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Abstract

Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as 

well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger 

RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes 

can be subjected to backsplicing, leading to widespread expression of a specific type of circular 

RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover 

and characterize diverse circRNAs at both the genome and individual gene scales. We further 

highlight the current understanding of how circRNAs are generated and how the mature transcripts 

function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys 

or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein 

complexes or encode functional peptides that are translated in response to certain cellular stresses. 

Overall, circRNAs have emerged as an important class of RNA molecules in gene expression 

regulation that impact many physiological processes, including early development, immune 

responses, neurogenesis, and tumorigenesis.
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INTRODUCTION

Unlike other well-known classes of RNAs that were originally named because of their 

function [e.g., messenger RNA (mRNA)], cellular location [e.g., small nucleolar RNA 

(snoRNA)], and/or size [e.g., long noncoding RNA (lncRNA)], circular RNAs were so 

designated because of their unique covalently closed structures. RNA circles without 

accessible 5’- and 3’-ends were first reported in plant viroids as rodlike structures that 

were observable on electron micrographs (Sanger et al. 1976). Since then, additional viroid 

circular RNA genomes have been identified as well as other distinct types of circular RNAs 

that are classified according to their mechanisms of production. These include circular 

transcripts that are generated from the processing of cellular noncoding sequences and 

those that are processed from eukaryotic precursor mRNAs (pre-mRNAs) in a spliceosome-

dependent manner.

Pathogenic viroid circular RNA genomes have largely been identified in plants (Flores et 

al. 1999, Sanger et al. 1976), but hepatitis δ virus (HDV), a satellite virus of hepatitis B 

virus, is also a circular RNA (Kos et al. 1986) (Table 1a). These transcripts replicate using 

rolling-circle RNA polymerization followed by cleavage catalyzed by either a host enzyme 

or embedded ribozyme sequences. The intermediate sequences are then ligated by host 

enzymes or intramolecular self-ligation to form additional copies of mature circular RNA 

genomes (Côté & Perreault 1997; Flores et al. 1999, 2011). Beyond viroids, circular RNAs 

are processed from a variety of noncoding sequences in cells, including the noncoding 

regions of mitochondrial RNAs, ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs) 

[see review by Lasda & Parker (2014)]. For example, groups I and II self-splicing introns 

(Cech 1990, Nielsen et al. 2003) are processed to form circular RNAs in both bacteria and 

eukaryotes (Inoue et al. 1986, Li-Pook-Than & Bonen 2006, Molina-Sánchez et al. 2006, 

Tabak et al. 1987) Table 1b). These include the introns of rRNA precursors in the protozoa 

Tetrahymena (Grabowski et al. 1981) and the archaebacterium Desulfurococcus mobilis 
(Kjems & Garrett 1988). Furthermore, the intron of tRNATrp in the euryarchaeote Haloferax 
volcanii forms a stable RNA circle after being cleaved from precursor RNAs and ligated by 

an RNA ligase (Clouet d’Orval et al. 2001, Salgia et al. 2003, Singh et al. 2004). Circular 

RNAs have also been found to be processed from some snoRNAs, ribonuclease (RNase) P 

RNA, and 7S RNA in archaea (Danan et al. 2012, Tang et al. 2002).

Another major group of circular RNA (and the focus of this review, named circRNA 

hereafter) is eukaryotic specific and is produced by the splicing of pre-mRNAs in a 

spliceosome-dependent manner [for reviews, please see Chen (2016, 2020); Kristensen 

et al. (2019); Lasda & Parker (2014); Li et al. (2018); Wilusz (2018); and Xiao et al. 

(2020)]. Eukaryotic circular transcripts were first detected by electron microscopy in the 

late 1970s, but their origin and function were unknown at that time (Hsu & Coca-Prados 

1979) (Table 1c). Not until the 1990s was it realized that some of these detected transcripts 

likely represented exons derived from protein-coding genes that were covalently joined at 

consensus splice sites to form mature circles (Capel et al. 1993; Cocquerelle et al. 1992, 

1993; Dubin et al. 1995; Nigro et al. 1991; Pasman et al. 1996; Zaphiropoulos 1996). 

Due to their generally low levels of expression (~1/100th the level of the normally spliced 

Yang et al. Page 2

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcript generated from the host gene) (Capel et al. 1993, Cocquerelle et al. 1993, Dubin 

et al. 1995, Pasman et al. 1996, Zhang et al. 2016a), whether these RNA circles represented 

biological noise of pre-mRNA splicing reactions was obscure. Nonetheless, Capel et al. 

(1993) found that more than 90% of the transcripts derived from the mouse Sry gene, which 

determines sex in mammals, were circular in adult mouse testis. This was the first indication 

that circRNAs can be the predominant outputs of some protein-coding genes, suggestive of 

functionality.

The advent of deep sequencing technologies coupled to methods that enrich for polyadeny-

lated RNAs (mRNA-seq) uncovered pervasive transcription in eukaryotes (Cloonan et al. 

2008, Graveley 2008, Mortazavi et al. 2008, Pan et al. 2008, Wang et al. 2008, Wilhelm 

et al. 2008). However, the lack of a poly(A) tail on circular RNAs caused the expression 

signals of these transcripts to be limited in mRNA-seq studies (Burd et al. 2010). This 

situation turned around when deep sequencing of total RNA (depleted of rRNAs) or 

nonpolyadenylated RNAs came to the fore (Jeck et al. 2013, Memczak et al. 2013, Salzman 

et al. 2012, Yang et al. 2011). These approaches enabled the genome-wide identification of 

two major classes of eukaryotic circular RNAs that can be generated when the spliceosome 

acts on RNA polymerase II (Pol II) transcripts. Circular intronic RNAs (ciRNAs), also 

known as stable intronic sequence RNAs (sisRNAs), are generated when a subset of intron 

lariats fails to be debranched (Talhouarne & Gall 2014, Zhang et al. 2013). In addition, 

it was determined that many exons can form circRNAs when pre-mRNAs are backspliced 

(Ashwal-Fluss et al. 2014, Hansen et al. 2013, Jeck et al. 2013, Liang & Wilusz 2014, 

Memczak et al. 2013, Salzman et al. 2012, X.-O. Zhang et al. 2014) (Figure 1a). Building 

off these initial observations, a plethora of studies have now characterized the expression 

patterns, biogenesis mechanisms, and function of these spliceosome-dependent circRNAs. 

Here, we summarize recent progress in this field that has revealed the tremendous regulatory 

potential of eukaryotic circRNAs produced from the backsplicing of pre-mRNA exons.

GENOME-WIDE PROFILING OF CIRCRNAS

Because circRNAs are often coexpressed with their cognate linear (m)RNAs from their 

host gene loci, the primary sequences of the mature linear RNAs and circRNAs often fully 

overlap except for the unique backsplicing junction (BSJ) present in circRNAs (Figure 1a). 

To enable efficient circRNA profiling and characterization, it thus has been necessary to 

develop specific biochemical enrichment strategies for circRNAs as well as computational 

pipelines that identify sequencing reads that specifically map to BSJs (Chen 2016, 2020; 

Jeck & Sharpless 2014; Kristensen et al. 2019; Szabo & Salzman 2016) (Figure 1b).

circRNA Enrichment Strategies

circRNAs lack poly(A) tails and most are expressed at low levels, so different strategies 

have been applied to biochemically enrich circRNAs prior to performing short-read deep 

sequencing (Ma et al. 2021). At a minimum, abundant rRNAs must be depleted prior 

to sequencing, and this approach (ribo– RNA-seq) has revealed hundreds of circRNAs 

that are expressed at levels comparable to those of their cognate linear RNAs (Jeck et 

al. 2013, Memczak et al. 2013, Salzman et al. 2012). Ribo– RNA-seq (Jeck et al. 2013, 
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Memczak et al. 2013, Salzman et al. 2012, X.-O. Zhang et al. 2016) allows a direct 

quantitative comparison between the expression levels of circRNAs and those of their 

cognate linear RNAs (Ma et al. 2019), as both nonpolyadenylated and polyadenylated RNAs 

are sequenced. To enrich for circRNAs, one can select for nonpolyadenylated RNAs by 

depleting both rRNAs and polyadenylated (m)RNAs (Yang et al. 2011). By comparing 

the data obtained from poly(A)– RNA-seq libraries to standard oligo(dT)-primed poly(A)+ 

RNA-seq libraries, many excised introns and exons can be detected that correspond to 

ciRNAs (Zhang et al. 2013) and circRNAs (Salzman et al. 2012; X.-O. Zhang et al. 2014, 

2016), respectively, including some with complex alternative splicing patterns.

To go even further, ribonuclease R (RNase R), an exoribonuclease that degrades most [but 

not all; see Panda et al. (2017) and Xiao & Wilusz (2019)] linear RNAs (Suzuki et al. 

2006), can be used to enrich circRNAs in ribo– or poly(A)– RNA fractions (Jeck et al. 

2013, X.-O. Zhang et al. 2014). Indeed, many more individual circRNAs can be identified 

using the RNase R RNA-seq approach than with ribo– or poly(A)– RNA-seq (Jeck et al. 

2013, Memczak et al. 2013, Salzman et al. 2012, X.-O. Zhang et al. 2014), confirming 

the robustness of RNase R for circRNA enrichment. RNase R treatment additionally serves 

as a useful means to detect or remove false positive linear RNAs. Trans-splicing events 

and artifacts of reverse transcriptase template switching can result in sequencing reads that 

resemble BSJs, but such reads should be depleted after RNase R treatment (Chuang et al. 

2018, Jeck & Sharpless 2014, Szabo & Salzman 2016, Tang et al. 2018, Yu et al. 2014). 

RNase R has thus been widely used for circRNA validation (Burd et al. 2010, Hansen et 

al. 2013, Memczak et al. 2013, Salzman et al. 2012), but note that some circRNAs, such 

as cerebellar degeneration-related protein 1 antisense transcript (CDR1as, also known as 

circular RNA sponge for miR-7, ciRS-7) (Hansen et al. 2011, 2013; Memczak et al. 2013), 

have been observed to sometimes be partially depleted in RNase R RNA-seq experiments 

(Jeck et al. 2013). This is because circRNAs, especially long ones, can be partially degraded 

by prolonged RNase R incubation (Zhang et al. 2016b). Additional tips to ensure robust 

circRNA studies have been well summarized recently (Dodbele et al. 2021, Li et al. 2018).

Bioinformatic and Sequencing Approaches for circRNAs

To then identify reads or fragments mapping to BSJs of circRNAs in short-read sequencing 

data, multiple computational pipelines have been developed that employ distinct strategies 

(Gao & Zhao 2018; Hansen 2016, 2018; López-Jiménez et al. 2018; Szabo & Salzman 

2016). These pipelines have variable efficiencies and accuracies for circRNA profiling, 

so the application of two or more pipelines has been recommended to reduce circRNA 

prediction biases (Hansen 2016, 2018; X. Zeng et al. 2017). Nonetheless, all of these 

pipelines are generally consistent on the identification of highly expressed circRNAs 

(Hansen 2016, 2018).

Due to the limited read lengths that can be achieved using short-read sequencing data, 

the exact internal sequences (away from the BSJ) of circRNAs are often ambiguous, 

especially for long circRNAs. There has thus recently been a significant effort to develop 

long-read sequencing platforms (Stark et al. 2019) and their corresponding bioinformatic 

pipelines for genome-wide circRNA profiling, mostly using nanopore technologies (Liu et 
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al. 2021,Rahimi et al. 2021b, Xin et al. 2021, J. Zhang et al. 2021) [for a review, please see 

Rahimi et al. (2021a) and Zhang & Zhao (2021)]. Compared to short-read sequencing, long-

read sequencing approaches have provided more accurate information on the alternative 

splicing landscape of circRNAs, including the identification of intron retention events, 

microexons, and exons that are circRNA specific (not observed in the associated cognate 

linear RNA) (Rahimi et al. 2021b). However, current long-read sequencing approaches can 

suffer from a number of disadvantages, including high cost, biased enrichment of circRNAs 

of different lengths, and high sequencing error rates (Rahimi et al. 2021a).

There is also much interest in characterizing the transcriptome, including circRNAs, not just 

in bulk cell populations but at single-cell or nucleus resolution (Slyper et al. 2020, Stark et 

al. 2019). Most of these current approaches require the complementary DNA to be primed 

and amplified with oligo(dT) primers and thus they largely miss circRNA expression. 

Nonetheless, using random primers, circRNA profiling was obtained at single-cell resolution 

from mouse preimplantation embryos (Fan et al. 2015). In the future, with improved 

technologies for circRNA enrichment, long-read sequencing, and advanced computational 

pipelines, even more precise circRNA expression profiles across cell lines and tissues should 

be obtained.

Genomic Expression Patterns and Features of circRNAs

circRNAs have now been profiled in a growing number of eukaryotic cell types and tissues, 

with several public databases summarizing some of the sequencing data (Dong et al. 

2018, Glazar et al. 2014, Wu et al. 2020). These efforts have revealed that circRNAs are 

typically produced along with their cognate linear RNAs from the host gene loci (Figure 

1a), but circRNAs accumulate to much lower levels (Jeck et al. 2013, Memczak et al. 

2013, Salzman et al. 2012, X.-O. Zhang et al. 2014). A small portion of circRNAs can 

be detected at higher levels than their cognate linear RNAs (Salzman et al. 2012, 2013), 

partially due to their natural resistance to degradation by exonucleases. Across tissue types, 

circRNAs often accumulate to the highest levels in brains, where their levels increase 

during neuronal differentiation (Zhang et al. 2016a) and are associated with neuronal 

development and plasticity (Rybak-Wolf et al. 2015, You et al. 2015). These observations 

suggest that circRNAs can accumulate in slowly dividing cells. Consistent with this idea, 

decreased circRNA levels have been detected in rapidly dividing colorectal cancer cell lines 

(Bachmayr-Heyda et al. 2015) and prostate cancers (S. Chen et al. 2019, Vo et al. 2019).

Most circRNAs are derived from previously annotated exons (exons observed in linear 

RNAs) that are flanked by canonical splice sites, consistent with a critical role for the 

spliceosome in their biogenesis (Jeck et al. 2013, Liang & Wilusz 2014, Memczak et al. 

2013, Salzman et al. 2012, Starke et al. 2015, X.-O. Zhang et al. 2014). circRNAs usually 

contain two to three exons that are derived from the middle of their host genes (X.-O. Zhang 

et al. 2014), although they can also sometimes be generated from readthrough transcripts 

(Liang et al. 2017, Vo et al. 2019). Strikingly, the introns flanking circRNA-forming exons 

are often much longer than those flanking non-circRNA-forming exons, and this has been 

observed in multiple species, including flies, pig, rice, and humans (Jeck et al. 2013, Kramer 

et al. 2015, Lu et al. 2015, Salzman et al. 2013, Veno et al. 2015, X.-O. Zhang et al. 2014). 
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Repetitive elements, such as Alu in human and SINE in mouse, are often enriched in these 

long flanking introns that promote circRNA biogenesis (Jeck & Sharpless 2014, Jeck et al. 

2013, Liang & Wilusz 2014, X.-O. Zhang et al. 2014).

Interestingly, multiple circRNAs can be generated from individual gene loci in a process 

known as alternative circularization (X.-O. Zhang et al. 2014). This includes alternative 

backsplicing events (the use of different splice sites to form the BSJ) as well as all four 

canonical types of alternative splicing (cassette exon, intron retention, and alternative 5′- 
and 3′-splice site selection) within circRNA-forming exons (Gao et al. 2016, X.-O. Zhang 

et al. 2016). For example, two major circRNA transcripts can be produced from the human 

CAMSAP1 locus, and they contain the same BSJ but different internal structures: with or 

without a retained intron (Salzman et al. 2013; X.-O. Zhang et al. 2014, 2016). Likewise, the 

human XPO1 locus produces two circRNA transcripts with the same BSJ that differ by the 

inclusion of a cassette exon (X.-O. Zhang et al. 2016).

REGULATION OF CIRCRNA PRODUCTION, CONFORMATION, AND 

TURNOVER

In agreement with the original reports that identified sporadic circRNAs in eukaryotes 

(Capel et al. 1993; Cocquerelle et al. 1992, 1993; Nigro et al. 1991), genome-wide profiling 

has now shown that most circRNAs are generated via backsplicing reactions when the 

spliceosome joins a downstream 5’-splice site to an upstream 3’-splice site (Jeck et al. 2013; 

Liang & Wilusz 2014; Memczak et al. 2013; Salzman et al. 2012, 2013; X.-O. Zhang et al. 

2014). Backsplicing can thus be viewed as a type of alternative splicing (Gao et al. 2016, 

Jeck & Sharpless 2014, X.-O. Zhang et al. 2016), with circRNA steady-state levels reflecting 

the dynamic equilibrium of their production and degradation rates (Rabani et al. 2011). 

Here, we focus on the predominant mechanisms that regulate circRNA levels, but note that a 

few circRNAs may be generated by the U12 minor spliceosome (Szabo et al. 2015).

Coupling with Transcription

The processes of mRNA capping, splicing, and polyadenylation are closely coupled 

with Pol II transcription (Bentley 2014). Backsplicing is likewise associated with Pol II 

transcription, although there is evidence that circRNA biogenesis can occur either co- or 

posttranscriptionally (Ashwal-Fluss et al. 2014, Zhang et al. 2016a). On the one hand, 

chromatin-associated circRNAs have been identified from fly heads and mouse liver 

(Ashwal-Fluss et al. 2014), suggestive of cotranscriptional production. Mutants of the 

human Pol II large subunit that alter transcription elongation rates (TERs) (Fong et al. 

2014) likewise suggest the cotranscriptional nature of circRNA formation, as fast Pol II 

produces more circRNAs and slow Pol II produces fewer (Ashwal-Fluss et al. 2014, Zhang 

et al. 2016a) (Figure 2a). The mean TER of circRNA-producing gene loci is higher than that 

of non-circRNA-producing ones (Zhang et al. 2016a), consistent with the notion that fast 

transcription favors backsplicing. Fast transcription may facilitate cross talk between distal 

splice sites (both donor and acceptor) as well as RNA pairing between distal complementary 

sequences in flanking introns (discussed further below in the section titled Regulation of 

Backsplicing by cis-Elements), but the detailed mechanisms remain poorly understood.
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On the other hand, analyzing the correlation between the 3’-end processing of pre-RNAs 

and the production of circRNAs from expression vectors revealed that backsplicing 

can occur posttranscriptionally (Liang et al. 2017, 2021; Liang & Wilusz 2014). Only 

when a downstream polyadenylation signal (or an alternative 3’-end processing signal) 

was present could circRNAs be efficiently generated from expression vectors (Liang & 

Wilusz 2014). Consistent with this observation, 4-thiouridine (4sU) pulse-chase labeling 

of nascent RNAs revealed that most BSJ-mapped reads could only be observed after 

prolonged 4sU treatments when the transcription of almost all circRNA-producing genes 

has been completed (Zhang et al. 2016a). This suggests most backsplicing events occur 

posttranscriptionally.

Interplay with Canonical Splicing

Given that the majority of backsplicing events are produced from exons with canonical 

splice sites that are also observed in linear RNAs (Ashwal-Fluss et al. 2014; X. Li et al. 

2019; Liang & Wilusz 2014; Starke et al. 2015; Vo et al. 2019; Wang & Wang 2015; 

X.-O. Zhang et al. 2014, 2016), there is inevitably an interplay or competition between 

backsplicing and canonical splicing events. There are currently two known ways by which 

the spliceosome generates circRNAs that differ depending on the order of splicing events 

(Chen & Yang 2015, Jeck & Sharpless 2014, Jeck et al. 2013). In the direct backsplicing 

model, backsplicing preferentially happens before canonical splicing, resulting in production 

of a circRNA and a splicing intermediate that is sometimes further processed to a mature 

linear RNA that lacks the circRNA-forming exon(s) (Chen & Yang 2015, Jeck & Sharpless 

2014, Jeck et al. 2013). In contrast, in the lariat intermediate model, a canonical splicing 

event happens first to produce a mature linear RNA as well as an intron lariat intermediate 

containing skipped exons. The latter is subsequently backspliced to produce a circRNA 

consisting of the exons that were originally skipped (Barrett et al. 2017, Chen & Yang 2015, 

Jeck & Sharpless 2014, Jeck et al. 2013). Stable alternatively spliced linear RNAs lacking 

the circRNA-forming exon(s) are produced at some circRNA-producing loci (Ashwal-Fluss 

et al. 2014, Kelly et al. 2015, Zaphiropoulos 1996, X.-O. Zhang et al. 2014), but how 

cells determine which mechanism is used to generate a given circRNA remains poorly 

understand.

Regulation of Backsplicing by cis-Elements

Numerous lines of evidence have shown that both cis-elements and trans-factors, acting in 

both independent and synergistic manners, can facilitate backsplicing [see reviews by Chen 

(2020) and Xiao et al. (2020)] (Figure 2b). So far, no specific exonic motifs have been found 

to be generally required for backsplicing. Instead, circRNA production is typically driven by 

the flanking intronic sequences. The presence of long introns flanking the circRNA-forming 

exons appears to be an intrinsic determinant for circRNA biogenesis in some species, 

including fly (Westholm et al. 2014) and rice (Lu et al. 2015) (Figure 2b). Within these long 

flanking introns are often orientation-opposite intronic complementary sequences (ICSs) 

(most often, but not always, from repetitive elements) that can base pair, especially in 

mammals (Barrett et al. 2015, Capel et al. 1993, Jeck et al. 2013, Kramer et al. 2015, 

Liang & Wilusz 2014, X.-O. Zhang et al. 2014) (Figure 2b). Consistent with ICSs having 

a critical function in promoting backsplicing, circRNA formation is impaired when ICSs 
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are disrupted or deleted from endogenous gene loci (Xia et al. 2018, Zhang et al. 2016a, 

Zheng et al. 2016), and novel circRNAs can be produced in cancer cells when chromosomal 

translocations cause the formation of new ICS pairs (Guarnerio et al. 2016, Wu et al. 2019).

Cross-species comparisons have shown that a small portion of circRNAs are conserved 

between human and mouse, and the expression of these circRNAs is correlated with the 

co-occurrence of ICSs in both species (Dong et al. 2017). In primates, complementary 

inverted-repeat Alu elements in the flanking introns play the largest role in driving circRNA 

production, while B1/B2/B4 SINEs contribute the most in mice (Dong et al. 2017). It 

nonetheless has been shown that ICSs as short as 30–40 nucleotides are sufficient to promote 

circRNA production from expression vectors (Liang & Wilusz 2014, Starke et al. 2015).

Most introns contain many repetitive elements, which provides the opportunity for intronic 

pairing to occur between distinct sets of ICSs and the generation of complex patterns of 

circRNA expression (Figure 2c). For example, when ICSs in an individual intron (rather 

than in separate introns) base pair, a linear RNA tends to be produced, and circRNA 

formation is decreased (X.-O. Zhang et al. 2014) (Figure 2c). In contrast, the base pairing 

of different combinations of ICSs that bracket alternative backsplice sites can lead to 

alternative backsplice site selection to produce multiple circRNAs from a single gene locus 

(Gao et al. 2016; X.-O. Zhang et al. 2014, 2016) (Figure 2c).

Regulation of Backsplicing by trans-Factors

In addition to being regulated by cis-elements, backsplicing reactions are further controlled 

by trans-acting factors that often act synergistically with the associated intronic cis-elements 

(Kramer et al. 2015). Modulating components of the spliceosomal machinery can affect the 

efficiency of splicing reactions. Notably, the depletion of core spliceosome components, 

including those in the U1 and U2 small nuclear ribonucleoproteins (snRNPs), results 

in circRNA upregulation and concomitant downregulation of linear RNAs (Liang et al. 

2017). Increased circRNA expression was likewise found in rat neurons treated with the 

splicing inhibitor isoginkgetin (Wang et al. 2019). Beyond core spliceosome components, 

many RNA-binding proteins (RBPs) have now been shown to associate with the introns 

flanking circRNA-producing exons to modulate circRNA expression levels (Figure 2b). This 

includes a number of serine-arginine proteins, heterogeneous nuclear ribonucleoproteins 

(hnRNPs) (Kramer et al. 2015) (e.g., hnRNP L) (Fei et al. 2017), and other known 

regulators of alternative splicing such as RNA-binding motif protein 20 (RBM20) (Khan 

et al. 2016) and FUS (Errichelli et al. 2017). In some cases, it is well understood how RBP 

binding can lead to physiologically relevant changes in gene outputs. For example, in fly, 

muscleblind (MBL, also known as MBNL1) directly interacts with the MBL pre-mRNA 

to facilitate circMBL biogenesis, thereby limiting linear MBL mRNA (and hence MBL 

protein) expression (Ashwal-Fluss et al. 2014). In humans, the splicing regulator Quaking 

associates with the introns flanking many circRNAs to promote their production during the 

epithelial-to-mesenchymal transition (Conn et al. 2015).

A significant number of RBPs directly bind to ICSs through their double-stranded RNA 

(dsRNA)-binding domains (dsRBDs) to modulate the efficiency of backsplicing reactions 

(Figure 2b). This includes adenosine deaminase acting on RNA 1 (ADAR1), which catalyzes 
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adenosine-to-inosine editing to disrupt the pairing of ICSs and reduce circRNA production 

in worm and human (Ivanov et al. 2015, Rybak-Wolf et al. 2015). The dsRBD-containing 

nuclear RNA helicase DHX9 can likewise unwind paired intronic repeat elements that 

flank circRNA-forming exons to inhibit backsplicing reactions (Aktaş et al. 2017, Ottesen 

et al. 2019). However, some dsRBD-containing RBPs bind to ICSs to promote circRNA 

production, most notably nuclear factor 90 (NF90) and NF110 (X. Li et al. 2017) and 

the splicing factor SFPQ (Stagsted et al. 2021). Considering that all of these RBPs have 

overlapping binding capacities to bind to ICSs, there must be cross talk with one another, 

but key details of how they combinatorially dictate circRNA levels remain elusive. A 

genome-wide screen has further identified several dozen additional RBPs that also likely 

regulate circRNA production (X. Li et al. 2017). Further investigations are thus warranted 

to comprehensively understand the mechanisms of how different RBPs collectively modulate 

circRNA production and the choice between backsplicing versus canonical splicing.

Modification, Export, and Stability of circRNAs

Once produced, circRNAs can undergo nucleotide modifications, export to the cytoplasm, 

and ultimately degradation. Genome-wide analyses suggest that N6-methyladenosine (m6A) 

modifications occur in circRNAs at levels similar to those observed in linear RNAs 

(Y.G. Chen et al. 2019, Shi et al. 2019, Zhou et al. 2017), and this can have multiple 

potential functional consequences. For example, m6A modifications may affect circRNA 

nucleocytoplasmic export, possibly in a manner similar to how linear mRNA export can be 

promoted by the m6A-binding protein YTHDC1 (Roundtree et al. 2017). With the help of 

YTHDF3, another m6A-binding protein (A. Li et al. 2017), a noncanonical eIF4G protein 

(eIF4G2), can be recruited to m6A-circRNAs to initiate cap-independent translation from 

internal ribosome entry site (IRES) sequences (Yang et al. 2017) (discussed further below 

in the section titled Translatable circRNAs). It has further been shown that some m6A-

circRNAs can be recognized by YTHDF2 and HRSP12 (also known as 2-iminobutanoate 

or 2-iminopropanoate deaminase) (Jarrous 2017), enabling recruitment of the ribonuclease 

complex RNase P/MRP for circRNA degradation (Park et al. 2019).

Similar to most linear RNAs, fully processed circRNAs are typically exported to the 

cytoplasm (Jeck et al. 2013, Salzman et al. 2012) (Figure 2d), although a small number 

of incompletely processed circRNAs, such as those with retained introns, remain in the 

nucleus (Conn et al. 2017, Z. Li et al. 2015, Veno et al. 2015). The detailed mechanism 

of circRNA nucleocytoplasmic export has yet to be fully characterized, although some 

key aspects have been revealed. A small scale RNA interference (RNAi) screen in fly 

cells showed that circRNA export occurs in a length-dependent manner and that the ATP-

dependent RNA helicase Hel25E is required for the export of long (>800 nucleotides), 

but not short, circRNAs (Huang et al. 2018). Similar regulation was observed in human 

cells: UAP56 (also known as DDX39B), a homolog of Hel25E, controls the export of 

long (>1,298 nucleotides) circRNAs, whereas URH49 (also known as DDX39A), another 

homolog of Hel25E, controls the export of short (<356 nucleotides) circRNAs (Huang et 

al. 2018). Strikingly, the key amino acid motif responsible for the export of long circRNAs 

is highly conserved between fly Hel25E and human UAP56 (but is absent from URH49), 

and UAP56 could rescue the functional loss of Hel25E on long circRNA export in fly 
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cells (Huang et al. 2018). Nonetheless, the factors that control the export of medium-length 

circRNAs (e.g., those between 400 and 1,300 nucleotides in human cells) remain unclear. 

NF90/NF110, which shuttle between the nucleus and cytoplasm, may mediate the export of 

some circRNAs, as these factors can interact with both flanking ICSs in the nucleus and 

fully processed circRNAs in the cytoplasm (X. Li et al. 2017). In addition, other factors, 

such as m6A modifications (Zhou et al. 2017) or RNA duplexes within circRNAs (Liu et al. 

2019), may recruit additional proteins to modulate nucleocytoplasmic transport.

Given their lack of free ends, circRNAs are naturally resistant to degradation initiated by 

exonucleases and typically have much longer half-lives than do linear RNAs (Enuka et al. 

2016, Liu et al. 2022, Zhang et al. 2016a). This enables some circRNAs to accumulate to 

high levels (Figure 2e), especially in cells with slow division rates, such as neurons and 

aging tissues (Rybak-Wolf et al. 2015, Westholm et al. 2014, You et al. 2015, Zhang et 

al. 2016a). Nevertheless, circRNAs can still undergo decay via several mechanisms that are 

initiated by endonucleases (Figure 2f). For example, the CDR1as/ciRS-7 circRNA contains 

a sequence with perfect complementarity to the microRNA (miRNA) miR-671, thereby 

enabling miR-671 to initiate its decay in an Argonaute 2 (Ago2)-dependent manner (Hansen 

et al. 2011, Kleaveland et al. 2018). This situation is unique, however, as miRNA target sites 

in other circRNAs are only partially complementary to miRNAs and are unable to trigger 

Ago2 endonucleolytic cleavage (Hansen et al. 2013, Jeck & Sharpless 2014, Memczak 

et al. 2013). Instead, several other endonucleases appear to mediate the degradation of 

other circRNAs. Upon certain viral infections, activated RNase L can rapidly (within an 

hour) degrade the vast majority of circRNAs (Liu et al. 2019). A subset of m6A-modified 

circRNAs additionally can be degraded by the ribonuclease complex RNase P/MRP (Park 

et al. 2019). Finally, a small portion of structured circRNAs can be specifically degraded by 

the endonuclease G3BP1 when it is in complex with the ATP-dependent RNA helicase 

upstream frameshift 1 (UPF1) (Fischer et al. 2020). How exactly these endonuclease 

activities are regulated under physiological conditions remain to be explored; there are 

likely additional enzymes that degrade circRNAs that await discovery. Nevertheless, the 

long stability of circRNAs endows these molecules with the potential to carry out important 

cellular functions (discussed in the section titled Regulatory Roles of circRNAs and Their 

Modes of Action) as well as be secreted to extra-cellular fractions, such as exosomes (Y. Li 

et al. 2015, Memczak et al. 2015) (Figure 2g).

REGULATORY ROLES OF CIRCRNAS AND THEIR MODES OF ACTION

Although most of the initial circRNAs identified in the 1990s were expressed at low levels 

and thought to have little functional potential, there were hints that these transcripts could 

be related to certain biological and pathological conditions. For example, circSRY, which 

contains 16 target sites for miR-138 (Hansen et al. 2013) and a long open reading frame 

(ORF) (Capel et al. 1993), was proposed to be required during mouse spermatogenesis 

(Capel et al. 1993). However, circSRY was barely loaded onto polysomes, so its translation 

potential was of unclear significance (Capel et al. 1993). In another example, an early 

study found that circANRIL is transcribed from a locus associated with atherosclerotic 

cardiovascular disease on chromosome 9p21, and that the expression of these circRNAs was 

correlated with atherosclerosis risk (Burd et al. 2010).
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Physiological and Pathological Expression Dynamics of circRNAs

With the advent of large-scale profiling of circRNAs, a growing number of studies have 

revealed circRNA expression patterns in physiological and pathological contexts (Figure 3). 

In early stage mouse embryos, over 2,800 circRNAs are expressed during the zygote to 

blastocyst stages (Fan et al. 2015) (Figure 3), and CRISPR-Cas13 knockdown approaches 

have recently revealed that circMan1a2 is required during mouse embryo preimplantation 

development (S. Li et al. 2021). A large number of circRNAs are likewise increasingly 

expressed during murine spermatogenesis (Figure 3), specifically at the stage when late 

pachytene spermatocytes develop into round and then elongating spermatids (Tang et al. 

2020). Interestingly, many such circRNAs appear to have translation potential, as they have 

ORFs with m6A-modified start codons (Tang et al. 2020). Although their physiological 

relevance during spermatogenesis remains to be examined, removal of a specific noncoding 

circRNA, circBoule, was suggested to dampen male fertility in fly and mouse (Gao et al. 

2020).

circRNAs also have been shown to generally accumulate with age (in a manner independent 

of expression of their linear cognate mRNAs) in C. elegans (Cortés-López et al. 2018), fly 

head (Westholm et al. 2014) and pig brain (Veno et al. 2015), as well as in mouse cortex and 

hippocampus (Rybak-Wolf et al. 2015, You et al. 2015) and human brain (Szabo et al. 2015). 

This appears to be because of the long half-lives of circRNAs. In support of this model, 

nascent RNA-seq has shown that the production rates of circRNAs are largely unchanged 

between human embryonic stem cells (hESCs) and hESC-derived forebrain neurons, yet the 

steady-state levels of circRNAs in forebrain neurons are significantly higher (Zhang et al. 

2016a) (Figure 3). Note that global circRNA accumulation in aged flies can be affected by 

insulin signaling and that circSfl promotes lifespan of insulin mutant flies (Weigelt et al. 

2020).

In contrast, a general decrease in circRNA abundance has been reported in several cancers 

(Bachmayr-Heyda et al. 2015, S. Chen et al. 2019, Vo et al. 2019) (Figure 3), likely because 

circRNAs can be diluted by rapid cell division. Indeed, there is a negative correlation 

between global circRNA abundance and proliferation (Bachmayr-Heyda et al. 2015). 

Although circRNAs are generally reduced in fast-proliferating cells, several oncogenic 

fusion circRNAs (f-circRNAs) have been identified in cells containing cancer-associated 

chromosomal translocations (Guarnerio et al. 2016, Wu et al. 2019). Such f-circRNAs are 

required for proliferation of these cancer cells, but the underlying molecular mechanisms 

remain unknown (Guarnerio et al. 2016, Wu et al. 2019).

Upon infection with some viruses, including the encephalomyocarditis virus, circRNA levels 

are globally decreased due to activation of the nonspecific RNase L endonuclease (Liu et 

al. 2019) (Figure 3). RNase L is also activated in the autoimmune disease systemic lupus 

erythematosus and, correspondingly, overall reduced circRNA levels have been observed 

(Liu et al. 2019). Similar trends have been reported in patients with chronic inflammatory 

skin diseases (Moldovan et al. 2019, 2021). Note that these altered circRNA expression 

patterns are independent of changes in cognate mRNA expression, suggesting that at least 

a subset of circRNAs may play regulatory roles in these diseases. We now summarize 
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the modes of action of some well-studied circRNAs (Figure 4), which have largely been 

characterized using laboratory cultured cell lines.

Modes of circRNA Action

Due to the unique life cycles of circRNAs, the act of their biogenesis, their conformation 

and binding partners, and their long stability can all contribute to their cellular regulatory 

potential. Backsplicing is in direct competition with canonical splicing events, and thus just 

the act of producing a circRNA can sometimes lead to the downregulation of cognate linear 

RNA levels and/or change the sets of linear isoforms expressed in cells. Alternatively, the 

mature circRNAs themselves can carry out biological functions, especially by binding to 

miRNAs, proteins, or other RNA species, sometimes in an inhibitory or competitive manner 

and other times in a scaffolding role that enables functional complexes to be formed. Other 

circRNAs appear to be translated to generate peptides with biological functions.

circRNAs as Decoys or Sponges for microRNAs

Given their largely cytoplasmic localization and cellular stability, many studies have pursued 

the idea that circRNAs might function as competing endogenous RNAs (ceRNAs) (Salmena 

et al. 2011) that modulate the bioavailability of miRNAs (Jeck et al. 2013) (Figure 4). 

The most prominent example is CDR1as/ciRS-7, a circRNA derived from an lncRNA 

(LINC00632) that is antisense to the CDR1 protein-coding gene (which is notably not 

expressed in most tissues) (Barrett et al. 2017; Hansen et al. 2011, 2013; Memczak et al. 

2013). CDR1as/ciRS-7 is abundantly expressed in mammalian brains (Hansen et al. 2013, 

Memczak et al. 2013) with a particular enrichment in excitatory neurons (Piwecka et al. 

2017). In addition to a perfect miR-671 target site that can enable cleavage of CDR1as/
ciRS-7 by Ago2 (Hansen et al. 2011), CDR1as/ciRS-7 harbors 74 conserved binding sites 

for miR-7. Upon reducing CDR1s/ciRS-7 expression in human cell lines, the expression 

of mRNAs with miR-7 binding sites was likewise reduced, suggesting that this circRNA 

can act as a decoy or sponge for miR-7 (Hansen et al. 2013, Memczak et al. 2013). 

Interestingly, when the entire genomic region corresponding to Cdr1as/ciRS-7 was removed 

using CRISPR/Cas9, mice had phenotypes resembling neuropsychiatric disorders, including 

a dysfunction of excitatory synaptic transmission (Piwecka et al. 2017). This was not, 

however, only due to simple alterations in miR-7 sponging, as the expression of miR-7 
was also reduced in Cdr1as/ciRS-7 knockout mice (Piwecka et al. 2017). Cdr1as/ciRS-7 is 

thus required for miR-7 stabilization in vivo and, indeed, a network of lncRNAs, including 

Cyrano, is now recognized to control miR-7 levels (Kleaveland et al. 2018). Cyrano can 

bind miR-7 and promote its destruction by inducing 3’ tailing and trimming (Kleaveland et 

al. 2018). Upon deletion of Cyrano in mice, increased levels of miR-7 are observed along 

with decreased Cdr1as/ciRS-7 expression, in part due to the slicing of Cdr1as/ciRS-7 by 

miR-671 (Kleaveland et al. 2018). Beyond a role in excitatory synaptic transmission in the 

brain, Cdr1as/ciRS-7 has also been implicated in insulin secretion (Xu et al. 2015) and in 

cancer (melanoma) progression (Hanniford et al. 2020). The latter notably occurs via an 

miR-7-independent mechanism.

Beyond Cdr1as/ciRS-7, additional abundant circRNAs have been proposed to serve 

as miRNA decoys or sponges. circHIPK2 modulates astrocyte activation by sponging 
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miR124–2HG (Huang et al. 2017), circZNF1 plays a role in epidermal stem cell 

differentiation by sponging miR-23b-3p (Kristensen et al. 2018), and circBIRC6 controls 

hESC pluripotency and differentiation by sequestering both miR-34a and miR-145 (Yu et al. 

2017). Nonetheless, most mammalian circRNAs are expressed at low levels, with relatively 

few miRNA binding sites (Guo et al. 2014). This makes most circRNAs poor candidates for 

acting as ceRNAs for miRNAs (Bosson et al. 2014, Denzler et al. 2014).

circRNAs as Decoys or Sponges for Proteins

In addition to binding RNAs, circRNAs can bind to proteins, and some act as decoys that 

prevent those protein factors from acting elsewhere (Figure 4). This mode of regulation is 

exemplified by Drosophila circMbl (Ashwal-Fluss et al. 2014). MBL, the protein encoded 

by the cognate gene, promotes circMbl production by binding to the flanking introns and 

then subsequently interacts with mature circMbl transcripts (Ashwal-Fluss et al. 2014). 

When MBL protein levels are high, circMbl backsplicing is promoted at the expense of 

canonical splicing, thereby preventing the expression of additional linear Mbl mRNAs 

and MBL proteins. The existing MBL proteins can be further sequestered by the mature 

circMbl transcripts, ensuring an efficient negative feedback loop (Ashwal-Fluss et al. 2014). 

In another example, circANRIL, which is associated with atherosclerotic cardiovascular 

disease (Burd et al. 2010), binds the C-terminal lysine-rich domain of pescadillo zebrafish 

homolog 1 (PES1) (Holdt et al. 2016). PES1 is a key component of the PES1-BOP1-

WDR12 (PeBoW) complex that promotes precursor rRNA (pre-rRNA) processing to mature 

28S and 5.8S rRNAs. The binding of PES1 to circANRIL can inhibit rRNA maturation, 

leading to impaired ribosome biogenesis, nucleolar stress, and cell death in vascular smooth 

muscle cells and macrophages related to atherosclerosis (Holdt et al. 2016).

Just as circRNAs need to be expressed at high levels to function as efficient ceRNAs, 

the stoichiometry between circRNAs and their binding proteins needs to be evaluated 

before proposing a decoy or sponge model. Rather than acting alone, recent work has 

suggested that circRNAs can function as a group to sequester dsRNA-binding proteins, such 

as NF90/NF110 (X. Li et al. 2017) and PKR (Liu et al. 2019), due to their tendency to 

form 16–26–base pair imperfect double-stranded (ds) regions. Indeed, a number of dsRNA-

binding proteins with degenerate binding motifs, including oligoadenylate-synthetase and 

ADAR1–150, can bind in vitro–synthesized circRNAs (Liu et al. 2019). In another example, 

the circRNA cia-cGAS contains a dsRNA region that enables strong binding to the DNA-

binding domain of the DNA sensor cyclic GMP–AMP synthase (cGAS) in the nucleus. 

This circRNA thus acts to competitively inhibit the binding of self-DNA to cGAS, 

thereby preventing inappropriate type I interferon activation and maintaining quiescent 

hematopoietic stem cells in the bone marrow (Xia et al. 2018).

circRNAs can simultaneously interact with miRNAs and proteins and, therefore, these 

modes of action are not mutually exclusive. Spatial localization, as well as the relative 

amounts of accessible circRNA and protein molecules, plays an important role in defining 

the exact function of the transcript. For example, circFAM120A is an abundant circRNA that 

is expressed at more than 20 copies per HeLa and HEK 293 cell (S. Li et al. 2021). This 

particular circRNA is enriched to monoribosomes, where it binds the translation inhibitor 
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IGF2BP2, preventing it from interacting with the linear cognate FAM120A mRNA. Even 

though IGF2BP2 is present at a level of hundreds of thousands of copies per cell (Hein et al. 

2015), this local niche of circFAM120A on monoribosomes enables this circRNA to carry 

out a critical function: It ensures robust FAM120A translation, which is required in the AKT 

pathway for cell proliferation (S. Li et al. 2021).

circRNAs as RNA Scaffolds

Some circRNA-protein interactions do not inhibit protein function but instead enable 

formation of complexes (circRNPs) that are involved in gene regulation. For example, 

circFOXO3 can promote cell cycle progression by interacting with cyclin-dependent kinase 

2 (CDK2) and cyclin-dependent kinase inhibitor 1 (or p21) to impact CDK2 function (Du 

et al. 2016). In another example, circAmotl1 binds AKT1 and phosphoinositide-dependent 

kinase 1 (PDK1), leading to AKT1 phosphorylation and facilitating the cardioprotective 

nuclear translocation of pAKT in neonatal human cardiac tissue (Y. Zeng et al. 2017). 

Additionally, circACC1 acts as an RNA component of the AMP-activated protein kinase 

(AMPK) holoenzyme to stabilize and promote the enzymatic activity of AMPK by forming 

a ternary complex with the regulatory AMPK beta and gamma subunits (Q. Li et al. 

2019). As a result, circACC1 modulates metabolic adaptation during serum deprivation by 

increasing glycolysis and beta-oxidation.

circRNAs can also act as important scaffolds in the nucleus and the mitochondrion. 

circPOK has been proposed to interact with and activate the ILF2/3 complex in the nucleus, 

promoting the transcription of ILF2/3-regulated proproliferative and pro-angiogenic factors 

in the context of mesenchymal tumor progression (Guarnerio et al. 2019). circKcnt2 inhibits 

Batf expression by recruiting the nucleosome-remodeling deacetylase complex onto the 

Batf promoter, which promotes colitis resolution (Liu et al. 2020). The mitochondrial 

DNA–encoded circSCAR transcript inhibits mitochondrial reactive oxygen species output 

by forming a complex with ATP synthase 5B (ATP5B) and shutting down the mitochondrial 

permeability transition pore (Zhao et al. 2020). In each of these examples, the stoichiometry 

between circRNA and its interacting partners still remains somewhat unclear, along with the 

mechanistic details of how each circRNP is formed, especially at the structural level.

Translatable circRNAs

In addition to the multiple noncoding roles that circRNAs can perform, recent work suggests 

that a subset of endogenous circRNAs may be translated into protein using cap-independent 

translation mechanisms. Engineered circRNAs that contain strong viral IRESs have long 

been known to be translated (Chen & Sarnow 1995). Such engineered transcripts can easily 

be generated in cells using expression vectors (Kramer et al. 2015, X. Li et al. 2017, Wang 

& Wang 2015) and in vitro using direct (or splint) ligation methods (Liu et al. 2022) or by 

using self-splicing introns (Chen et al. 2017; Ford & Ares 1994; Wesselhoeft et al. 2018, 

2019). Nonetheless, there has been significant debate as to whether endogenous circRNAs 

are translated. Some ribosome-profiling data sets have provided little evidence for circRNA 

translation (Capel et al. 1993, Guo et al. 2014, Jeck et al. 2013, Stagsted et al. 2019), while 

others have suggested a subset of endogenous circRNAs [e.g., circZNF609 (Legnini et al. 

2017), circMbl (Pamudurti et al. 2017), circSfl (Weigelt et al. 2020), and circFGFR1 (Chen 
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et al. 2021)] are translatable. Such transcripts have been proposed to often contain regions 

that are complementary to 18S rRNA as well as a structured RNA element that facilitates 

IRES-dependent circRNA translation (Chen et al. 2021). Alternatively, m6A modifications 

have been reported to drive circRNA translation by recruiting the translation initiation factor 

eIF4G2 and the m6A reader YTHDF3 (Yang et al. 2017).

Cap-independent translation mechanisms generally have low efficiency, and thus protein 

products translated from circRNAs are limited under normal conditions (Legnini et al. 2017, 

Pamudurti et al. 2017, Yang et al. 2017). However, upon cellular stress, cap-dependent 

mRNA translation is generally suppressed, thereby allowing products of cap-independent 

circRNA translation to become elevated during starvation (Pamudurti et al. 2017) and 

heat shock (Chen et al. 2021, Yang et al. 2017). For example, the circFGFR1-encoded 

protein, which is in frame with full-length FGFR1, can function as an antagonist of the 

FGFR1 oncoprotein and can suppress FGFR1 signaling and cell growth during heat shock 

(Chen et al. 2021). In a somewhat analogous manner, circ-E-Cad can be translated into an 

oncogenic secretory E-cadherin protein variant that activates epidermal growth factor (EGF) 

receptor (EGFR) signaling independently of EGF, leading to glioma stem cell tumorigenicity 

(Gao et al. 2021). Emerging large-scale analyses of the translatome of human hearts (van 

Heesch et al. 2019), murine spermatogenesis (Tang et al. 2020), and additional cell lines 

and tissues (Chen et al. 2021) have suggested the existence of other circRNA-encoded 

proteins. However, these data need to be interpreted cautiously because standard quality 

control metrics that increase the robustness of ribosome-profiling data cannot be applied 

to circRNAs, and the robustness of false discovery rate metrics for mass spectrometry of 

circRNA-derived peptides has been called into question (Hansen 2021).

EMERGING ROLES OF OTHER TYPES OF CIRCULAR RNAS

This review has focused on the biogenesis and functions of circRNAs produced from 

backspliced exons, but other types of circular RNAs with distinct properties deserve 

mention. Hundreds of ciRNAs are generated in a splicing-dependent manner and are 

derived from intron lariats that fail to be debranched at their 2′,5′-phosphodiester bond. 

Once produced, these transcripts tend to localize in the nucleus where they can promote 

Pol II transcription (Zhang et al. 2013). For example, ci-ankrd52 maintains an open 

conformation that can form a stronger R-loop with its parental locus than can the cognate 

pre-mRNA. Upon ciRNA removal via RNase H1 cleavage, it has been proposed that this 

R-loop is resolved, and transcriptional elongation is promoted (X. Li et al. 2021). ciRNAs 

represent a subset of sisRNAs, which can be linear or circular and were first reported in 

Xenopus tropicalis oocytes (Gardner et al. 2012). Thousands of RNase R–resistant sisRNAs 

preferentially localize to the cytoplasm, and they can be transmitted to the fertilized egg and 

persist during early embryogenesis (Talhouarne & Gall 2014). For example, the maternally 

inherited sisRNA sisR-4 is produced from the deadpan gene, which is essential for X. 
tropicalis development. Female, but not male, mutants for sisR-4 produce embryos that fail 

to hatch. This appears to be because sisR-4 promotes the transcription of its host gene during 

embryogenesis via a positive feedback loop that activates an enhancer present in the intron 

where sisR-4 is encoded (Tay & Pek 2017).
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DNA virus genomes can also produce circular RNAs that are likely involved in cell 

proliferation, but the underlying mechanisms are largely unknown (Huang et al. 2019, 

Tagawa et al. 2018, Toptan et al. 2018, Ungerleider et al. 2018, Zhao et al. 2019). In other 

kingdoms, such as Archaea, circular RNAs derived from noncoding sequences have also 

been suggested to have roles in gene expression regulation (Danan et al. 2012). For instance, 

the maturation of some tRNAs (Soma et al. 2007) and rRNAs (Tang et al. 2002) in Archaea 

requires the existence of their circular intermediates. Circular RNAs derived from archaeal 

tRNA and rRNA introns have additionally been suggested to contain ORFs that encode 

proteins (Burggraf et al. 1993, Dalgaard & Garrett 1992, Kjems & Garrett 1988) or contain 

C/D box snoRNAs that can guide RNA modifications (Clouet d’Orval et al. 2001, Singh et 

al. 2004, Starostina et al. 2004).

CONCLUSIONS

Recent technological advances have unveiled that circRNAs have diverse expression 

patterns, unique biogenesis mechanisms, and distinct modes of action. Many significant 

advances have been made, but the sequence overlap of circRNAs with their cognate linear 

mRNA sequences has made it somewhat complicated to precisely define their regulatory 

roles. Nonetheless, best experimental practices have now been provided to help discriminate 

these circles from linear cognate mRNAs [see reviews by Dodbele et al. (2021) and Li et 

al. (2018)]. Hence, we fully expect more regulatory functions and modes of action of this 

large class of RNA molecules to emerge, especially in physiological in vivo conditions. 

For example, loss-of-function circRNA studies can now be achieved not only by using 

RNAi-mediated approaches but also by using different CRISPR-Cas13 systems and guide 

RNAs targeting the BSJ sites in different contexts (Ai et al. 2022, S. Li et al. 2021, Y. 

Zhang et al. 2021). In addition, base editors can be used to target backsplice sites of 

predominantly circularized exons to specifically knock out some circRNAs (Gao et al. 

2022). These emerging technologies open new doors to better appreciate circRNA functions 

in various contexts. In addition, they may enable disease-related circRNAs, such as the 

steatosis-to-NASH progression–associated circRNA SCAR (Zhao et al. 2020), to serve as 

potential therapeutic targets.

Beyond revealing how endogenous circRNAs are regulated and function, it is worthwhile 

to mention that the stability of these transcripts has endowed them with unique capabilities 

that can be very useful for biotechnological applications. circRNAs can serve as biomarkers 

(Bahn et al. 2015, Y. Li et al. 2015, Memczak et al. 2015) for cancers (Bachmayr-Heyda 

et al. 2015, Vo et al. 2019), virus infection (Ungerleider et al. 2018), and autoimmune 

diseases (Liu et al. 2019; Moldovan et al. 2019,2021). In addition, circRNAs represent a 

novel gene expression platform for generating abundant, stable RNAs that contain RNA 

aptamer sequences (Litke & Jaffrey 2019, Liu et al. 2022) or encode proteins (Chen et al. 

2017, Wesselhoeft et al. 2019). In total, the last 10 years of circRNA research has laid a 

promising foundation for future studies to further understand how these transcripts control 

key biological processes as well as how circRNAs can be applied as useful technologies in 

biomedical research.
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Figure 1. 
circRNAs can be produced from the backsplicing of precursor (m)RNAs. (a, top) An RNA 

precursor containing multiple exons can be subjected to canonical splicing, leading to the 

formation of a linear RNA with all exons included. (Bottom) In contrast, backsplicing 

and canonical splicing can lead to the formation of a circRNA with two exons, and 

an alternatively spliced linear RNA with skipped circle-forming exons. Note that the 

alternatively spliced linear RNA is only sometimes observed, as indicated by the asterisk. 

Panel a adapted with permission from X. Li et al. (2018); copyright 2018 Elsevier. (b) Short 

RNA-sequencing reads are mapped to (top) the splicing junction sites of a linear RNA and 

(bottom) the BSJ site of a circRNA. The BSJ-mapped, noncolinear reads are critical for 

identification of circRNAs from transcriptomic studies. Abbreviations: BSJ, backsplicing 

junction; bss, backsplice site; circRNA, circular RNA from exon backsplicing; mRNA, 

messenger RNA; ss, splice site.
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Figure 2. 
The life cycle of circRNAs in cells. (a) Backsplicing is coupled to Pol II transcription. 

Fast Pol II elongation can lead to enhanced efficiency of backsplicing catalyzed by the 

spliceosome. (b) Regulation of backsplicing. (❶) Long introns usually flank circRNA-

forming exons. (❷) ICSs (red arrows) in flanking introns of circRNA-forming exons can 

facilitate backsplicing by forming transient intronic RNA duplexes that bring the splice 

sites into close proximity. (❸) trans-factors bind to intronic ICSs or other sequences in 

the pre-mRNA to directly bridge distal splice sites to promote backsplicing. (❹) cis- and 
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trans-factors synergistically modulate exon backsplicing. (c) Competition of RNA pairing 

across introns or within an intron modulates splicing and backsplicing reactions. In this 

example, when repeats flanking exons 2 and 3 base pair to one another, (middle) a two-exon 

circRNA is produced. In contrast, when repeats flanking exon 2 base pair to one another, 

(right) a single exon circRNA is produced. (d) circRNA export is modulated by different 

proteins and occurs in a length-dependent manner. (e) circRNAs are stable in the cytoplasm 

and sometimes can accumulate to high levels. (f) Pathways of circRNA degradation in 

the cytoplasm. (g) Secretion of circRNAs from cells in exosomes. Abbreviations: BP, 

branch point; bss, backsplicing site; circRNA, circular RNA; ICS, intronic complementary 

sequence; m6A, N6-methyladenosine; miRNA, microRNA; Pol II, RNA polymerase II; 

pre-mRNA, precursor messenger RNA; RNase, ribonuclease.
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Figure 3. 
Altered cellular and physiological expression patterns of circular RNAs (circRNAs). Up- 

and downregulated circRNA expression has been observed in different biological and 

physiological contexts, including embryo and neuronal development, spermatogenesis, 

immune responses, and tumorigenesis. Although some specific circRNAs have been shown 

to participate in these different processes, the regulatory roles of most of these altered 

circRNAs await further investigation.
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Figure 4. 
A schematic of different modes of action of circRNAs currently annotated in cells. In 

addition to the interplay between backsplicing and canonical splicing for the same splice site 

selection that can ultimately affect pre-mRNA splicing, mature circRNAs themselves can act 

as decoys or sponges for miRNAs and proteins, and as RNA scaffolds. A small subset of 

circRNAs can serve as templates for protein translation. Abbreviations: circRNA, circular 

RNA; miRNA, microRNA.
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Table 1

A chronological view of circular RNA discoveries

Different types of RNA circles Methods to study RNA circles Reference(s)

a: Covalently closed viral circular RNA genomes

Circular viroid RNAs Electrophoresis, thermal denaturation, and 
electron micrograph

Sanger et al. 1976

Circular RNA genome of hepatitis delta virus Electron micrograph and Northern blotting Kos et al. 1986

Self-cleavage and self-ligation of rolling viroid 
RNA circles in vitro

Primer extension, self-cleavage, and ligation Côté & Perreault 1997

b: Circular (intermediate) RNAs processed from noncoding sequences

Yeast mitochondrial RNA circles from cytochrome 
oxidase gene intron

Electrophoresis, electron micrograph, and 
RNA–DNA hybridization

Arnberg et al. 1980, Hensgens et al. 
1983, Tabak et al. 1987

Circular RNA from self-spliced introns of 
Tetrahymena rRNA precursors

Electrophoresis, electron micrograph, and 
endonuclease digestion

Grabowski et al. 1981, Inoue et al. 
1986

Circular RNA from introns of archaeal rRNA 
precursors

Northern blotting, sequencing, and in vitro 
splicing

Kjems & Garrett 1988

Circular RNA from introns of archaeal tRNA 
precursors

Northern blotting, in vitro ligation or analysis, 
and electrophoresis

Clouet d’Orval et al. 2001, Salgia et 
al. 2003

Various types of circular RNAs from archaeal 
noncoding transcriptomes

Northern blotting, RT-PCR, and 
electrophoresis

Tang et al. 2002, Danan et al. 2012

c: Circular RNAs processed from RNA polymerase II–transcribed precursor RNAs (spliceosome dependent)

Circular RNA in HeLa cytoplasm with unknown 
origin and function

Electron micrograph Hsu & Coca-Prados 1979

Abnormally spliced (scrambled) transcripts at 
consensus splice sites

PCR cloning, sequencing, and 
nonpolyadenylated RNA isolation

Nigro et al. 1991

Splicing of ets-1 exons in an aberrant order at 
consensus splice sites

PCR and RNase protection Cocquerelle et al. 1992

Circular transcripts of human ets-1 by nuclear pre-
mRNA missplicing

PCR and poly(A)-RNA sucrose gradient Cocquerelle et al. 1993

Circular transcripts of mouse testis-determining 
gene Sry

RACE, RNase protection, and RNase H 
digestion

Capel et al. 1993

Inverted repeats required for mouse Sry transcript 
circularization

Northern blotting, RT-PCR, and molecular 
cloning

Dubin et al. 1995

Translation of circular RNAs by eukaryotic 
translational apparatus

In vitro circularization and translation Chen & Sarnow 1995

Spliceosome-dependent Sry circular RNA 
formation and recapitulation

Assays of RACE, RNase protection, and 
RNase H digestion

Pasman et al. 1996

Abbreviations: cDNA, complementary DNA; pre-mRNA, precursor messenger RNA; RACE, rapid amplification of cDNA ends; RNase, 
ribonuclease; rRNA, ribosomal RNA; RT-PCR, reverse transcription polymerase chain reaction; tRNA, transfer RNA.
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