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predicts MBNL1 signals that
drive myofibroblast activation

Anders R. Nelson,1 Darrian Bugg,2 Jennifer Davis,2,3,4 and Jeffrey J. Saucerman5,6,*

SUMMARY

RNA-binding protein muscleblind-like1 (MBNL1) was recently identified as a cen-
tral regulator of cardiac wound healing and myofibroblast activation. To identify
putative MBNL1 targets, we integrated multiple genome-wide screens with a
fibroblast network model. We expanded the model to include putative MBNL1-
target interactions and recapitulated published experimental results to validate
new signaling modules. We prioritized 14 MBNL1 targets and developed novel
fibroblast signaling modules for p38 MAPK, Hippo, Runx1, and Sox9 pathways.
We experimentally validated MBNL1 regulation of p38 expression in mouse car-
diac fibroblasts. Using the expanded fibroblast model, we predicted a hierarchy
of MBNL1 regulated pathways with strong influence on aSMA expression. This
study lays a foundation to explore the network mechanisms of MBNL1 signaling
central to fibrosis.

INTRODUCTION

Heart failure complications following many forms of cardiac injury, including myocardial infarction (MI), are

closely linked to a fibrotic wound healing response.2 This process is primarily mediated by activated

myofibroblasts. These cells exhibit contractile behavior and robust deposition of extracellular matrix

(ECM) proteins in response to profibrotic cytokines including TGF-b.3 Myofibroblast activation is canoni-

cally regulated by the TGF-b/Smad2-3 axis, as well as renin-angiotensin-aldosterone signaling and non-

canonical TGF-b signaling via p38 MAP kinase, TRPC6, and PI3K/Akt, and mechanical stress signaling via

Rho kinases and MRTF and serum response factor (SRF).4–9 Although these pathways lay a framework for

fibroblast regulation of ECM, greater knowledge of fibroblast signaling is necessary to develop effective

therapeutic strategies for fibrosis.3,10

Recently, we identified RNA-binding protein muscleblind-like1 (MBNL1) as a central regulator of post-MI

cardiac wound healing and myofibroblast activation in mice, as well as of renal and pulmonary fibrosis.1

We showed that MBNL1 regulates myofibroblast activation by modulating SRF and calcineurin Ab

(CnAb) mRNA stability and splicing respectively. Although these findings indicate an important role for

fibroblast MBNL1 signaling during wound healing, MBNL1 omics data including RNA-seq and RIPseq

(RNA immunoprecipitation followed by RNA-seq) suggest that MBNL1 signals via multiple other pathways

including non-canonical TGF-b, p38 MAPK, and growth factor pathways.1 Mapping MBNL1 signaling in fi-

broblasts will aid in identifying novel fibrotic regulators and predicting signalingmechanisms. Amajor chal-

lenge in omics analysis is prioritizing influential regulators from lists of candidates. Further, although gen-

eral best practices are established for individual data analyses, there is not a standard practice for

integrating multi-omics datasets to identify disease targets.11–13

Integrated network analysis approaches have become an increasingly powerful choice for prioritizing

candidate regulators in genome-wide studies.14,15 Our group has previously used large-scale computa-

tional models to identify regulatory linchpins for cardiac signaling, including fibroblast activation and

fibrosis.16–18 Here, we combined omics data mining and network modeling to map MBNL1 signaling in fi-

broblasts and predict regulators of cardiac wound healing. Using the expanded fibroblast network model,

we screened for putative MBNL1 targets that drive aSMA expression and predicted signaling mechanisms

for these regulators. We predicted and experimentally validated MBNL1’s role in p38 MAPK expression in

cardiac fibroblasts.
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RESULTS

A genome-wide screen identifies drivers of aSMA promoter activity

To identify drivers of myofibroblast activation, we developed a computational pipeline to reanalyze a

genome-wide screen for cDNAs that increase aSMA promoter activity in mouse embryonic fibroblasts

(MEFs).1 Previously, this cDNA screen was used to identify MBNL1 as a putative fibrotic regulator.1 Here,

our normalization approach allowed screen hits to be compared across plates to determine genome-

wide screen hits. Gene set enrichment of hits showed significant membership for adherens junction forma-

tion, calcium signaling, multiple RNA regulation terms, Hippo pathway signaling, and many terms related

to increased metabolism19 (Figure S3). Although some of these gene sets are expected to induce an acti-

vated myofibroblast state, Hippo signaling genes, including Yap1, were of particular interest given the

recent identification of Yap1 as a wound healing regulator20,21 (Figure 1A). Furthermore, the enrichment

of transcript misregulation genes in our hit list supports the role of RNA modifying proteins like MBNL1

as major players in myofibroblast activation22 (Figure S3).

Figure 1. Candidate MBNL1 regulatory targets identified through multi-omic integration

(A) Omics data overlap approach to identify putative MBNL1 target mRNAs. Priority overlaps are labeled with arrows in

the Venn diagram. Genes added to the network model are bolded.

(B) Select genes with high relevance to fibrosis from rat cardiac fibroblast (RCF) RIPseq overlapped with MCF RNA-seq.

These genes are bound by MBNL1 and exhibit expression driven by MBNL1 in mouse cardiac fibroblasts.

(C) Select genes with high relevance to fibrosis from RCF RIPseq overlapped with MEF cDNA Acta2 promoter-reporter

screen. These genes are bound directly by MBNL1 and can drive aSMA expression when overexpressed. Also see

Figures S1.
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A computational model of MBNL1 signaling to fibrotic regulatory targets

MBNL1 was previously shown to modulate mRNAs for calcineurin A b, SRF, and TGFbR2.1 The in vitro

mouse embryonic fibroblast (MEF) RNA-seq and rat cardiac fibroblast (RCF) RIPseq datasets by Davis

et al. suggest many additional candidate targets for MBNL1 regulation in fibroblasts.1 RNA-seq studies

following MBNL1 knockdown demonstrate that MBNL1 promotes differentiated cell states through regu-

lation of many target RNAs, and that MBNL1 is necessary for differentiation.23,24 These data together sup-

port a broad and central signaling role forMBNL1 inmyofibroblast activation. To determine if MBNL1 binds

known regulators for fibrosis, we compared genes from the published MBNL1-OE RNA Immunoprecipita-

tion sequencing (RIPseq) with genes from the most recent version of our fibroblast network model.1,18

MBNL1 bound 42 mRNAs and modulated 3 mRNAs corresponding to 45 nodes (�40%) in the fibroblast

model (Table S1), indicating that this network model would be a useful tool to map MBNL1 signaling.

Candidate MBNL1 regulatory targets that were not members of the fibroblast network model were manu-

ally curated by literature review to determine if the target could fit in a putative signaling pathway related to

fibrosis or differentiation. As the genome-wide cDNA screen only identifies positive, but not negative, reg-

ulators of aSMA, we focused on identifying profibrotic regulators downstream of MBNL1. We prioritized

genes from two data overlap categories: Genes bound by MBNL1 in RIPseq that showed increased differ-

ential expression in mouse cardiac fibroblast (MCF) RNA-seq on in vivo MBNL1 overexpression (67 genes)

(Figures 1B and S1A); and genes bound by MBNL1 in RIPseq that were hits in the cDNA screen (97 genes)

(Figures 1C and S1B) (DataS1). All modeled MBNL1 targets except for PAI1 (Serpine1) were in these first-

priority overlaps. We filtered the candidate list to 60 genes that were not members of the model and

determined that 4 of these genes (Sox9, Runx1, Yap1, andCbfb) had sufficient pathway knowledge to incor-

porate in the cardiac fibroblast network model. From our list of candidates, we identified 10 MBNL1 targets

already in the network model. Including SRF, CnA, and TGFbR1, there are 14 MBNL1 targets in the network

model (Figure 1A). The complete integrated network model schematic is shown in Figure S5.

Validation of predictive model accuracy

To map MBNL1 signaling in fibroblasts, we expanded the cardiac fibroblast network with MBNL1 signaling

reactions to these 14 targets and added new pathways for 7 of these targets (Figure 2A). As a test of the

predictive capacity of the model for MBNL1 signaling, we simulated two experiments from our previous

study,1 showing the model predicted similar changes in SRF and calcineurin mRNA as those observed in

our fibroblast experiments on MBNL1 perturbation (Figure 2B).

We next expanded our model validation tests to more systematically determine the accuracy of the MBNL1

fibroblast network model, using experimental data from recent fibrosis studies in silico. Input-Output

Figure 2. Network model maps MBNL1 regulations of target mRNAs

(A) Model implementation for MBNL1 signaling to downstream targets. Upstream regulators can partially activate downstream MBNL1 targets, but require

the presence of MBNL1 for complete target activation.

(B) Model validation against two experimental results from our previous study.1 (Top) SRFmRNA is partially diminished on MBNL1 knockout following MI,

represented by high TGFb and AngII in the model.18 (Bottom) MBNL1 overexpression drives Calcineurin activity.

(C) Experimental validation of 79 intermediate-output relationships from the literature, grouped by signaling module. Data is represented as meanG S.E.M.

Also see Figure S2.

ll
OPEN ACCESS

iScience 26, 106502, April 21, 2023 3

iScience
Article



validations were performed as described previously.17 Here, previously published experiments were simu-

lated and predicted results were compared to those of in vitro experiments. Model-predicted phenotypic

outputs such as ‘Proliferation’ are determined by measuring activity of the respective network node (Fig-

ure S5). Model and experimental results were compared qualitatively, observing if the output of interest

increased, decreased, or showed no significant change on perturbation. These validations contain exper-

iments where an input is elevated and an output is measured (i.e. elevated TGFb increases Col1). The

model validated against 80% (66/83) of Input-Output relationships (Figure S4).

To recapitulate perturbation experiments relevant to the new MBNL1-target interactions in the model, we

created a table of 79 Intermediate-Output validations (Figure 3). Intermediate-Output validations include

Figure 3. Validation relationships of the MBNL1 fibroblast network model for Input-Output validations curated from the literature

Colored boxes represent cases of ‘Increase’, ‘Decrease’ or ‘No Change’ on a given perturbation. Validation relationships are categorized by the measured

output. OE and KO stand for overexpression and knockout respectively. Also see Figure S4.

ll
OPEN ACCESS

4 iScience 26, 106502, April 21, 2023

iScience
Article



experiments with intracellular perturbation (i.e. p38 OE increases a-SMA) whereas Input-Output valida-

tions include extracellular signaling outcomes (i.e. TGFb treatment increases Col1 mRNA). Intermediate-

Output model predictions validated against 78% (62/79) of Intermediate-Output validations (Figures 2C

and 3). Validation percentages were highest for experiments perturbing MBNL1, Hippo, and p38 MAPK

signaling.

Virtual perturbation screens for MBNL1 target influence on aSMA expression

To determine which modeled MBNL1 targets are most influential in activating aSMA expression, we simu-

lated systematic knockdown of MBNL1 targets (Figure 4A). We expect aSMA activity to be low in quiescent

cells, and high during cardiac injury. Therefore, we screened for aSMA expression-driving MBNL1 targets in

a simulated AngII+TGFb signaling context, as AngII and TGFb increase MBNL1 expression.1 SRF showed

the most influence on knockdown, whereas Sox9 and calcineurin, two validated MBNL1 targets, were not

as influential as regulators of aSMA.1,25 Of interest, Runx1 and Cbfb had negligible effects on aSMA

expression on simulated knockdown. To complement knockdown simulations, we further tested the role

of MBNL1 target overexpression on aSMA promoter activity (Figure 4B). Here, as in the cDNA screen, simu-

lated overexpression of most MBNL1 targets showed robust increases in aSMA similar to that of MBNL1-

OE. TGFb1R-OE had a greater effect, consistent with it being a highly recognized activator of fibrotic

signaling.26 These predictions are congruent with experimental studies showing that Sox9, Yap1, and

p38 regulate post-MI wound healing and aSMA expression.25,27–29 The combined results from these screens

suggest that loss-of-function inMBNL1 targets can be partially compensated for by other targets to conduct

profibrotic MBNL1 signaling, but MBNL1 targets individually can be sufficient to drive aSMA expression

when their activity is elevated. It is also possible that profibrotic signaling for some of these targets is not

fully captured by the model. For example, it is likely that Sox9 directly regulates the promoter of a Col1

gene, as it shows a similar function on the Col2a1 promoter in chondrocytes and colocalizes with Col1 pro-

tein in vivo, but insufficient information is available currently to include this mechanism in our model.29–31

Figure 4. Expanded model predicts effects of MBNL1 target signaling perturbations on aSMA

(A) aSMA expression on simulated knockdown of MBNL1 targets in the context of high TGFb+AngII.

(B) aSMA expression in response to simulated overexpression of MBNL1 and its targets. Values in panels A and B are

model predictions normalized to the same scale, where 1 is maximal possible aSMA. Data is represented as mean G

S.E.M.
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Recently, we determined that p38 regulates Yap signaling in fibroblasts.32 This finding is further supported

by these computational screens where p38 and Yap1 are both predicted to conduct profibrotic MBNL1

signaling (Figure 4B). The PI3K/Akt axis was recently shown to have a regulatory role in fibrosis.33 Notably,

Sox9 and p38 are modeled to signal via this pathway and also increase Hippo signaling through the inhi-

bition of Mst1 via Akt. Runx1/Cbfb and Yap1 also signal via the canonical Smad3 axis. This network model

supports a framework where influential fibrosis regulators converge on shared pathways while maintaining

some independent influence on downstream aSMA expression. Our simulation results imply that cardiac

fibrosis is dependent on a network of interconnected regulators instead of isolated independent pathways

and that these regulators are transcriptionally controlled by MBNL1.

Putative signaling pathways for novel regulators of fibrosis

Next, we applied the MBNL1-incorporated fibroblast signaling network model to determine predicted

signaling pathways for putative MBNL1 targets nuclear Yap1, Sox9, Runx1, and p38. To investigate how

targets signal to aSMA downstream of MBNL1, we simulated overexpression of MBNL1 targets in a high

MBNL1 context and tracked activation of nodes between the overexpressed target and aSMA.

Simulated Sox9 overexpression was predicted to increase the activity of PI3K and Akt, and to decrease

activity for Foxo3 (Figure 5A). As Foxo3 suppresses aSMA and Collagen expression, these simulation

Figure 5. Simulated overexpressions predict signaling mechanisms of MBNL1 targets

(A) Normalized expression changes predicted by the model for select nodes downstream of Sox9, Runx1, and Nuclear Yap1.

(B) Schematics representing signal transduction fromMBNL1 targets to aSMA expression. Colored nodes correspond to measured nodes in panel A. Data is

represented as mean G S.E.M.
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results support a predicted signaling pathway where Sox9 drives expression of PI3K and Akt resulting in

suppression of antifibrotic Foxo3.

As Cbfb has been shown to bind and stabilize Runx proteins, it is often necessary for full Runx family protein

expression and function. Therefore, we simulated Runx1 overexpression with a basal input of Cbfb to map

Runx1 signaling without being limited by Cbfb availability.34–36 The simulated overexpression resulted

in increased Smad3 activity (Figure 5A). Here, we predict that Runx1 and Cbfb activate Smad3 directly,

leading to increased aSMA expression. This pathway also forms a direct connection between MBNL1

and canonical fibrotic regulator Smad3.

Next, we simulated overexpressed nuclear Yap1, a central transcription factor to the Hippo pathway and

a putative MBNL1 target. Nuclear Yap1 OE was predicted to simultaneously increase Smad3 activity and

decrease Smad7 activity (Figure 5A). As Smad7 inhibits Smad3 activity, nuclear Yap1 is predicted to

increase aSMA expression by activating Smad3 directly, and by blocking the activity of Smad7, further

increase Smad3 activity.

P38 signals through multiple pro- and antifibrotic pathways in our model. MK2 inhibition, downstream

of p38, has been shown to mitigate post-MI fibrosis in mice.37 We simulated overexpression of MK2 to

map an isolated profibrotic branch of p38 signaling. Simulated MK2 overexpression was predicted to

increase the expression of aSMA, as well as for activity of SRF and NFAT (Figure 6B). We next wanted

to determine if profibrotic p38 signaling was occurring solely through SRF, or if NFAT signaling was also

predicted to play a role in aSMA expression. We simulated NFAT overexpression and predicted increased

activity for SRF, TRPC, calcium, and calcineurin (Figure 6C). From these results, we predict that p38, via

Figure 6. Simulated overexpressions predict p38 signaling via MK2 and an NFAT-SRF feedback loop

(A) Schematic representing p38 signaling to aSMA through MK2 directly via SRF, and indirectly via NFAT feedback to SRF. Nodes are colored for

identification to match panels B and C.

(B) Model-predicted normalized expression changes for select nodes downstream of MK2. MK2 overexpression was simulated to track signaling

propagation of downstream p38 signaling.

(C) Normalized expression changes for select nodes downstream of NFAT. NFAT expression was predicted to increase under MK2 overexpression. NFAT

overexpression was simulated to determine if MK2 can activate aSMA via NFAT. Data is represented as mean G S.E.M.
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MK2, increases expression of aSMA directly via SRF, and p38 also activates the TRPC/calcineurin/NFAT

pathway that further increases aSMA expression via positive feedback activation of SRF. Although

MBNL1 regulation of SRF mRNA was previously shown, MBNL1’s predicted regulation of p38 expression

is a novel role for MBNL1. We next aimed to validate the MBNL1-p38 signaling relationship with experi-

ments in mouse cardiac fibroblasts.

Experimental validation of predicted MBNL1-p38 MAPK interaction

To determine if MBNL1 regulates p38 expression as predicted by the model, we treated adult cardiac fi-

broblasts fromMBNL1-floxedmice with Cre to induceMBNL1 knockout. Western blot results show a reduc-

tion in p38 and phospho-p38 in Cre-treated fibroblasts compared to the wild-type fibroblasts (Figure 7),

validating the model prediction. Expression of fibrotic marker proteins aSMA and periostin did not signif-

icantly decrease on MBNL1 KO, and periostin expression increased. Reduction in both p38 and phospho-

p38 forms on MBNL1 knockout indicates that MBNL1 is necessary for the full expression and activity of p38

(Figure 7). Complete western blot gels are shown in Figure S7.

DISCUSSION

Omics-integrated model for MBNL1 fibroblast signaling

MBNL1 is increasingly recognized as a central regulator of fibrosis, but its downstream regulatory mecha-

nisms are not well characterized. The fibroblast network model was previously used to predict signaling in-

teractions across a broad range of fibrosis regulatory pathways. Here, we aimed to expand and repurpose

this model to predict MBNL1 target interactions leading to fibroblast activation.18We usedmulti-omic data

to expand a fibroblast network model including MBNL1 and its putative targets. The expanded model was

validated at a rate of 78% (62/79) against independently published perturbation experiments. The model

predicted the relative influence of MBNL1 targets on aSMA expression during overexpression and knock-

down and predicted signaling mechanisms for Hippo, Runx, Sox9, and p38 pathways conducting MBNL1

signaling to aSMA. Model-predicted MBNL1 regulation of its target p38 MAPK was experimentally

validated in mouse cardiac fibroblasts.

Convergence and redundancy of MBNL1 target signaling

Fibrotic signal transduction involves many input pathways that often converge on key hubs.3 In overexpres-

sion simulations for putativeMBNL1 targets, we showed that both Runx1 and Yap1 converged on Smad3 to

modulate aSMA (Figure 5). P38, another MBNL1 target confirmed experimentally, converged on SRF to

modulate aSMA (Figure 6). The convergence of fibrotic regulators on signaling hubs creates signaling

redundancy that makes it challenging to distinguish the most influential regulators of fibrosis. In our knock-

down and overexpression simulations (Figure 4), we showed that knockdown of most MBNL1 targets

caused only small decreases in aSMA expression in a high AngII+TGFb context. However, the

Figure 7. As predicted by the model, MBNL1 knockout in adult mouse cardiac fibroblasts reduces expression of p38

(A) Western blot of mouse cardiac fibroblasts from adenoviral Cre-treated mice (KO) and those with normal MBNL1 expression (WT). Proteins run on

individual gels.

(B) Quantification of western blot data, pvalues from Student’s t-test listed above bars. Data is represented as mean G S.E.M. Also see Figures S6 and S7.
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overexpression simulations predicted much greater absolute changes in aSMA expression than in the

knockdown. From these results, we predict MBNL1 targets have a high impact on fibrosis when activated

individually, but partially compensate for one another when knocked out. Consistent with these predic-

tions, we have previously shown that overexpression of MKK6 upstream of p38 can directly drive myofibro-

blast activation and cardiac fibrosis in mice.28 Yap1, another putative MBNL1 target, was recently shown to

drive post-MI fibrosis when overexpressed.38 Future studies onMBNL1 signaling could examine the effects

of crosstalk and signaling redundancy between MBNL1 targets during wound healing.

The broad scope of MBNL1 regulation across fibroblast pathways

We used an overlap strategy to filter hits from omics studies down to 256 candidate regulators. We found

that 60 of these genes had a documented role in cardiac fibrosis, and it is likely that some of these candi-

date genes play a significant role in fibrosis downstream of MBNL1. Candidates were only incorporated in

the model if their fibroblast signaling pathways were well characterized and could be connected to down-

stream aSMA expression. Although only 14 targets were included in the signaling network model, the other

candidates should be considered in future work on cardiac wound healing.

Of the unincorporated candidates, there are four that stand out with particular clinical relevance for cardiac

fibrosis. Irak1, part of the TLR/IL-1 signaling cascade, has been implicated in multiple fibrotic diseases.39

The IL-1 receptor is also a therapeutic target for anakinra (Kineret), a recent candidate therapy for MI pa-

tients currently in phase 2 clinical trials (NCT01175018).40,41 Nkd2 is a documented antagonist of Wnt

signaling in cancer.42 Canonical Wnt signaling plays a role in cardiac fibrosis through multiple pathways

including calcium signaling to promote cellular activation and proliferation.43 Cd44 was recently shown

to be a critical regulator of cardiac wound healing in mice.44 Cd44 deficiency was further shown to mimic

AT1R inhibition during AngII-induced cardiac fibrosis, reducingmacrophagemigration, myofibroblast pro-

liferation, and interstitial fibrosis.45 Latent transforming growth factor binding protein 2 (Ltbp2) is respon-

sible for binding secreted TGFb to the extracellular matrix. Ltbp2 is upregulated in fibroblasts during

dilated cardiomyopathy, and Ltbp2 siRNA reduced pathological remodeling.46 Indeed, regulation of fibro-

blast latent TGFb signaling is a priority target for the development of antifibrotic therapeutics.47 Future

studies could investigate a role for MBNL1 in regulating mRNAs of these candidate genes.

Model validation

We curated a new set of published validation experiments to test the predictive accuracy of the expanded

network model. This new validation set comprises Intermediate-Output experiments where MBNL1 and its

putative targets are perturbed and cellular outputs are measured. Themodel validated against 78% (62/79)

of relationships. The validation subsets that have the highest percentage of failures are NFAT (4), TRPC (8),

and p38 (4). Half of these relationships are instances where no significant change was shown in an exper-

iment, but a significant change in node activity was seen in themodel prediction. One explanation for this is

that our number of ensemble simulations is higher than the typical number of biological replicates in in vitro

studies. Lower replicate number in in vitro studies may lack sufficient statistical power to detect small

changes.

Other failed validations can guide future model revisions and experiments. For example, although it has

been shown that increased TRPC increases expression of periostin, our model does not connect TRPC6

to periostin.5 In this model, most of TRPC’s profibrotic signaling is conducted through NFAT and SRF.

To our knowledge, no study has shown that SRF regulates periostin in cardiac fibroblasts. Although previ-

ous studies have shown that perturbations to SRF and MRTF signaling in myocytes affect periostin expres-

sion, the fibroblast-specific mechanisms of TRPC signaling in periostin regulation should be further

explored.48,49

In our in vitro validation experiment with adult mouse primary cardiac fibroblasts, expression of the activa-

tion marker aSMA did not significantly decrease on MBNL1 KO. This result is different than our previous

study in TGFb-treated mouse embryonic fibroblasts, where MBNL1 KO reduced aSMA expression.1 Acti-

vation of adult mouse primary cardiac fibroblasts is highly sensitive to mechanical tension.50–52 It is likely

that these cardiac fibroblasts cultured on a rigid substrate were activated via mechanical stress signaling

pathways independent of MBNL1, causing aSMA expression in the MBNL1 KO condition. Although we ex-

pected periostin expression to decrease on MBNL1 KO, its expression increased. Given that MBNL1 binds

and directly regulates many mRNAs, it is possible that MBNL1 positively regulates mRNAs for genes that
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negatively regulate periostin expression, and that MBNL1 knockout reduced the expression of these nega-

tive regulators.

Limitations of the study

Our network model’s primary limitations are the use of default parameters and that it is currently best

suited for in vitro environments where the inputs are well defined. As seen in previous studies, our

network models, including a previous version of this fibroblast network model, are robust to parameter

variation.17,53 Here, we also improved the simulation robustness using an ensemble approach described

above. With this approach, we randomly sampled model parameters within a normal distribution over

many simulations to make consensus model predictions. The original fibroblast network model was built

on a body of literature on well-studied and canonical fibroblast pathways.17 Literature for this expanded

model was more limited, as it pertains to novel non-canonical fibrotic regulators. We have identified a set

of many putative regulators that can be adapted to improve this model as more published data becomes

available.

Limitations of the experimental system may also contribute to interpretation of model validation. In our

validation experiment in cardiac fibroblasts, we observed incomplete knockout of MBNL1 because of lim-

itations of adenoviral transfection efficiency at 500 MOI, which is optimized for cell health. The decrease in

p38 expression is consistent with the degree of decreased MBNL1 expression in the adeno-Cre treated

cells. This indicates that the observed expressions of alpha-SMA and periostin are more likely because

of mechanical activation than because of non-transduced cells.

We developed an expanded fibroblast network model integrated with genome-wide data to map

MBNL1 signaling across 14 targets in cardiac fibroblasts. Simulated knockdown and overexpression

screens predicted MBNL1 targets exhibit partially redundant signaling when knocked out but are suf-

ficient to drive aSMA expression when overexpressed. By simulating overexpression of individual

MBNL1 targets and tracing node expression, we predicted signaling mechanisms for MBNL1 targets

Yap1, Runx1, Sox9, and p38. We predicted that MBNL1 regulates p38 MAPK, and validated this rela-

tionship with experiments in cardiac fibroblasts. The data overlap and network modeling approaches

used here enabled identification and mechanistic predictions for targets of MBNL1 during cardiac

fibrosis.
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Viswanathan, S., Widjaja, A.A., Langley, S.R.,
Tan, J., Wang, M., Quaife, N.M., Jian Pua, C.,
et al. (2019). Widespread translational control
of fibrosis in the human heart by RNA-binding
proteins. Circulation 140, 937–951. https://
doi.org/10.1161/CIRCULATIONAHA.119.
039596.

23. Ray, D., Yun, Y.C., Idris, M., Cheng, S., Boot,
A., Iain, T.B.H., Rozen, S.G., Tan, P., and
Epstein, D.M. (2020). A tumor-associated
splice-isoform of MAP2K7 drives
dedifferentiation in MBNL1-low cancers via
JNK activation. Proc. Natl. Acad. Sci. USA
117, 16391–16400. https://doi.org/10.1073/
pnas.2002499117.

24. Cheng, A.W., Shi, J., Wong, P., Luo, K.L.,
Trepman, P., Wang, E.T., Choi, H., Burge,
C.B., and Lodish, H.F. (2014). Muscleblind-like
1 (Mbnl1) regulates pre-mRNA alternative
splicing during terminal erythropoiesis.
Blood 124, 598–610. https://doi.org/10.1182/
blood-2013-12-542209.

25. Bugg, D., Bailey, L.R.J., Bretherton, R.C.,
Beach, K.E., Reichardt, I.M., Robeson, K.Z.,
Reese, A.C., Gunaje, J., Flint, G., DeForest,
C.A., et al. (2022). MBNL1 drives dynamic
transitions between fibroblasts and
myofibroblasts in cardiac wound healing. Cell
Stem Cell 29, 419–433.e10. https://doi.org/
10.1016/J.STEM.2022.01.012.

26. Khalil, H., Kanisicak, O., Prasad, V., Correll,
R.N., Fu, X., Schips, T., Vagnozzi, R.J., Liu, R.,
Huynh, T., Lee, S.-J., et al. (2017). Fibroblast-
specific TGF-b-Smad2/3 signaling underlies
cardiac fibrosis. J. Clin. Invest. 127, 3770–
3783. https://doi.org/10.1172/JCI94753.

27. Del Re, D.P., Yang, Y., Nakano, N., Cho, J.,
Zhai, P., Yamamoto, T., Zhang, N., Yabuta, N.,
Nojima, H., Pan, D., and Sadoshima, J. (2013).
Yes-associated protein isoform 1 (Yapl)
promotes cardiomyocyte survival and growth
to protect against myocardial ischemic injury.
J. Biol. Chem. 288, 3977–3988. https://doi.
org/10.1074/jbc.M112.436311.

28. Molkentin, J.D., Bugg, D., Ghearing, N.,
Dorn, L.E., Kim, P., Sargent, M.A., Gunaje, J.,
Otsu, K., and Davis, J. (2017). Fibroblast-
specific genetic manipulation of p38
mitogen-activated protein kinase in vivo
reveals its central regulatory role in fibrosis.
Circulation 136, 549–561. https://doi.org/10.
1161/CIRCULATIONAHA.116.026238.

29. Lacraz, G.P.A., Junker, J.P., Gladka, M.M.,
Molenaar, B., Scholman, K.T., Vigil-Garcia,
M., Versteeg, D., de Ruiter, H., Vermunt,
M.W., Creyghton, M.P., et al. (2017). Tomo-
Seq identifies SOX9 as a key regulator of
cardiac fibrosis during ischemic injury.
Circulation 136, 1396–1409. https://doi.org/
10.1161/CIRCULATIONAHA.117.027832.

30. Furumatsu, T., Tsuda, M., Taniguchi, N.,
Tajima, Y., and Asahara, H. (2005). Smad3
induces chondrogenesis through the
activation of SOX9 via CREB-binding protein/
p300 recruitment. J. Biol. Chem. 280, 8343–
8350. https://doi.org/10.1074/jbc.
M413913200.

31. Yasuda, H., Oh, C.d., Chen, D., De
Crombrugghe, B., and Kim, J.H. (2017). A
novel regulatory mechanism of type II
collagen expression via a SOX9-dependent
enhancer in intron 6. J. Biol. Chem. 292,
528–538. https://doi.org/10.1074/jbc.M116.
758425.

32. Bugg, D., Bretherton, R., Kim, P., Olszewski,
E., Nagle, A., Schumacher, A.E., Chu, N.,
Gunaje, J., DeForest, C.A., Stevens, K., et al.
(2020). Infarct collagen topography regulates
fibroblast fate via p38-yap-TEAD signals.
Circ. Res. 127, 1306–1322. https://doi.org/10.
1161/CIRCRESAHA.119.316162.

33. Cui, S., Liu, Z., Tao, B., Fan, S., Pu, Y., Meng,
X., Li, D., Xia, H., and Xu, L. (2021). miR-145
attenuates cardiac fibrosis through the AKT/
GSK-3b/b-catenin signaling pathway by
directly targeting SOX9 in fibroblasts. J. Cell.
Biochem. 122, 209–221. https://doi.org/10.
1002/jcb.29843.

34. Chen, W., Ma, J., Zhu, G., Jules, J., Wu, M.,
McConnell, M., Tian, F., Paulson, C., Zhou, X.,
Wang, L., and Li, Y.P. (2014). Cbfb deletion in
mice recapitulates cleidocranial dysplasia
and reveals multiple functions of Cbfb
required for skeletal development. Proc. Natl.
Acad. Sci. USA 111, 8482–8487. https://doi.
org/10.1073/pnas.1310617111.

35. Islam, M.N., Itoh, S., Yanagita, T., Sumiyoshi,
K., Hayano, S., Kuremoto, K.-I., Kurosaka, H.,
Honjo, T., Kawanabe, N., Kamioka, H., et al.
(2015). Runx/Cbfb signaling regulates
postnatal development of granular
convoluted tubule in the mouse
submandibular gland. Dev. Dyn. 244,
488–496. https://doi.org/10.1002/dvdy.
24231.

36. Komori, T. (2015). The functions of Runx
family transcription factors and Cbfb in
skeletal development. Oral Sci. Int. 12, 1–4.
https://doi.org/10.1016/S1348-8643(14)
00032-9.

37. Brown, D.I., Cooley, B.C., Quintana, M.T.,
Lander, C., and Willis, M.S. (2016). Nebulized
delivery of the MAPKAP kinase 2 peptide
inhibitor MMI-0100 protects against
ischemia-induced systolic dysfunction. Int. J.
Pept. Res. Ther. 22, 317–324. https://doi.org/
10.1007/s10989-015-9507-3.

38. Mia, M.M., Cibi, D.M., Ghani, S.A.B.A., Singh,
A., Tee, N., Sivakumar, V., Bogireddi, H.,
Cook, S.A., Mao, J., Singh, M.K., et al. (2022).
Loss of Yap/Taz in cardiac fibroblasts
attenuates adverse remodelling and

improves cardiac function. Cardiovasc. Res.
118, 1785–1804. https://doi.org/10.1093/
CVR/CVAB205.

39. Singer, J.W., Fleischman, A., Al-Fayoumi, S.,
Mascarenhas, J.O., Yu, Q., and Agarwal, A.
(2018). Inhibition of interleukin-1 receptor-
associated kinase 1 (IRAK1) as a therapeutic
strategy. Oncotarget 9, 33416–33439. https://
doi.org/10.18632/oncotarget.26058.

40. Bageghni, S.A., Hemmings, K.E., Yuldasheva,
N.Y., Maqbool, A., Gamboa-Esteves, F.O.,
Humphreys, N.E., Jackson, M.S., Denton,
C.P., Francis, S., Porter, K.E., et al. (2019).
Fibroblast-specific deletion of IL-1 receptor-1
reduces adverse cardiac remodeling
following myocardial infarction. JCI Insight 5,
e125074. https://doi.org/10.1172/jci.insight.
125074.

41. Gorelik, M., Lee, Y., Abe, M., Andrews, T.,
Davis, L., Patterson, J., Chen, S., Crother, T.R.,
Aune, G.J., Noval Rivas, M., and Arditi, M.
(2019). IL-1 receptor antagonist, anakinra,
prevents myocardial dysfunction in a mouse
model of Kawasaki disease vasculitis and
myocarditis. Clin. Exp. Immunol. 198,
101–110. https://doi.org/10.1111/cei.13314.

42. Zhao, S., Kurenbekova, L., Gao, Y., Roos, A.,
Creighton, C.J., Rao, P., Hicks, J., Man, T.K.,
Lau, C., Brown, A.M.C., et al. (2015). NKD2, a
negative regulator of Wnt signaling,
suppresses tumor growth and metastasis in
osteosarcoma. Oncogene 34, 5069–5079.
https://doi.org/10.1038/onc.2014.429.

43. Tao, H., Yang, J.J., Shi, K.H., and Li, J. (2016).
Wnt signaling pathway in cardiac fibrosis:
new insights and directions. Metabolism 65,
30–40. https://doi.org/10.1016/j.metabol.
2015.10.013.

44. Huebener, P., Abou-Khamis, T., Zymek, P.,
Bujak, M., Ying, X., Chatila, K., Haudek, S.,
Thakker, G., and Frangogiannis, N.G. (2008).
CD44 is critically involved in infarct healing by
regulating the inflammatory and fibrotic
response. J. Immunol. 180, 2625–2633.
https://doi.org/10.4049/jimmunol.180.
4.2625.

45. Yang, L.-W., Qin, D.-Z., James, E., McKallip,
R.J., Wang, N.-P., Zhang, W.-W., Zheng,
R.-H., Han, Q.-H., and Zhao, Z.-Q. (2019).
CD44 deficiency in mice protects the heart
against angiotensin ii-induced cardiac
fibrosis. Shock 51, 372–380. https://doi.org/
10.1097/SHK.0000000000001132.

46. Pang, X.F., Lin, X., Du, J.J., and Zeng, D.Y.
(2020). LTBP2 knockdown by siRNA reverses
myocardial oxidative stress injury, fibrosis and
remodelling during dilated cardiomyopathy.
Acta Physiol. 228, e13377. https://doi.org/10.
1111/apha.13377.

47. Parichatikanond, W., Luangmonkong, T.,
Mangmool, S., and Kurose, H. (2020).
Therapeutic targets for the treatment of
cardiac fibrosis and cancer: focusing on tgf-b
Signaling. Front. Cardiovasc. Med. 7, 34.
https://doi.org/10.3389/fcvm.2020.00034.

48. Niu, Z., Conway, S.J., Martin, J.F., Ivey, K.,
Srivastava, D., Nordheim, A., and Schwartz,
R.J. (2008). Serum response factor
orchestrates nascent sarcomerogenesis and

ll
OPEN ACCESS

12 iScience 26, 106502, April 21, 2023

iScience
Article

https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1016/j.yexmp.2017.11.006
https://doi.org/10.1016/j.yexmp.2017.11.006
https://doi.org/10.1038/jid.2013.339
https://doi.org/10.1038/jid.2013.339
https://doi.org/10.1161/CIRCULATIONAHA.119.039596
https://doi.org/10.1161/CIRCULATIONAHA.119.039596
https://doi.org/10.1161/CIRCULATIONAHA.119.039596
https://doi.org/10.1073/pnas.2002499117
https://doi.org/10.1073/pnas.2002499117
https://doi.org/10.1182/blood-2013-12-542209
https://doi.org/10.1182/blood-2013-12-542209
https://doi.org/10.1016/J.STEM.2022.01.012
https://doi.org/10.1016/J.STEM.2022.01.012
https://doi.org/10.1172/JCI94753
https://doi.org/10.1074/jbc.M112.436311
https://doi.org/10.1074/jbc.M112.436311
https://doi.org/10.1161/CIRCULATIONAHA.116.026238
https://doi.org/10.1161/CIRCULATIONAHA.116.026238
https://doi.org/10.1161/CIRCULATIONAHA.117.027832
https://doi.org/10.1161/CIRCULATIONAHA.117.027832
https://doi.org/10.1074/jbc.M413913200
https://doi.org/10.1074/jbc.M413913200
https://doi.org/10.1074/jbc.M116.758425
https://doi.org/10.1074/jbc.M116.758425
https://doi.org/10.1161/CIRCRESAHA.119.316162
https://doi.org/10.1161/CIRCRESAHA.119.316162
https://doi.org/10.1002/jcb.29843
https://doi.org/10.1002/jcb.29843
https://doi.org/10.1073/pnas.1310617111
https://doi.org/10.1073/pnas.1310617111
https://doi.org/10.1002/dvdy.24231
https://doi.org/10.1002/dvdy.24231
https://doi.org/10.1016/S1348-8643(14)00032-9
https://doi.org/10.1016/S1348-8643(14)00032-9
https://doi.org/10.1007/s10989-015-9507-3
https://doi.org/10.1007/s10989-015-9507-3
https://doi.org/10.1093/CVR/CVAB205
https://doi.org/10.1093/CVR/CVAB205
https://doi.org/10.18632/oncotarget.26058
https://doi.org/10.18632/oncotarget.26058
https://doi.org/10.1172/jci.insight.125074
https://doi.org/10.1172/jci.insight.125074
https://doi.org/10.1111/cei.13314
https://doi.org/10.1038/onc.2014.429
https://doi.org/10.1016/j.metabol.2015.10.013
https://doi.org/10.1016/j.metabol.2015.10.013
https://doi.org/10.4049/jimmunol.180.4.2625
https://doi.org/10.4049/jimmunol.180.4.2625
https://doi.org/10.1097/SHK.0000000000001132
https://doi.org/10.1097/SHK.0000000000001132
https://doi.org/10.1111/apha.13377
https://doi.org/10.1111/apha.13377
https://doi.org/10.3389/fcvm.2020.00034


silences the biomineralization gene program
in the heart. Proc. Natl. Acad. Sci. USA 105,
17824–17829. https://doi.org/10.1073/pnas.
0805491105.

49. Trembley, M.A., Quijada, P., Agullo-Pascual,
E., Tylock, K.M., Colpan, M., Dirkx, R.A.,
Myers, J.R., Mickelsen, D.M., De Mesy
Bentley, K., Rothenberg, E., et al. (2018).
Mechanosensitive gene regulation by
myocardin-related transcription factors is
required for cardiomyocyte integrity in load-
induced ventricular hypertrophy. Circulation
138, 1864–1878. https://doi.org/10.1161/
CIRCULATIONAHA.117.031788.

50. Li, M.,Wu, J., Hu, G., Song, Y., Shen, J., Xin, J.,
Li, Z., Liu, W., Dong, E., Xu, M., et al. (2021).
Pathological matrix stiffness promotes
cardiac fibroblast differentiation through the
POU2F1 signaling pathway. Sci. China Life
Sci. 64, 242–254. https://doi.org/10.1007/
s11427-019-1747-y.

51. Landry, N.M., Rattan, S.G., and Dixon, I.M.C.
(2019). An improved method of maintaining
primary murine cardiac fibroblasts in two-

dimensional cell culture. Sci. Rep. 9. https://
doi.org/10.1038/s41598-019-49285-9.

52. Herum, K.M., Choppe, J., Kumar, A., Engler,
A.J., and McCulloch, A.D. (2017). Mechanical
regulation of cardiac fibroblast profibrotic
phenotypes. Mol. Biol. Cell 28, 1871–1882.
https://doi.org/10.1091/mbc.E17-01-0014.

53. Tan, P.M., Buchholz, K.S., Omens, J.H.,
McCulloch, A.D., and Saucerman, J.J. (2017).
Predictive model identifies key network
regulators of cardiomyocyte mechano-
signaling. PLoS Comput. Biol. 13, e1005854.
https://doi.org/10.1371/journal.pcbi.1005854.

54. Schindelin, J., Arganda-Carreras, I., Frise, E.,
Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
S., Rueden, C., Saalfeld, S., Schmid, B., et al.
(2012). Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9,
676–682. https://doi.org/10.1038/
nmeth.2019.

55. GitHub. (2015). - saucermanlab/Netflux:
Netflux is a user-friendly software for
developing dynamic computational models

of biological networks. Models are created in
Excel format and then simulated using the
Netflux graphical interface. No computer
programming is required. Netflux is written in
MATLAB, with binary versions available for
Windows and. MacOS. https://github.com/
saucermanlab/Netflux.

56. Kraeutler, M.J., Soltis, A.R., and Saucerman,
J.J. (2010). Modeling cardiac b-adrenergic
signaling with normalized-Hill differential
equations: comparison with a biochemical
model. BMC Syst. Biol. 4, 157. https://doi.
org/10.1186/1752-0509-4-157.

57. Landry, N.M., Rattan, S.G., and Dixon, I.M.C.
(2019). An improved method of maintaining
primary murine cardiac fibroblasts in two-
dimensional cell culture. Sci. Rep. 9, 12889.
https://doi.org/10.1038/s41598-019-49285-9.

58. Stempien-Otero, A., Kim, D.-H., and Davis, J.
(2016). Molecular networks underlying
myofibroblast fate and fibrosis. J. Mol. Cell.
Cardiol. 97, 153–161. https://doi.org/10.
1016/j.yjmcc.2016.05.002.

ll
OPEN ACCESS

iScience 26, 106502, April 21, 2023 13

iScience
Article

https://doi.org/10.1073/pnas.0805491105
https://doi.org/10.1073/pnas.0805491105
https://doi.org/10.1161/CIRCULATIONAHA.117.031788
https://doi.org/10.1161/CIRCULATIONAHA.117.031788
https://doi.org/10.1007/s11427-019-1747-y
https://doi.org/10.1007/s11427-019-1747-y
https://doi.org/10.1038/s41598-019-49285-9
https://doi.org/10.1038/s41598-019-49285-9
https://doi.org/10.1091/mbc.E17-01-0014
https://doi.org/10.1371/journal.pcbi.1005854
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://github.com/saucermanlab/Netflux
https://github.com/saucermanlab/Netflux
https://doi.org/10.1186/1752-0509-4-157
https://doi.org/10.1186/1752-0509-4-157
https://doi.org/10.1038/s41598-019-49285-9
https://doi.org/10.1016/j.yjmcc.2016.05.002
https://doi.org/10.1016/j.yjmcc.2016.05.002


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-aSMA Sigma-Aldrich Cat# A2547, RRID:AB_476701

Anti-GAPDH Fitzgerald Industries International Cat# 10R-2932, RRID:AB_11199818

Anti-Muscleblind-like 1 [MBNL1] Abcam Abcam Cat# ab45899, RRID:AB_1310475

Anti- Osteoblast specific factor 2 [Postn] BioVendor RRID:AB_344577

Anti- p38 MAP Kinase Cell Signaling 9212L

Anti-phospho p38 Map Kinase Cell Signaling 9211L

Goat AntiRabbit IgGHRP Millipore Sigma AP307P

Bacterial and virus strains

AdCre Davis et. Al1 N/A

AdbGal Davis et. Al5 N/A

Chemicals, peptides, and recombinant proteins

CollagenaseType 2 Worthington Cat #: LS004176

DMEM High Glucose Fisher Scientific Cat #: 10-017-CV

Liberase TH Sigma Aldrich Cat #: 5401151001

Characterized FBS Fisher Scientific Cat #: SH3007103

Penicillin-Streptomycin Fisher Scientific Cat #: 15140122

1M Tris-HCl pH 7.4 ThermoFisher Cat #: 15567027

5M NaCl ThermoFisher Cat #: AM9760G

PVDF Membrane Bio-Rad Cat #: 1620177

SDS Sigma Aldrich Cat #: L4509

Coomassie Diversified Biotech Cat #: RCS-50

30% Acrylamid/Bis Bio-Rad Cat #: 1610156

Critical commercial assays

Supersignal west pico plus chemilumenescent substrate Thermo Fisher Cat #: 34580

Deposited data

Rat Cardiac Fibroblasts RIP-seq Davis et. Al1 GEO: GSE74185

Mouse Embryonic Fibroblast RNAseq Davis et. Al1 GEO: GSE74185

Experimental models: Cell lines

MBNL1Fl/FlCardiac Fibroblasts Primary isolation N/A

Experimental models: Organisms/strains

B6;B6N-Mbnl1tm1a(EUCOMM)Wtsi Bugg et. Al25 N/A

Software and algorithms

Matlab Software MathWorks https://www.mathworks.com/products/matlab.html

MBNL1 Fibroblast Network Model and Code This paper https://doi.org/10.5281/zenodo.7641538

Python version 3.8 Python Software Foundation https://www.python.org

Netflux Modeling Software Saucerman Lab, University of

Virginia

https://github.com/saucermanlab/Netflux

Biorender (for graphical abstract) Biorender https://biorender.com/

imageJ Schindelin et al.54 https://imagej.net/software/fiji/

GraphPad Prism (v9.0) GraphPad Software https://www.graphpad.com:443/ RRID:SCR_002798
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr. Jeffrey Saucerman (jsaucerman@virginia.edu).

Materials availability

Reagents used in this study that are not commercially available or obtainable through repositories will be

shared upon reasonable request and completion of a material transfer agreement (MTA).

Data and code availability

d All original code has been deposited at Zenodo and Github and is publicly available as of the date of

publication. The DOI is listed in the key resources table.

d RNAseq and RIPseq data used in this study, originally from our previous study,1 are deposited at GEO

and are publicly available as of the date of publication. Accession numbers are listed in the key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experimentation was approved by the University of Washington’s Institutional Animal Care and

Use Committee. As previously described25 MBNL1 knockout mice (MBNL1Fl/Fl) were generated using tar-

geted C57BL/6 embryonic stem cells (ES) from the International Knockout Mouse Consortium (IKMC).

Founders were bred onto a C57BL/6 background and then to mice expressing Flippase to excise the

LacZ-neomycin cassettes still present within the floxed MBNL1 allele, as IKMC uses a knockout first

approach for their targeted alleles. Once the LacZ-neomycin cassettes were flipped-out, MBNL1Fl/Fl

mice were bred to homozygosity.

METHOD DETAILS

Analysis of a genome-wide cDNA aSMA reporter luciferase screens

Our genome-wide gain-of-function screen was performed in our previous study.1 The objective of the cDNA

screen was to identify drivers ofActa2 promoter activity. In that study, quiescent mouse embryonic fibroblasts

were transfected with one of 18,400 cDNAs and an Acta2 (aSMA) promoter reporter construct, on 384-well

plates. Here, raw assay value Excel files were processed in Python version 3.8. Raw values were normalized

so that plate median values across all 45 plates were equal. We used the following equation to calculate

normalized screen values: NormalizedValue = OriginalValue � �ScreenWideMedian
PlateMedian

�
. Hits were determined by

z-score relative to other reads from the same plate. The normalized screen values with plate-based z-scores

in the top 5% were considered hits. Hits were reasonably evenly distributed across the screen plates.

Data overlap and putative MBNL1 target prioritization

We overlapped four omics datasets involving perturbed MBNL1 signaling or Acta2 promoter activity to iden-

tify putative fibrotic regulators downstream of MBNL1. The omics data used for this study are as follows: 1) A

genome-wide cDNA aSMA reporter luciferase screen described above.1 2)Mouse embryonic fibroblast (MEF)

RNAseq: treatment groups include WT, WT+TGFb, MBNL1 overexpression (MBNL1-OE), MBNL1 knockout

(MBNL1-KO), and MBNL1-KO+TGFb.1 3) RNAseq data in mouse cardiac fibroblasts isolated after myocardial

infarction: treatments include WT and MBNL1-OE. Fibroblasts were isolated following MI.25 4) Rat cardiac

fibroblast (RCF) RNA Immunoprecipitation Sequencing (RIPseq): treatment groups include WT and

MBNL1-OE. For this study, we used a published table of RIPseq results for genes bound, alternatively spliced,

or alternatively polyadenylated by MBNL1.1 The MEF RNAseq and RCF RIPseq data used in this study were

processed and published in our previous study.1 We determined two priority levels for these data overlaps.

First priority overlaps

We identified two categories of genes as our first priority overlaps

First, we identified genes bound by MBNL1 in RCF RIPseq that were also a hit in the Acta2 promoter lucif-

erase reporter cDNA screen. These genes are likely directly regulated by MBNL1, and likely signal through
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pathways that regulate a-Smooth Muscle Actin (a-SMA) expression, a canonical marker of fibroblast

activation.

Second, we looked at genes with differential expression (DE) in MBNL1-OE versus WT in in vivo RNAseq in

MCFs that were bound by MBNL1 in the RIPseq. These genes are bound by MBNL1 and show increased

mRNA expression uponin vivo MBNL1-OE in cardiac fibroblasts.

Genes derived from first-priority overlaps were considered candidate regulators during model expansion.

Second priority overlaps

We designated second priority targets as mRNAs bound by MBNL1 in RCF RIPseq that had an mRNA

expression fold change of >=1.5 upon various MBNL1 perturbations in MEF RNAseq (Figures S1C–S1E).

These gene sets were deemed second priority because the MEF RNAseq data is not cardiac specific

and does not confirm that a candidate gene can influence aSMA expression.

Genes from second-priority overlaps were used primarily to reinforce confidence in genes from the first-

priority list.

Fibroblast network model expansion with MBNL1

Literature search to evaluate a role in fibrosis for candidate regulators was performed by entering ‘gene

name + cardiac fibrosis’ in PubMed. The fibroblast signaling network model was expanded from the

most recently published version18 to incorporate MBNL1 and its putative targets. Models were generated

for use in MATLAB with Netflux software55 using a logic-based differential equation approach.56 Signaling

relationships between nodes were supported by at least two independent sources in fibroblasts, or fibro-

blast-similar cell types, prioritizing cardiac fibroblasts. Baseline node input weights were set to 0.1, except

for inputMechanicalwhich was set to 0.725 to represent the mechanical load imposed by conventional tis-

sue culture plates, as the model is built uponin vitro studies of cultured cells.57EC50 and n parameters were

set to 0.6 and 1.4 respectively per the previously published model. MBNL1-target reactions were con-

nected using AND gates with other inputs to the target node with a weight of 1.0 (e.g. ‘Akt &

MBNL1 => LOX’). Input reactions to MBNL1 targets have separate OR gate reactions with a weight of

0.5 (e.g. ‘Akt => LOX’), to represent a weak activation in the absence of MBNL1 (Figure 2A). The reaction

weight for Runx and Cbfb activation of smad3 was set to 0.6, as this improved AND-gated smad3 activation

in lowMBNL1 signaling contexts compared to 0.5. This approach was designed to recapitulate results from

our previous study, where targets showed partial activation in MBNL1 absent conditions, decreased from

WT, and increased activation upon MBNL1-OE transfection.58 Input reactions were included for select

nodes with basal activation currently unexplained by the model (w = 0.25 for Sox9 and Foxo3; w = 0.5

for SRFmRNA and Cbfb). TGFbmRNA feedback reactions have weights of 0.6 per the previously published

model version.1 All other reaction weights are 1.0.

Model simulations

Ensemble simulations

We employed a method for ensemble simulation modified from a previous study to evaluate the robust-

ness of model predictions.18 Weights for input reactions for basal values were randomly sampled from

normal distributions with respective means of 0.1 for basal inputs, 0.725 for mechanical stretch, and 0.6

for high inputs. To determine the coefficient of variation (COV) for input reaction weights, ensemble sim-

ulations measuring aSMA output COV in response to high TGFb were run for N = 1000, iterating input

COVs from 0.030 to 0.36 by 0.01 each iteration. TheMATLAB polyfit function was used to fit a line and deter-

mine that an input reaction weight COV of 0.0331 resulted in the experimentally determined aSMA output

COV of 0.2606.1 The COV was multiplied by the weight mean to determine standard deviation for normal-

random sampling. Randomly sampled values that fell outside of the 0–1 range were resampled until the

sampled value was within range. Simulations were run 150 times. The N of 150 for the ensemble simulations

was determined by running model simulations with normal randomly sampled input values and measuring

the change in average validation percentage for intermediate-ouput validation with each additional simu-

lation. N was determined when the average change of mean validation for the most recent five simulations

was <0.005 (Figure S2). Modeling was performed using MATLAB version 2021b and the MATLAB Statistics

and Machine Learning toolbox for random sampling.
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Model validation

Model validation relationships were divided into two categories: ‘Input-Output’ and ‘Intermediate-

Output’. ‘Input-Output’ relationships were determined as previously described, and the validation set

from the original published model was used.17 As the ‘Intermediate-Output’ validations recapitulate spe-

cific experiments for more novel fibrosis regulators, one publication was used for each relationship. Sour-

ces were found by searching for ‘target name’ and ‘fibrosis’ in PubMed. Experiments in cardiac fibroblasts,

or similar cell types, were prioritized in cases of conflicting evidence. Overexpression experiments were

represented by changing y0 of the node to 1, with tau set to 10000 to prevent significant change during

the simulation. Inhibition studies were represented by reducing y0 of the node to 0. Weight means for

elevated input simulations were set to 0.75, 25% above the default EC50 value, except mechanical stimulus

which was set to 1.0. Input values were randomly sampled around respective means as described above. A

threshold of 0.001 was used to determine if simulated experiments predicted an ‘increase’, ‘decrease’, or

‘no change’.

Perturbation screens for MBNL1 target influence on aSMA expression

A baseline simulation of the network model was used to obtain control node values at steady state (t = 500).

For the knockdown screen, AngII and TGFb input reaction weight means were set to 0.6, as these ligands

activate MBNL1 and MBNL1 target expression.1 Under the high AngII+TGFb simulation conditions,

the ymax of each putative MBNL1 target node and MBNL1 were sequentially set to 0 to represent knock-

down. For the overexpression screen, the y0 of sequential nodes was set to 1, with tau set to 10000. For

overexpression simulations in Figures 4 and 5, AngII and TGFb input means were raised from 0.1 to 0.25

to increase network-wide signaling without saturating profibrotic signaling.

Overexpression simulations to investigate MBNL1 target signaling mechanisms

A baseline simulation of the network model was used to obtain control node values at steady state (t = 500).

For MBNL1 overexpression simulations, MBNL1 y0 was set to 1 with tau set to 10000. MBNL1 targets were

overexpressed as described above and change in network node activity compared to the baseline simula-

tion was measured.

In vitro experiments

Mouse primary cardiac fibroblast isolation

Cardiac fibroblasts were isolated by retrograde Langendorff perfusion with type II collagenase (2mg/ml)

and liberase blendzyme (0.4mg/ml) solubilized in Krebs-Henseleit buffer as previously described.28,32

Fibroblasts were pelleted after digestion and resuspended in Dulbecco’s Minimal Essential Media

(DMEM) with high glucose and supplemented with 1% penicillin and streptomycin (P/S), and 20% fetal

bovine serum (FBS). MBNL1 floxed cardiac fibroblasts were treated with either Adenoviral Cre (MOI 500)

or Adenoviral bGal (MOI 500) overnight in 2% serum media at passage 1 to permanently excise MBNL1.

Adenoviral bGal was used as a viral control. Fibroblasts were further expanded for an additional passage

before collecting in cold RIPA lysis buffer [5 M NaCl, 10% Triton-X 100, 25%SDS, 1 M Tris-Cl PH 7.4] and

storing at �80�C.

Western blot

RIPA Lysates were diluted in Laemmli buffer, 5–60 mg of protein was loaded into a 10% SDS-PAGE acryl-

amide gels and transferred to PVDF membrane for immunodetection. Total p38 was detected with anti-

p38 (1:1000, rabbit polyclonal antibody, Cell Signaling 60 mg protein) overnight at 4�C with goat anti-rabbit

HRP conjugate secondary at 1:10,000 from Santa Cruz Biotechnology for 1 hour. Phosphorylated p38 was

detected with anti-Pp38 (1:1000, rabbit polyclonal antibody, Cell Signaling 60 mg protein) overnight at 4�C
with goat anti-rabbit HRP conjugate secondary at 1:10,000 from Santa Cruz Biotechnology for 1 hour.

MBNL1 was detected with anti-MBNL1 (1:500, mouse monoclonal antibody, Abcam 60 mg protein) over-

night at 4�C with goat anti-mouse HRP conjugate secondary at 1:10,000 from Santa Cruz Biotechnology

for 1 hour. aSMA was detected with anti-actin alpha SMA (1:1000, mouse monoclonal antibody, Sigma

5 mg protein) overnight at 4�C with goat anti-mouse HRP conjugate secondary at 1:10,000 from Santa

Cruz Biotechnology for 1 hour. Periostin was detected with anti-Osteoblast specific factor 2 (1:200, rabbit

polyclonal antibody, BioVendor 5mg protein) overnight at 4�C with goat anti-rabbit HRP conjugate second-

ary at 1:10,000 from Millipore Sigma for 1 hour. Blots were visualized using SuperSignal West Pico Plus

Chemiluminescent Substrate on a Biorad ChemiDoc. As p38 and phospho-p38 have similar molecular
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weights to GAPDH, westerns for each protein were run on individual gels and visualized on individual

membranes. The GAPDH membrane was also Coomassie stained to ensure equal protein loading

on the gel (Figure S6). Each membrane was loaded with 4 samples for both the WT group and the

MBNL1-KO group.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational model simulations were performed using MATLAB 2022b and the ‘Statistics and

Machine Learning Toolbox’. Quantification of Western blotdata was performed using ImageJ54 software

and statistical analysis was performed using GraphPad Prism version 9.0. Error bars for all figures represent

standard error of the mean (S.E.M.) across all samples for experimental data, and all simulations in

the ensemble for computational model data.
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