ical treatment and further provided new ideas to strengthen the efficacy of cancer immunotherapy.

DISCUSSION

Accumulating evidence suggests that TEX cells are important for immune response and immune therapy.

However, the ability to identify TEX cells by existingmethods has remained challenging because of the lack

of distinct and stable marker genes of TEX cells. For example, many marker genes involved in exhaustion,

such as PDCD1 and CTLA4, are also expressed in other activated cells.73,74 In this study, we first extracted

TEX-related candidate genes through the literature mining, and explored expression feature of TEX cells

using tumor and chronic infection transcriptomes, which revealed the transcriptional misregulation of TEX

cells and highly biased to TEX phenotype. Then the stable marker genes were used to train a model

through single-cell data and were able to identify TEX cells. It was also demonstrated that this model

helped to identify TEX subtypes in 32 cancer types. The high TEX subtype was likely to display high immune

score and high immune infiltration. Notably, high TEX subtype also led to high malignant level and poor

prognosis for pan-cancer patients.

A

B

C D

E

Figure 8. The clinical application of different TEX subtypes

(A) The left heatmap showed the proportion of malignant tumors in different TEX subtypes for pan-cancer. The right panel showed the odds ratios for pan-

cancer. *** meant P<=0.001, ** meant 0.01%P%0.001, two-sided Fisher’s exact test.

(B) The survival curve between different TEX subtypes for pan-cancer.

(C) The left heatmap showed the proportion of malignant tumors based on grade in different TEX subtypes for individual cancer. The right panel showed the

odds ratios for individual cancer.

(D) The left heatmap showed the proportion of malignant tumors based on stage in different TEX subtypes for individual cancer. The right panel showed the

odds ratios for individual cancer.

(E) The survival curve between different TEX subtypes for individual cancer.
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TEX cells are emerging as crucial regulators in immune system and immunotherapy. However, only a few

stable TEX marker genes help to determine the identity of TEX cells. Therefore, TEXP model was con-

structed to prioritize stable marker genes and validate TEX role in pan-cancer. We found that TEX candi-

date genes tended to be upregulated in chronic infection and cancer. Besides, these genes were also asso-

ciated withmany immune-related functions such as cytokine regulation, T cell regulation, cytokine-cytokine

receptor interaction, inflammatory bowel disease, natural killer T cell regulation and so on. Next, cancer

and chronic infection single-cell transcriptomes were employed to validate the marker genes, which could

help to recognize the identity of TEX cells in single-cell transcriptomes. Moreover, a significantly higher

proportion of TEX marker genes were co-occurred with exhaustion in single-cell data.

Increasing studies suggest that TEX may interfere with immunotherapy. Therefore, TEXP model was used

to determine a cutoff to classify tumors into high TEX subtype and low TEX subtype. The results showed

that high TEX subtype had higher immune infiltration and immune score than low TEX subtype in pan-can-

cer. Furthermore, patients in high TEX subtype displayed higher tumor malignant level as well as worse sur-

vival prognosis than low TEX subtype, which went in the opposite direction from previous conclusions that

higher immune infiltration and immune score indicated a better chance of survival. Many previous studies

also demonstrated our finding that some tumors had a high infiltration level of cytotoxic T cells, but these

T cells were induced as dysfunctional cells, which tended to keep a dysfunctional status and disturb the im-

mune response in tumors.75–77 These results reminded that evaluating patients’ prognosis should consider

of both immune infiltration and TEX level simultaneously.

In summary, TEXP provides some biological insights to analyze immune system. First, the enrichment

results show that TEX candidate genes tend to be upregulated in TEX cells. These results indicate that highly

expressed genes have more stable status in TEX cells. Second, TEXP helps prioritize TEX marker genes and

its filtered genes are demonstrated to be associated with immune-related functions. Moreover, many reliable

marker genes that are rarely analyzed before are identified. These results suggest that a proportion of marker

genes couldbedetectedat sufficiently robust expression levels to act as biomarkers. Third, basedon single-cell

transcriptomes, thecharacterizationof TEXmarker genes is validated. Finally, basedon thebulk transcriptomes,

it is demonstrated that TEXP could highlight different TEX subtypes (high TEX subtype, lowTEX subtype), which

show distinct responses to immune score, immune infiltration, malignancy and prognosis.

Limitations of the study

Identification of the marker genes is a critical step to investigate TEX function. However, limited and unsta-

ble marker genes restrict studies of TEX cells. In the present study, we prioritize the TEX marker genes and

further investigate the function of TEX marker genes through immunity and clinical information. However,

there are some limitations to our study. This study only focuses on the identification of TEX features, but

does not provide the guidance to improve the efficacy for immunotherapy effectively. It is possible that

this study could be used to further develop new direction to achieve a comprehensive prediction perfor-

mance for clinical treatment.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Xia Li (lixia@hrbmu.edu.cn).

Materials availability

This study did not generate new materials.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. This paper does not report

original code. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

METHOD DETAILS

Collection of exhaustion-related genes

In order to extract the candidate genes associated with TEX cells, PubMed was searched through the key-

words (("t-lymphocytes" OR "T cell") AND (‘‘exhaust’’ OR ‘‘exhausted’’ OR ‘‘exhaustion’’)), and 2,529

exhaustion-related publications were available. Then, we carefully checked the abstracts or the full texts

manually to obtain candidate genes. Since the candidate genes came from different versions of human

or mouse reference genome, the homologous gene information of human and mouse as well as the Entrez

ID information of human genes from NCBI were utilized to transform the candidate genes into standard

human gene symbols. Finally, 1,295 candidate genes of exhausted T cells were collected.

Bulk and single-cell expression across different TEX types and cancer types

This analysis mainly consisted of three parts of data: bulk TEX expression data, single-cell TEX expression

data and TCGA expression data. To verify the function of candidate genes in immune microenvironment,

18 sets of bulk mRNA expression profiles of tissues associated with TEX cells were downloaded from GEO

database, which were composed of 5 human expression profiles and 13 mouse expression profiles. The

data were mainly divided into two categories: cancer and chronic infection, which embraced melanoma,

colon cancer, follicular lymphoma, normal tissues treated with lymphocyte meningitis virus (LCMV) or hep-

atitis virus (HBV, HCV), and tissues that were positive for common inhibitory receptors (PDCD1, TIM3, etc.).

The detailed information for profiles were in Figure 1A. Next, six single-cell expression profiles of human

cancers were downloaded from GEO, which included GSE98638, GSE99254, GSE108989, GSE120575 and

GSE123813, and covered liver cancer, lung cancer, colorectal cancer, melanoma, basal cell carcinoma and

squamous cell carcinoma. Besides, a single-cell expression profile of mouse treated with LCMV

(GSE131535) was also obtained from GEO. For TCGA data, 32 mRNA expression profiles and their clinical

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

See Table S2 This study N/A

Software and algorithms

R version 4.0.2 or higher Open source https://www.r-project.org/

GSEA Open source https:www.gsea-msigdb.org/

Python (version 3.6) Open source https://www.python.org/

randomForest (version 4.6.12 in R) Open source N/A

survival (version 3.1.12 in R) Open source N/A

ggplot2 (version 3.3.5 in R) Open source N/A
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information were downloaded. The clinical information of tumor patients, including the survival status,

stage, grade and survival time were also obtained from the TCGA project. The sample information of

different cancers was in Table S2.

According to the annotation information provided by each bulk dataset, the samples from GEO was

divided into TEX and nonTEX. The exhaustion was mainly caused by continuous chronic inflammation stim-

ulation to the functional T cells. TEX samples included cancer tissues, normal tissues treated with LCMV or

hepatitis virus, and tissues that were positive for common inhibitory receptors (PDCD1, TIM3, etc.). NonTEX

samples included tissues with immune function (initial T cells, effector T cells, memory T cells, etc.), tissues

treated with acute virus, and tissues that were negative for common inhibitory receptors (PDCD1, TIM3,

etc.). For single-cell data, the category of each cell was defined through the fluorescence-activated cell

sorting analysis and annotation information of dataset.

The normalized microarray data and RNA-seq data did not need to be processed. For data without normal-

ization, the microarray expression profiles were normalized via the R package ‘‘limma’’, and the RNA-seq

expression profiles were converted to CPM (Counts per million) with the R package ‘‘edgeR’’.78,79 The sin-

gle-cell expression profiles were normalized via the R package ‘‘Seurat’’ with the default parameter.80 All

bulk and single-cell expression profiles were log-transformed. Based on the homology information and hu-

man gene annotation information in NCBI and GENCODE, all expression profiles were converted into the

human Entrez ID. Finally, the expression profiles covered 23,048 human coding genes.

TEXP: Optimization of TEX marker genes

To identify the stable TEX marker genes, we proposed a computational method to prioritize candidate

marker genes and explore their functions. Briefly, all genes were ranked based on their difference in expres-

sion compared TEX and nonTEX samples. The ranked gene list was subjected to candidate genes to

explore whether the TEX genes were enriched in the top or bottom of the list. This process was repeated

for all 18 bulk expression profiles of GEO. Based on the result of enrichment analysis, all genes with signif-

icantly higher RRA scores were identified in TEX samples.41

Identification of differential genes

We first used R package ‘‘limma’’ to make differential analysis for GEO bulk expression profiles.79 For each

gene, we calculated the rank score (RS) as follows:

RSi = � log
�
pi

� � signðlog2fciÞ
Where pi and fci was the p-value and fold-change value of differential analysis for gene i, respectively. The

RS was calculated in 18 bulk expression profiles of GEO. All genes were ranked based on RS.

The prioritization of candidate genes

The enrichment analysis was made to identify exhaustion-related genes. Firstly, the GSEA was used to

make enrichment analysis through the ranked gene list. Next, we collected the ranked leading edge genes

of expression profiles whose FDR values were less than 0.05 and NES scores were more than 0. Finally, the

robust rank aggregation method was applied to integrate the leading edge genes with the R package ‘‘Ro-

bustRankAggreg’’, the genes with P-value less than 0.05 were regarded as marker genes associated with

TEX stably.

The validation of TEX marker genes based on single-cell transcriptomes

To further prioritize TEX marker genes and validate the function of TEX marker genes, a TEX classifier was

constructed through single-cell expression profiles and stepwise regression analysis. The stepwise regres-

sion analysis was carried out to further optimize the marker genes. Then the gene regression coefficients

were integrated to construct the TEX classifier, and the efficacy of TEX classifier was validated in single-cell

expression profiles.

Optimization of marker genes

For the single-cell expression profile, we first converted the TEX and non-TEX cell identity into 1 and 0,

respectively. Then the cell identity and marker gene expression were regarded as dependent variable
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and independent variable to input into multiple stepwise linear regression analysis for training model. The

multiple linear regression was as follow:

y = Xb+ ε

Where, y was the vector ½y1;y2; :::;yn�, and yn represented the cell identity in cell n; X was the matrix ½;X2; :::;

Xp�, and Xp represented the expression level of gene p; Xp was the vector ½x1p;x2p; :::;xnp�, and xnp repre-

sented the expression level of gene p in cell n; bwas the vector ½b1;b2;:::;bp�, and bp represented the regres-

sion coefficient of gene p; εwas a constant term. The threshold value of multiple stepwise linear regression

analysis was p %0.05, and the significant genes were used to make further analysis.

This multiple stepwise linear regression analysis was repeated for all six single-cell expression profiles.

Next, the regression coefficient of significant genes from six single-cell expression profiles was obtained

to construct TEX classifier.

The construction and validation of TEX classifier

We first built a regression coefficient matrix whose row was union set of significant genes in six single-cell

expression profiles and column was the GEO ID (Table S1). The missing value in this matrix was filled with

zero. For each gene, the regression coefficient was then normalized as follows:

NorCoefij =
Coefij

sum
���Coef1j��+ ��Coef2j��+.+

��Coefnj���
Where i and j were the number of significant genes and single-cell expression profiles, Coefficientij was the

regression coefficient of gene i in profile j. After normalization, the comprehensive regression coefficient

was calculated to construct TEXP model classifier as follows:

ComCoefi =

8<
:

Xn

j

NorCoefij; if All six NorCoefi R0

!
;

0; other:

Where i and j were the number of significant genes and single-cell expression profiles. In this section, we

extracted the significant genes whose regression coefficients in six single-cell expression profiles were all

no less than zero. Finally, the comprehensive coefficients were used to calculate to TEX score (TS) as

follows:

TSm =
X
i

ComCoefi � Expressionim

Where i andmwere the number of significant genes and cell number in each single-cell expression profiles.

After calculating the TS for each cell, the efficacy of TEXP was validated in six single-cell expression profiles

through the R package ‘‘pROC’’ respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

The detailed information of quantification and statistical analysis were described in method details.
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