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ABSTRACT: Covalent and ionic bonds represent two fundamental forms of bonding between atoms. In contrast to bonds with
significant covalent character, ionic bonds are of limited use for the spatial structuring of matter because of the lack of directionality
of the electric field around simple ions. We describe a predictable directional orientation of ionic bonds that contain concave
nonpolar shields around the charged sites. Such directional ionic bonds offer an alternative to hydrogen bonds and other directional
noncovalent interactions for the structuring of organic molecules and materials.

The spatial orientation of bonding orbitals imparts
directionality to bonds with significant covalent charac-

ter,1−3 thereby enabling the three-dimensional structuring of
complex molecules.4−16 Next to the directionality of covalent
bonds, the presence of directional noncovalent interactions is
often essential for the structure of biological and synthetic
organic matter. Most notably, the directionality of hydrogen
bonds is relevant for the base pairing in DNA and for other
molecular recognition phenomena in biology and chemistry17

and it is a ubiquitous design element for synthetic supra-
molecular chemistry.18−25 In comparison with hydrogen
bonds, the utility of other directional noncovalent interactions,
of which halogen bonds are the main representative, is more
limited.26−30 Here, we focus on imparting directionality to
ionic bonds in an attempt to provide a distinct directional
noncovalent interaction for the three-dimensional structuring
of matter. Ionic bonds are present in ionic solids, such as
sodium chloride, and are relevant for the structure of organic
materials,31−34 synthetic supramolecular assemblies,35,36 and
biological molecules, including DNA37 and proteins.38 In polar
solvents, because of the solvation of ions, ionic bonds behave
as labile noncovalent interactions and are energetically
comparable to hydrogen bonds.39−41 Furthermore, the binding
of two separated ions in vacuum or the presence of multiple
ionic interactions, even in water, can be energetically
comparable to the strength of covalent bonds.41,42 However,
the lack of the dependence of the electrostatic attraction on the
relative orientation of the cation and the anion results in the
structural flexibility of ionic bonds (Figure 1a; see Figure 1b
for the comparison with covalent bonding). As a result, ionic
bonds are of limited use for directional connectivity,36,43−46

unless oriented by multiple interactions,47,48 hydrogen
bonding,19,33,36,49−59 planar π-systems,60−62 or metal coordi-
nation.63

Our strategy for the design of directional ionic bonds
involves the placement of ions in a sterically demanding,
shielding, nonpolar hydrocarbon environment that leaves the
charged group exposed in one direction only (Figure 1c). A
directional approach of two oppositely charged ions with such
structure from the sterically accessible sides minimizes the

charge separation and maximizes the Coulomb attraction.
Other relative orientations result in larger separations because
of the steric repulsion by the shielding backbone and are,
therefore, less favorable (Figure 1c). Directional ionic bonds
might display directionality in solution and in the solid state,
thus offering a new strategy for building molecules, supra-
molecular assemblies, and materials.

For the demonstration of the concept of directional ionic
bonds, we selected N-methylpyridinium cations and arylsulfo-
nate anions because of their potential for structural
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Figure 1. Design of directional ionic bonds.
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modifications at the carbon sites. The structural requirements
for the construction of an effective nonpolar shield around the
ionic moieties were studied by the introduction of sterically
demanding 2,6-bisisopropylphenyl and 2,4,6-trisisopropyl-
phenyl substituents at the positions 4-, 2,6-, or 2,4,6- of the
central (hetero)arene groups of the two ions (Figure 2a). The
examination of the electrostatic potential maps of the ions that
contain the shielding group placed in the 4-position only (C2+
and A2−) reveals little impact on the directionality of the
approach to the charged site. However, a significant shielding
of the ionic moieties is achieved when the nonpolar groups are
placed in positions 2- and 6- (C3+ and A3−). Because of the
localization of the negative charge, the −SO3

− group appears
similarly shielded by the nonpolar environments in A3− and
A4−. However, for the shielding of the N-methylpyridinium

cation, in which the positive charge is delocalized across the
aromatic ring, the presence of nonpolar groups in all three
positions (2,4,6-) is necessary to ensure that the charged site is
exposed only from the side with the N-CH3 group (C3+ vs
C4+).

The examination of a set of previously reported crystal
structures of substituted N-methylpyridinium arylsulfonate
salts confirms that a wide range of relative orientations of
the two ions is possible (C1+A1−, Figure 2b). This structural
flexibility is expected for a bond with high ionic character
(Figure 1a) and is consistent with the nondirectional
distribution of the electrostatic potential of ions C1+ and
A1− (Figure 2a). Furthermore, the molecular structures of ion
pairs C2+A4− and C4+A2−, which each contain one
insufficiently shielded ion, display a strongly bent arrangement

Figure 2. Toward directional ionic bonds. aUnder C1+A1−, the truncated geometries of a subset of previously reported substituted N-
methylpyridinium arylsulfonates are shown. bThe structures are experimental solid-state molecular structures. Hydrogen atoms are omitted for
clarity, and the transparent surfaces emphasize the charged (blue, red) and the shielding (gray) groups.
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of the anion and the cation, while in the case of C3+A3−, the
anion approaches the cation from the second exposed site
rather than from the side with the N-CH3 group (Figure 2b).
However, as indicated by the analysis of the electrostatic
potential maps, the restricted access to the charged areas
between positions 2- and 6- in cation C4+ and anion A3−

results in the predicted geometry of the ionic bond (Figure
2c). The geometric consequence of the closest possible
approach of the two ionic moieties, which maximizes the
Coulomb interaction, is a close-to-linear arrangement of the
backbones of the two ions in ion pair 1. Because of the
predictable and spatially well-defined molecular assembly,
which contrasts the usual lack of directionality of ionic bonds
that are not supported by hydrogen bonds49−51 (Figures 1a
and 2b), we propose that the ionic bond in 1 (Figure 2c) can

be considered as a realization of a directional ionic bond
(Figure 1c). The ionic bond in 1 is distinct from other types of
directional bonding because it does not rely on the covalent
contribution for the directionality of bonding, although
oriented electrostatic potential also plays a role in halogen
and hydrogen bonds.64−68

The generality of directional ionic bonds is supported by the
observation of the expected bonding geometry for ions with
varied shielding substituents at the positions 2- and 6- (2−6,
Figure 3a). To compare the directionality of different ionic
bonds, we define angles α and β as shown in Figure 3a, with
higher directionality of the ionic bond corresponding to the
values of the angles that are closer to 180°. A comparison of
the α and β angles for all ionic bonds discussed here is given in
the two-dimensional plot in Figure 3b. While the ion pairs

Figure 3. Generality and analysis of directional ionic bonds.
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shown in Figure 2b, which do not contain sufficient shielding
around the ions, give more varied and lower values for both of
the angles (red circles), a narrower distribution closer to 180°
is observed for directional ionic bonds (blue circles, the
additional data points represent the examples discussed
below). The deviation of the angles in the directional ionic
bonds from 180° is a combined result of the lack of perfect
shielding of the charged sites, crystal packing effects, and the
presence of H2O molecules in some of the structures.
Additionally, dispersion interactions are likely responsible for
the tendency toward orientations that maximize the contact
surface between the shielding substituents on the anion and
those on the cation (2 and 3). With larger shielding groups, the
central (hetero)arene planes of the ions are twisted toward a
dihedral angle of 90° to give interlocked structures 4−6 in
which the ionic bonds appear further shielded, but the α and β
angles remain similar to those in 1−3.

The study of the ionic bond in 3 in nonpolar solvents
benzene-d6 and toluene-d8 by 1H−1H rotating frame Over-
hauser enhancement spectroscopy (ROESY) indicates the
presence of the directional interaction in solution.69 The
through-space ROE correlations in the ROESY spectrum
indicate spatial proximity of the N-methyl group (labeled as
cation-CH3

a) of the cation and the methyl groups closest to
the −SO3

− group (labeled as anion-CH3
a) on the anion

(Figure 3c, top; see Figure 3d for the labeling of the groups).
Further strong anion−cation correlations are observed
between anion-CH3

a and cation-CH3
b and cation-CH3

d

protons, while weaker (cation-CH3
c) or no correlations

(cation-CH3
e) are observed with more distant methyl groups

(Supporting Information and Figure S1c, top). The calculated
binding free energy for 3 at the CPCM(benzene)/M06-2X/6-
311++G(3df,2p)//M06-2X/6-31+G(d,p) level of theory is 15
kcal/mol (see the Supporting Information). For comparison,
the estimation of the binding electrostatic potential energy by
approximating the ions in 3 with two point charges centered
on the sulfur atom and the pyridine ring gives a value of 25
kcal/mol in benzene. The addition of an external ion pair
nBu4N+BF4

− to the solution of 3 in C6D6 results in the loss of
the cation−anion ROE correlations, thereby demonstrating the
cleavage of the directional ionic bond by the exogenous ion
pair (Figure S1). Furthermore, the cation−anion correlations
are not observed in the polar solvent DMSO-d6, which
indicates ion separation or potentially a less directional ion
pairing (Figure 3c, bottom).

The SAPT analysis70 of the truncated structures indicates
that the presence of the shielding groups contributes around
13% to the total interaction energy in 3 (Figure S2a, 3 vs
3truncA) with the dispersion and induction contributions being
largely offset by the steric repulsion (3truncB and 3truncC). The
electrostatic contribution dominates the interaction in the
directional ionic bond and it is comparable to the energy
between two point charges centered on the N and S atoms
(Figure S2c; for a comparison with a simpler ion pair and
hydrogen- and halogen-bonded systems, see Figure S2d).71

However, larger shielding groups provide higher stabilization
of the interaction (25% estimated in the case of 6, Figure S2b).

Following the observation of the directionality in the solid
state and in nonpolar solvents, we next show the potential of
directional ionic bonds for the spatial organization of matter
over distances of several nanometers. The modular synthetic
approach to the ions in 1−6 (Figures S3 and S4) enables the
connection of additional molecular units to the directional

ionic bond at the para-positions of the shielding substituents
that are present at the back sides of the cation and the anion
(Figures S5 and S6). The approximate geometric collinearity
of the covalent bonds at these sites enables the use of
directional ionic bonds as structurally well-defined linear bonds
(Figure 4a). For example, linear and bent supramolecular
systems, such as 7 and 8 (Figure 4a), can be accessed by the
use of two directional ionic bonds and 1,4- and 1,3-
disubstituted benzene groups as spacers. The ROESY analysis
of 7 and 8 reveals a similar interaction pattern to that of 3,
although the signals between anion-CH3

a and cation-CH3
c,e

appear stronger, which suggests a more flexible orientation of
the cation (Figure 4b; see Figure 3d for the labeling of the
groups). Water molecules can bind to the oxygen atoms of
arylsulfonate anions under air, and the presence of a water
molecule is observed in the solid-state structure of 7. However,
the approximate linear geometry remains preserved (Figure
4c), which shows that the directionality of directional ionic
bonds can be maintained in the presence of strong hydrogen
bond donors. Furthermore, directional ionic bonds can be
applied to the molecular architecture at the nanoscale level, as
shown with the molecular structure of 9, in which the binding
of two palladium-porphyrin groups through two directional
ionic bonds leads to a separation of the metal centers by 6.5
nm (Figure 4a,d). The precise spatial organization of
functional molecular units, such as porphyrins, over large
distances is relevant in synthetic and biological systems, such as
molecular light-harvesting devices.72−74

The use of more complex multi-ionic units enables access to
structurally well-defined materials with directional ionic bonds,
as exemplified by the formation of a two-dimensional
hexagonal structure in 10 (Figure 4e). The hexagons in 10
are composed of six directional ionic bonds, with the long and
the short diagonals of the hexagon measuring 5.2 and 4.6 nm,
respectively. In the crystal structure, the 2D layers form an
ABCA′B′C′ stacking pattern (where ′ indicates a glide plane
relationship) in which cavities are present between the ions of
non-neighboring layers (Figure 4e, Figure S7). Transmission
electron microscopy (TEM) shows the formation of thin plates
upon drop casting (Figure 4e, Figure S8), while the thermal
analysis of the constituent ions demonstrates partial decom-
position upon the heating of 10 at 250 °C for 1 h (see the
Supporting Information). Porous materials, such as metal−
organic frameworks,75−77 covalent organic frameworks,78 and
(charge-assisted)54−56 hydrogen-bonded organic frame-
works,21,22,59 have a range of applications in diverse areas of
chemistry and can have geometries related to that in 10.52,79,80

However, directional ionic bonds offer a complementary
strategy for the construction of organic materials by utilizing
otherwise nondirectional Coulomb interactions between two
ions as a geometrically well-defined linear bonding element.

Directional ionic bonds, which are demonstrated with the
structures of 1−10, open new avenues for the structuring of
organic matter by imparting directionality to ionic bonding,
which is a fundamental81−83 and omnipresent mode of
chemical bonding. Several properties of directional ionic
bonds, including the binding strength and the modulation
with solvent polarity and competing ions, are comparable with
the structural and dynamical properties of hydrogen bonds.
Therefore, the use of directional ionic bonds might be
envisioned in diverse areas of supramolecular and materials
chemistry. Additionally, as demonstrated with the structures of
7−10, directional ionic bonds connect molecular fragments in

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.3c01030
J. Am. Chem. Soc. 2023, 145, 8291−8298

8294

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c01030/suppl_file/ja3c01030_si_001.pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c01030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 4. Molecular architecture at the nanoscale. (a) Construction of supramolecular assemblies. (b−d), Characterization of 7−9. (e) Directional
ionic materials.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.3c01030
J. Am. Chem. Soc. 2023, 145, 8291−8298

8295

https://pubs.acs.org/doi/10.1021/jacs.3c01030?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c01030?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c01030?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c01030?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c01030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


a linear geometry at a distance of >2 nm, which makes such
interactions especially suited for molecular architecture at the
nanoscale.
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