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Abstract

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter 

organization in health and disease. Increasingly, fiber-specific properties within a voxel are 

analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, 

currently available tools support only a limited number of statistical models. Here we introduce 

ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, 

ModelArray supports linear models as well as generalized additive models (GAMs), which 

are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray 

also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets 

can be analyzed using a standard personal computer. Detailed memory profiling revealed that 

ModelArray required only limited memory even for large datasets. As an example, we applied 

ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia 

Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental 

effects in white matter. Moving forward, ModelArray is supported by an open-source software 

development model that can incorporate additional statistical models and other imaging data types. 

Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of 

fixel-wise data.
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1. Introduction

Diffusion MRI (dMRI) is the dominant method used to non-invasively study white matter 

organization in the human brain. The most commonly used method for modeling the 

diffusion signal is diffusion tensor imaging (DTI; Basser and Pierpaoli, 1996). However, 

DTI cannot effectively model two or more crossing fibers within a given voxel; crossing 

fibers are thought to comprise up to ~90% of white matter (WM) voxels (Jeurissen et al., 

2013; Schilling et al., 2018; Yeh et al., 2013). One method for addressing crossing fibers that 

is increasingly ascendant is fixel-based analysis (FBA; Raffelt et al., 2017; Dhollander et al., 

2021). A fixel refers to a specific fiber population in a voxel; with FBA, multiple distinct 

fiber populations can be estimated within a voxel and multiple fiber-specific properties can 

be quantified (Raffelt et al., 2015, 2017; Dhollander et al., 2021). An example fixel-wise 

image is shown in Fig. 1. Similar to voxel-wise images, each fixel can have associated 

measure(s), just like a voxel-wise image represents a measure at each voxel. However, there 

are also distinct differences between fixels and voxels: unlike the regular 3D voxel grid, 

there can be zero, one, or more fixels within a single voxel. In other words, the specific 

information regarding a varying number of fixels at each spatial location is not simply 

another image dimension (i.e., four dimensions instead of three); it creates unique challenges 

in the analysis of fixel-wise data (Dhollander et al., 2021).

The FBA pipeline typically includes two parts. First, fixel-wise data is generated for each 

participant in a sample and quantified according to standard measures like fiber density 

(FD), fiber-bundle cross-section (FC), or their combination – fiber density and cross-section 
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(FDC). Second, the high-dimensional fixel-wise data from a sample is often analyzed in 

template space using mass-univariate hypothesis testing; this often relies upon connectivity-

based fixel enhancement (CFE; Raffelt et al., 2015) as implemented in MRtrix (https://

www.mrtrix.org/; Tournier et al., 2019). Like threshold-free cluster enhancement (TFCE) for 

voxel-wise data (Smith and Nichols, 2009), CFE is a statistics enhancement method that can 

be applied to fixel-wise data. Instead of using simple 3D voxel neighborhoods in TFCE, 

CFE incorporates the fixel-to-fixel connectivity information to define the cluster extent in 

fixel-wise data.

However, the statistical models supported by MRtrix for FBA are currently limited to the 

general linear model (GLM). This may not be optimal for modeling nonlinear effects which 

are often of interest in lifespan studies (e.g., Bethlehem et al., 2022; Lebel et al., 2012). 

Ideally, a statistical analysis toolset should be extensible to incorporate diverse statistical 

models. (https://www.R-project.org; R Core Team, 2021) is a popular open-source statistical 

programming software, and it supports a myriad of statistical functionality. R is also widely 

used by statisticians, with a constantly expanding repertoire of functionality. Generalized 

additive models (GAMs; Wood, 2001, 2004) are among the most widely used approaches 

to model nonlinear effects of interest in R. GAMs can rigorously model both linear and 

nonlinear effects by applying a penalty that helps avoid over-fitting; this approach is 

particularly valuable in high-dimensional data settings – cases when hundreds of thousands 

of fixels are present – where it is difficult to conduct detailed model diagnostics. Providing 

extensibility to diverse statistical models in R for the analysis of fixel-wise data is the 

primary motivation for developing ModelArray.

In addition, ModelArray also aims for memory efficiency. The memory required for 

statistical analysis of neuroimaging data usually scales by image resolution and sample 

size (e.g., Raffelt et al., 2015). These memory requirements impede the statistical analysis 

of large-scale data resources that include thousands of participants; e.g., the Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014), the Human Connectome 

Project (HCP; Van Essen et al., 2013), or the Healthy Brain Network (HBN; Alexander et 

al., 2017). When faced with such large data resources, investigators often opt to reduce the 

dimensionality of the data and use regional summary measures, even if it is not scientifically 

optimal. ModelArray aims to facilitate running large-scale fixel-wise statistical analysis on a 

typical personal computer (e.g., a laptop).

To address these limitations, we introduce ModelArray (https://pennlinc.github.io/

ModelArray/), a memory-efficient R package for statistical analysis of fixel-wise data. To 

maximize memory efficiency, ModelArray does not load the entire fixel-wise data into the 

memory. Instead, it only reads a limited block of data when needed by leveraging the 

Hierarchical Data Format 5 (HDF5) file format and DelayedArray package in R (Pagès et 

al., 2021), At present, ModelArray supports linear models and GAMs, but it is by design 

extensible and can incorporate many statistical models implemented in R. To demonstrate 

ModelArray’s scalability, functionality, and extensibility, we profiled its memory usage and 

applied it to examine nonlinear patterns of brain development using fixel-wise data from the 

PNC (n = 938). As described below, ModelArray allows for efficient and flexible analysis of 

fixel-wise data in large scale data resources.
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2. Materials and methods

2.1. Overview

ModelArray is an R package for mass-univariate hypothesis testing of fixel-wise data that 

is designed to be scalable for large datasets. We chose R as the platform as it is among the 

most widely used platforms for statistical computing. This feature facilitates the potential 

to easily incorporate diverse statistical models. ModelArray takes the fixel-wise data as 

input, after it has been converted to the HDF5 format by its companion software ConFixel 

(https://github.com/PennLINC/ConFixel). Fixel-wise data with metrics such as FD, FC, 

and FDC can be calculated in existing software such as MRtrix (Tournier et al., 2019). 

ModelArray performs statistical analysis for each fixel based on the statistical formula a user 

provides, and finally saves statistical output as images via ConFixel. These output images 

can then be viewed in widely-used visualization tools such as MRView from MRtrix (https://

www.mrtrix.org/; Tournier et al., 2019).

2.2. Software design and memory efficiency

We capitalized upon the R package DelayedArray (Pagès et al., 2021) to maximize memory 

efficiency. Of note, the term “memory” is used in this paper to refer to the computer’s 

memory (RAM) used by software (including data loaded into the memory), and “disk” or 

“disk space” refers to the hard disk space where the files (e.g., an HDF5 file) are stored. 

ModelArray wraps fixel-wise data on disk into a DelayedArray object, allowing common 

array operations such as indexing (e.g., extracting values of a specific fixel from a matrix) or 

transposing to be performed without loading the on-disk object into memory. DelayedArray 

objects store their component data in an HDF5 file, and operations on a DelayedArray 

object are executed in a memory-efficient, “delayed” way (where most R operations are 

processed on-demand and en masse). The result is a memory-efficient and easy-to-use R 

interface for a large and hierarchical on-disk dataset. After being generated by ConFixel 

(see below), an HDF5 file of fixel-wise data contains a scalar matrix (fixels by participants), 

basic information of fixels and voxels (e.g., lookup tables of the directions of fixels and 

the coordinates of voxels that contain fixels), and, once calculated by ModelArray, one or 

more result matrices (fixels by statistical metrics). Leveraging DelayedArray, HDF5 format, 

and the supporting R package HDF5Array (Pagès, 2021), the on-disk fixel-wise data can be 

accessed and manipulated while minimizing memory requirements.

2.3. ModelArray workflow

ModelArray is packaged with the companion software ConFixel for converting fixel-wise 

data to the expected file format (see Fig. 1). Specifically, ConFixel is Python-based 

command-line interface software, and it converts between the original MRtrix image format 

(.mif) and the HDF5 file format (.h5) used for ModelArray. After the file format conversion, 

ModelArray generates a ModelArray-class object for representing the on-disk HDF5 file. 

ModelArray uses the S4 Object Oriented Programming (OOP) model which gives users easy 

access to the scalar matrix, the source .mif file list, one or more results matrices (if any), 

and the file path to the HDF5 file. When fitting models, ModelArray iterates across all fixels 

in the scalar matrix but only reads a limited block of data for each current fixel in order 

to reduce memory usage. For each fixel, the software fits a model for the participant-level 
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phenotypes of interest – such as age, sex, or diagnosis, which are loaded from a separate 

CSV file provided by the user – and generates the statistical outputs for each fixel, such 

as p-values, coefficient estimations, and t-statistics. After generating the result matrix of 

fixel-wise statistics, ModelArray will calculate corrected p-values using the False Discovery 

Rate (FDR) and export the final result matrix back into the input HDF5 file. Finally, 

ConFixel converts the HDF5 file’s results matrix into a list of .mif files that are readable 

by widely-used visualization tools such as MRView from MRtrix (https://www.mrtrix.org/; 

Tournier et al., 2019).

2.4. ModelArray functions

ModelArray provides functions for model fitting and writing statistical results. At present, 

ModelArray supports linear models (ModelArray.lm()) as well as GAMs with and 

without penalized splines (ModelArray.gam()). Model fitting can be accelerated by 

requesting more CPU cores for parallel computing. ModelArray writes the rich statistical 

output of R into an HDF5 file using the writeResults() function. This HDF5 file 

is then converted to a list of .mif files with ConFixel for viewing, as described above. 

Default statistical output from ModelArray includes several maps for each model term 

(e.g., coefficient, t-statistic, raw and FDR-corrected p-values), as well as maps regarding 

the overall model fit (e.g., adjusted R-squared, raw and FDR-corrected p-values from 

the model F-test in linear models). New statistical models can be easily added by any 

GitHub contributor following the same workflow as existing ones (ModelArray.lm() 

and ModelArray.gam()); see developer documentation at: https://pennlinc.github.io/

ModelArray/articles/doc_for_developer.html. Thus, ModelArray is extensible to many 

diverse statistical methods used in R.

2.5. Evaluation data

To evaluate ModelArray, we used the fixel-wise data generated from the Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014). Here we provide a brief 

summary of the data and methods including participant inclusion, image acquisition, image 

quality assurance, diffusion MRI preprocessing, and fixel-based analysis. In total, we 

included n = 938 participants (521 female, 417 male) aged 8–23 years old. Participants were 

excluded due to lack of diffusion imaging data, abnormalities in brain structure, major health 

conditions, missing B0 field map, poor image quality, etc. All the dMRI data underwent 

a rigorous manual and automated quality assessment as previously described (Roalf et al., 

2016).

MRI scans were acquired on a Siemens TIM Trio 3T scanner. Diffusion MRI scans were 

acquired with a twice-refocused spin-echo (TRSE) single-shot echo-planar imaging (EPI) 

sequence. The sequence included 64 diffusion-weighted images of b = 1000s/mm2 as well as 

7 interspersed b = 0 images; these images were acquired over two scan runs. The in-plane 

resolution was 1.875×1.875 mm2 , slice thickness was 2 mm without gap. In addition, a 

B0 field map was also acquired for distortion correction of dMRI data. In-scanner motion 

during the dMRI scan was quantified as the root mean squared displacement (mean relative 

RMS); this was calculated from 7 b = 0 volumes interspersed over the course of the 

dMRI scan (Roalf et al., 2016). Motion was included as a covariate when modeling age 
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effects using GAMs (described below). Diffusion images were processed with QSIPrep 

(https://github.com/PennBBL/qsiprep; Cieslak et al., 2021). This process included MP-PCA 

denoising (using dwidenoise from MRtrix; Veraart et al., 2016), Gibbs unringing (using 

mrdegibbs from MRtrix; Kellner et al., 2016), B1 field inhomogeneity correction (using 

dwibiascorrect from MRtrix with the N4 algorithm; Tustison et al., 2010), signal 

drift correction (Vos et al., 2017), susceptibility distortion correction (using prelude 

from FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE), eddy current-induced correction 

and head motion correction (using Eddy from FSL, with outlier replacement; Andersson and 

Sotiropoulos, 2016; Andersson et al., 2016). Finally, the images were resampled to AC-PC 

alignment with 1.25 mm isotropic voxels.

Following preprocessing, fixel-based analysis was performed using MRtrix (https://

www.mrtrix.org/, version v3.0RC3) (Dhollander et al., 2021; Raffelt et al., 2017; Tournier 

et al., 2019). Briefly, study-specific response functions for single-fiber white matter, 

gray matter and cerebrospinal fluid (CSF) were calculated via a robust and fully 

automated unsupervised method (Dhollander et al., 2016, 2019) using data from 30 

representative participants across ages (15 M/15F). Fiber orientation distributions (FODs) 

for all participants were then estimated using Single-Shell 3-Tissue Constrained Spherical 

Deconvolution (SS3T-CSD) (Dhollander and Connelly, 2016) from MRtrix3Tissue (https://

3Tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). A study-specific FOD template 

was generated, and participants’ FOD images were registered to this study template. After 

defining fixels, FDC was quantified and chosen as the metric of interest as it combines 

both FD and FC and may be more sensitive than FD or FC alone (Dhollander et al., 2021). 

Finally, the FDC values were smoothed with “connected” nearby fixels to increase the 

signal-to-noise ratio (Raffelt et al., 2015). To smooth the data, a whole-brain probabilistic 

tractogram with 2 million streamlines was generated from the FOD template, and a fixel-

fixel connectivity matrix based on this tractogram was computed. Lastly, FDC values were 

smoothed based on this matrix. This procedure yielded fixel-wise data in template space 

for each participant, which included 602,229 fixels. This fixel-wise data was used by 

ModelArray for memory profiling and application of GAM.

2.6. Memory profiling

We evaluated the memory efficiency of ModelArray. Memory profiling was completed 

using a Linux system by Working Set Size (WSS) Tools for Linux (https://

www.brendangregg.com/wss.html). We used a virtual machine on a standalone computer 

to avoid interference from other users, with memory allocated to the virtual machine = 55 

Gigabytes (GB) and total RAM on the computer = 64 GB. Specifically, the resident set size 

(RSS) – real memory pages currently mapped – was captured by WSS and recorded. We 

sampled the RSS once every second for both parent and any child processes (if more than 

one CPU core was used). The total RSS from all processes was calculated by summing 

the interpolated RSS values at each second, and the maximum RSS used over time was 

calculated.

We used a simple linear model for memory profiling: FDC = intercept + age. To evaluate 

how memory usage scaled with data size, we examined the full sample (n = 938) as well 
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as subsamples of different sizes (n = 30, n = 100, n = 300, n = 500, and n = 750). 

Furthermore, memory profiling over different parallelization factors was also performed. 

During the memory profiling for ModelArray, up to four CPU cores were made available. In 

all cases, memory profiling was run three times for each use case, and the median value was 

reported. Note that the memory profiling and the application of GAM (next section) were 

done in local R, without using the Docker image of ModelArray.

2.7. Application using generalized additive models

The memory benchmarking studies were conducted using linear models. However, in 

addition, we also demonstrated the use of GAMs in ModelArray for modeling nonlinear 

developmental effects. Notably, existing tools such as MRtrix only support GLMs and 

do not easily allow users to model nonlinear developmental effects using GAMs. This 

application illustrates the extensibility of ModelArray to incorporate diverse statistical 

models.

For this application, data from all participants (n = 938) was used. Age was modeled as a 

smooth term s(age) with four basis functions (k = 4); sex and in-scanner motion (mean 

relative RMS displacement) were included as covariates. As in prior work (Pines et al., 

2022), the effect size of the age term was quantified as 

Rad j,full
2 − Rad j,reduced

2

, where 

Rad j,full
2

was the adjusted R-squared in the full model, and 

Rad j,reduced
2

was that in a reduced model that did not include the age term.

2.8. Open-source software development and release

ModelArray has been developed on GitHub with version controls and all code is openly 

available on GitHub (see Data and code availability statements). Continuous Integration (CI) 

testing is used to ensure stability and quality assurance. Specifically, we use CircleCI to 

perform unit tests for all major features of ModelArray. These tests ensure the consistency 

between the statistical results calculated in ModelArray fitting loop and those calculated in 

standard R. Once updated code is committed to GitHub, CircleCI automatically builds the 

software and runs unit tests. If there are any errors, CircleCI will alert the developers to this 

failure immediately, assuring that updates do not alter software performance.

To enhance the portability of ModelArray and its companion converter ConFixel, we 

also provide a Docker image of ModelArray and ConFixel (publicly available at https://

hub.docker.com/r/pennlinc/modelarray_confixel). With this Docker image, users do not need 

to install ModelArray, ConFixel or their dependent R or Python packages. Documentation of 

how to use this Docker image is available at https://pennlinc.github.io/ModelArray/articles/

container.html. This Docker image is automatically built by CircleCI and pushed to Docker 

Hub.

Zhao et al. Page 7

Neuroimage. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hub.docker.com/r/pennlinc/modelarray_confixel
https://hub.docker.com/r/pennlinc/modelarray_confixel
https://pennlinc.github.io/ModelArray/articles/container.html
https://pennlinc.github.io/ModelArray/articles/container.html


2.9. Data and code availability statements

ModelArray documentation can be found at https://pennlinc.github.io/ModelArray. All 

code used to perform memory profiling and application of GAMs is available at 

https://github.com/PennLINC/ModelArray_paper. The source code for ModelArray is 

available at https://github.com/PennLINC/ModelArray, and the source code for ConFixel 

is available at https://github.com/PennLINC/ConFixel. The version of ModelArray used 

for benchmarking and demonstration was commit SHA-1 0911c4f. We also provide a 

Docker image of ModelArray and ConFixel (available at https://hub.docker.com/r/pennlinc/

modelarray_confixel). The PNC dataset used in this paper is available on dbGAP (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2). As part 

of the software tutorial, example fixel-wise data from 100 PNC participants is openly shared 

on OSF (https://doi.org/10.17605/OSF.IO/JVEHY).

2.10. Ethics statement

No new data were collected specifically for this paper. The Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014) was approved by IRBs of the 

University of Pennsylvania and Children’s Hospital of Philadelphia. All adult participants 

in the PNC provided informed consent to participate; minors provided assent alongside the 

informed consent of their parents or guardian.

3. Results

3.1. Software walkthrough

Before using ModelArray, two files need to be prepared by the user: an HDF5 (.h5) file 

of fixel-wise data (example filename here: example.h5), and a CSV file of participant’s 

phenotypes of interest (e.g., age, sex, etc.; example filename here: example.csv). The 

HDF5 file can be obtained by applying ConFixel to convert the original fixel-wise data (.mif 

files) into required HDF5 file format. Although ConFixel is implemented in Python, it is 

used via a command-line interface. After installation, users can directly run data conversion 

in a terminal console, and there is no need to open a Python console. An example of the 

usage of ModelArray is displayed in Fig. 2. After loading the package ModelArray in R 

(code line #3 in Fig. 2), a ModelArray-class object modelarray was created with the 

function ModelArray(); it represents the fixel-wise data in the HDF5 (.h5) file on disk, 

including the scalar matrix (fixels by participants) (code line #5). As the entire data was not 

loaded into memory, this object only required less than 1 Megabytes (MB) for complete n = 

938 evaluation data, much less than the HDF5 file size on the disk (2.1 GB). After the data 

frame of phenotypes was loaded into R (code line #6), mass-univariate analyses using linear 

models and GAMs were performed with ModelArray.lm() and ModelArray.gam(), 

respectively (code line #9–10). The statistical outputs lm.outputs and gam.outputs were 

saved back to the original HDF5 file with the function writeResults() (code line #13–

14). These outputs saved in the HDF5 file can be converted back to .mif files by ConFixel 

for viewing.

For further details, as part of the comprehensive online documentation, please see 

the “Walkthrough” of ModelArray and ConFixel (https://pennlinc.github.io/ModelArray/
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articles/walkthrough.html). This walkthrough can be used in conjunction with openly-shared 

fixel-wise data from 100 PNC participants, which is available on OSF (https://doi.org/

10.17605/OSF.IO/JVEHY).

3.2. ModelArray is memory-efficient and robust to dataset size

We profiled the memory usage of ModelArray over a range of input data sizes (e.g., number 

of participants) and parallelization settings. As a first step, we evaluated both the full dataset 

(n = 938) as well as five smaller sub-samples. This initial evaluation was completed using 

four CPU cores. As the number of participants analyzed increased, ModelArray memory 

usage only changed minimally (Fig. 3).

Next, we examined how parallelization options impacted memory use. As expected, when 

ModelArray requested more CPUs for analysis of samples of either small (n = 30, Fig. 

4A) or large number of participants (n = 938, Fig. 4B), the memory required scaled by 

the parallelization factor. However, even when 4 CPU cores were requested, ModelArray 

consumed less than 3GB of memory.

3.3. ModelArray captures nonlinear developmental effects

As a final illustration of ModelArray’s functionality and extensibility to diverse statistical 

models, we also examined nonlinear developmental effects in the PNC using GAMs. Robust 

nonlinear age effects can be observed in white matter tracts including the corpus callosum 

(CC) and tracts in the brainstem even at very high statistical thresholds (p-value of s(age) < 

1 ×10−15 , Fig. 5). To visualize the nonlinear age effects, a cluster in CC was defined with 

above statistical threshold, and a GAM was fit for FDC averaged in an example 2D slice 

of this cluster (highlighted in Fig. 5A by a white arrow). The averaged FDC of these fixels 

increased throughout childhood and adolescence but then plateaued in young adulthood (Fig. 

5B). The effect size (change in adjusted R2) of age in this fitted GAM was 0.204.

4. Discussion

Despite the advantages of representing diffusion imaging data as fixels, FBA is a relatively 

new framework compared to voxel-based analysis, and relatively few analytic tools are 

currently available for statistical analysis of fixel-wise data. ModelArray is an R package 

for mass-univariate statistical analysis of fixel-wise data. As discussed below, ModelArray 

allows for both linear and nonlinear modeling of fixel-wise data in large datasets while only 

requiring modest amounts of memory.

4.1. Extensibility to diverse statistical models

Brain changes across the lifespan are often nonlinear. One of the most-widely used 

statistical models to capture both linear and nonlinear effects is the GAM. GAMs use 

smooth functions to flexibly model linear and nonlinear effects; these smooth functions 

can be penalized to avoid over-fitting (Wood, 2004, 2011). The incorporation of GAMs 

in ModelArray and the extensibility to other models available in R represent an advance 

over existing tools, which at present only support the GLM. It should be noted that GLM 

in existing tools can also fit nonlinear models using a polynomial function; however, such 
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an approach may not support the penalization of nonlinearity to avoid over-fitting (as in 

GAMs). As ModelArray is built within R, using GAMs is easy with standard model syntax. 

More importantly, ModelArray has the potential to leverage the myriad of statistical models 

that R provides. Indeed, additional statistical models can be added to ModelArray using 

the same workflow described in the developer documentation (https://pennlinc.github.io/

ModelArray/articles/doc_for_developer.html). This extensibility will allow for ongoing 

enhancements – by both the original developers and the broader community – to extend 

ModelArray’s functionality to a wide variety of statistical models.

Some previous FBA studies focused on specific macroscopic WM pathways, calculated 

the average of fixel-wise metrics (e.g., FDC) in specific regions of interest, and built 

statistical models upon the average values in software such as R to facilitate the use of 

diverse statistical models (e.g., Singh et al., 2022; Genc et al., 2020; Chahal et al., 2021). 

ModelArray offers opportunities to directly apply statistical models that R provides, without 

the need of this data reduction step. ModelArray also allows users retrieve statistical metrics 

for each fixel without data dimensionality reduction.

4.2. Scalability to large-scale data resources

Large-scale neuroimaging datasets enhance statistical power and the reliability of findings in 

studies of individual differences (Marek et al., 2022). However, as data size grows, memory 

requirements often become quite large when performing group-level statistical analysis. To 

address this challenge, we designed ModelArray to minimize memory requirements by only 

reading data into memory as needed. Our benchmarking studies illustrated that ModelArray 

memory requirements were low even when analyzing hundreds of participants, and only 

had minimal change when the number of participants increased. This scalability facilitates 

fixel-wise statistical analyses of large-scale data resources even on a laptop or a workstation 

that only has a limited amount of memory. It also makes the exploration of statistical 

models easy and cheap. This memory efficiency is limited to the statistical analysis step 

provided by ModelArray; steps such as preprocessing dMRI data and preparing fixel-wise 

data may require more memory than personal laptops or workstations can provide. However, 

these processing steps are out of the scope of ModelArray and can be performed on High 

Performance Computing (HPC) clusters.

4.3. Limitations and future directions

Several limitations of ModelArray should be noted. First, ModelArray is configured to 

only analyze fixel-wise data. Moving forward, it may be generalized to allow for analyses 

of other imaging data types such as voxel (NIfTI) and surface (CIFTI) data, akin to 

other group-level analysis resources that are compatible with different data types, e.g., 

Permutation Analysis of Linear Models (PALM; Winkler et al., 2014) from FSL (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki). Such extensions could leverage ModelArray’s modular I/O 

interface, which would only require additional companion converters (i.e., ConVoxel instead 

of ConFixel).

Second, it is important to note the differences between ModelArray and existing tools for 

statistical analysis of fixel-wise data, e.g., fixelcfestats for FBA from MRtrix (Raffelt et 
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al., 2015; Tournier et al., 2019). In contrast to CFE implemented in fixelcfestats from 

MRtrix, ModelArray does not incorporate information of fixel-fixel connectivity, which 

limits the ability of ModelArray to conduct statistical inference exploiting connectivity 

information. However, the control of multiple comparisons using methods such as FDR 

is commonly used in large-scale studies and is currently implemented in ModelArray. 

Future releases of ModelArray may incorporate CFE. It should be noted that, users should 

be careful and aware of the differences when interpreting the statistical results from 

fixelcfestats from MRtrix and those from ModelArray, as the former one seeks to 

control family-wise error, whereas ModelArray’s default behavior aims to control the FDR.

5. Conclusion

ModelArray is a memory-efficient R package for fixel-wise statistical analysis. It offers both 

linear and nonlinear modeling with substantial extensibility. Taken together, ModelArray 

facilitates the statistical analysis of fixel-wise data in large-scale dMRI datasets.
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Fig. 1. 
Schematic of ModelArray and its companion converter ConFixel. The original fixel-wise 

data (.mif files; see the example fixel-wise image) are first converted into an HDF5 file 

(.h5) using ConFixel (top of the left box). ModelArray provides easy access to fixel-wise 

data in the HDF5 file (“accessor”). When performing statistical analysis of each fixel (top 

of the right box), to reduce memory usage, only a limited block of fixel-wise data is read 

into the memory. Using the phenotypes of interest (e.g.,: age, sex; provided by a CSV file), 

ModelArray fits a statistical model and calculates statistical output for each fixel. After 

iterating across fixels, the result matrix is generated (bottom of the right box) and saved 

to the original HDF5 file on disk by ModelArray (“write”). Finally, ConFixel converts 

the result matrix in this HDF5 file into a list of .mif files ready to be viewed (bottom of 

the left box). The fixels in the fixel-wise image are colored by fixel orientation (red: left–

right, green: anterior–posterior, blue: inferior–superior), and background image is the fiber 

orientation distribution (FOD) template.
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Fig. 2. 
Example R code for executing analysis using ModelArray. ModelArray functions are 

highlighted in green.
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Fig. 3. 
Memory required by ModelArray does not vary by sample size. The maximal memory 

required by a linear model executed using ModelArray.lm() was evaluated when 

analyzing a range of sample sizes. All models were performed with a parallelization factor 

of 4.
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Fig. 4. 
ModelArray is memory-efficient even under different parallelization configurations. 

Maximal memory usage for a linear model run using ModelArray.lm() was evaluated 

across a sample of n = 30 (A) and n = 938 (B) with varying numbers of CPU cores 

requested.
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Fig. 5. 
ModelArray allows the estimation of nonlinear effects. Fixel-wise GAM fitted with 

ModelArray.gam() revealed nonlinear FDC changes with age in childhood and 

adolescence (n = 938). The GAM also included sex and motion quantification as covariates. 

(A) Fixels whose FDC was significantly associated with age (p-value of s(age) < 1 × 10−15); 

fixels are colored by effect size of s(age). Background image is the FOD template. (B) GAM 

fit for FDC averaged in the 2D slice of the cluster in CC highlighted in panel A by a white 

arrow.
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