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Indoor superspreading events are significant drivers of transmission of respiratory
diseases. In this work, we study the dynamics of airborne transmission in consecutive
meetings of individuals in enclosed spaces. In contrast to the usual pairwise-interaction
models of infection where effective contacts transmit the disease, we focus on
group interactions where individuals with distinct health states meet simultaneously.
Specifically, the disease is transmitted by infected individuals exhaling droplets
(contributing to the viral load in the closed space) and susceptible ones inhaling the
contaminated air. We propose a modeling framework that couples the fast dynamics of
the viral load attained over meetings in enclosed spaces and the slow dynamics of disease
progression at the population level. Our modeling framework incorporates the multiple
time scales involved in different setups in which indoor events may happen, from
single-time events to events hosting multiple meetings per day, over many days. We
present theoretical and numerical results of trade-offs between the room characteristics
(ventilation system efficiency and air mass) and the group’s behavioral and composition
characteristics (group size, mask compliance, testing, meeting time, and break times),
that inform indoor policies to achieve disease control in closed environments through
different pathways. Our results emphasize the impact of break times, mask-wearing,
and testing on facilitating the conditions to achieve disease control. We study scenarios
of different break times, mask compliance, and testing. We also derive policy guidelines
to contain the infection rate under a certain threshold.

airborne disease spread | fast & slow dynamics | disease control policies | indoor transmission |
multi-scale modeling framework

Many infectious diseases are caused by airborne transmission of viruses. For example,
the ongoing COVID-19 pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is known to be transmitted through droplets and aerosols
exhaled by infected individuals (1–4). Among the different routes for the disease to
spread, indoor activities (e.g., airplanes, cruise ships, bars, family gatherings, classrooms)
have been characterized as potential superspreading events, and such events are the major
drivers of the COVID-19 pandemic (5–15). After the significant social and economic
impacts caused by the massive worldwide lockdowns during 2020 (16), a return to
“normality” relied upon the design of safety guidelines for indoor activities (17, 18).

Face masks, vaccination, large-scale testing, and social distancing during indoor
meetings were effective policies (19). Additional effort was also expended to improve
air filtration systems, creating transparent barriers and screens, and encouraging good
hygiene (15, 17, 20). A recent workshop by the National Academies of Sciences
suggested that different factors (e.g., mask-wearing, indoor environment, ventilation)
could determine the level of exposures to the disease in a closed space (21). In particular,
the report (21) stresses the importance of multiscale modeling, which incorporates the
interplay among factors such as human behavior and the environment. Moreover, the
current threat of the airborne virus trio (COVID, flu, and RSV) has brought fresh
urgency to studies incorporating environmental transmission. Nevertheless, a systematic
study of the effects of the factors mentioned above on the infection process, and of their
comparative efficacy in controlling infection, has not been published—the academy’s
report calls for further work in this direction. In this work, we develop a modeling
framework that accounts for various environmental and behavioral determinants,
enabling us to quantify and compare the effects of the factors on the disease contagion
process at different scales. Such factors include the meeting length, break times, the
size of the venue, the efficiency of the air filtering system, and the level of mask wearing
in the group. We also assess the interactions and trade-offs among these variables, with
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a view to finding the most effective policy responses under varying
venue settings. Our data come from the research literature on the
COVID-19 pandemic, but the proposed approach and the
methods are widely applicable.

Classical mathematical epidemiology envisions effective con-
tacts (i.e., contacts that could result in new infections) as the
currency for the transmission of communicable diseases. The
contagion events are assumed to occur when two individuals
have close interactions that can transmit the disease. In other
situations, however, the infectious pathogen spreads among
large groups of people gathering together in a common space
(restaurant, airplane, theater, etc.) for a significant amount of
time (meal, flight, performance, or lecture, etc.). Consequently,
susceptible individuals inhale a small amount of aerosol droplets
residing in the room, thus becoming infected without directly
contacting infectious individuals. In such situations, it is ap-
propriate to model the risk of infection to be dependent on
the time individuals spend in different environments, residency
times. The infection risk is then determined by the environment-
specific conditions—a Lagrangian approach. Following this
reasoning, the risk of infection becomes an intrinsic property
of the environment, and not a consequence of individuals’
interactions (22, 23).

There is rich literature on indoor airborne transmission.
Infection processes in closed indoor spaces were first examined by
Wells (24) where he introduced the concept of quantum, defined
as “the number of infectious airborne particles required to infect
1 − 1/e fraction of the population.” Riley, Murphy, and Riley
further extend Wells’ definition of the quanta and proposed the
celebrated Wells–Riley model (25). Their model incorporates a
probabilistic process of infection based on the average quanta of
infection inhaled by susceptible individuals. Later, Gammaitoni
and Nucci (26) studied indoor disease transmission considering
the virus exhalation per infected individual and the rate of viral
stocks removal due to ventilation, along with the effect of masks
on the disease dynamics. Protective equipment, like face masks
and space ventilation, reduces the number of virus particles
exhaled/ inhaled that remain suspended for extended periods in
closed spaces.

A recent work by Hekmati et al. (27) examines the spread
of airborne diseases in enclosed space under individual-level

behavioral responses (e.g., mask-wearing, and vaccination). In
another work by Bazant and Bush (3), indoor disease transmission
with a focus on sizes of respiratory droplets exhaled by infected
individuals is studied. Motivated by earlier work (24), we propose
a modeling framework in which disease transmission between
individuals in a closed indoor setting occurs via aerosol droplets.
This modeling framework allows us to capture the collective
impact of the population on an individual, via the contaminated
environment. In contrast with the aforementioned work, our
modeling framework incorporates the feedback loop emerging
between the dynamics of the viral load attained over meetings
in a single day and the evolution of disease transmission over
consecutive days. Our framework builds upon and generalizes
the previously mentioned paradigms by modeling the multiple
time scales implicit in both the “fast dynamics” of within-room
transmission and the “slow dynamics” of disease progression
among the population, see Fig. 1. The parameters governing
the dynamics in our model have intuitive interpretations and can
be subjected to better-grounded variations to explore theoretical
and numerical results, specifically, the trade-offs between room
characteristics (ventilation system efficiency and air mass) and
group composition and behavior (size, mask compliance, testing,
meeting time, and break times), which emerge by incorporating
different scales as a part of the model. Moreover, we show that
the framework is robust to address variations in the time scale
involved in distinct meetings schedules and to couple epidemic
models incorporating different within-host disease progression
and control measures. We address four scenarios depending
on the time scales involved: i) short time-scale scenario, which
corresponds to a single meeting at a single-day event. for instance,
attending a bar or a party. ii) medium short time-scale scenario,
which corresponds to multiple meetings in a single day events,
for instance, attending a conference hosting multiple sessions
in a single day with breaks between meetings. iii) medium-
long time-scale scenario which corresponds to having a single
meeting per day, over multiple days. This scenario resembles, for
instance, attending a lecture in a particular place during multiple
days. iv) long time-scale scenario, which corresponds to multiple
meetings hosted per day, during multiple days. This scenario
mimics, for instance, school attendance, where students gather
in the same classroom for multiple hours with breaks between

Fig. 1. A pictorial example of our framework over different time scales. Our framework captures the feedback loop between infected individuals shedding virus
during the meetings (W(t)) and the increment of the viral load producing newly infected individuals (Im , In). The multiple time scales involved in distinct meetings
schedules are addressed via the computation of the daily infection probabilities. Susceptible, infected, tested, and recovered individuals are respectively
highlighted in blue, red, green and black.
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meetings, and during multiple days. The detailed formulations
of these scenarios are found in SI Appendix and the key results
are summarized in Table 1 below.

Our results highlight the role of indoor environmental
conditions on the infection process and the trade-offs between
environmental conditions and the efficiency of the interventions
at multiple scales. Our main insights include the following: i) high
air filtering efficiency becomes more important as meetings extend,
as the cumulative virus stock critically increases when the group
size is large; ii) splitting the meeting to allow air filtering during a
long enough break is better than splitting the crowd for two full-
session meetings; iii) We go beyond the well-known role of
face masks in limiting disease transmission and quantify how
their benefit trades off against other measures such as better air
filtration and intermeeting breaks. iv) intermeeting break times
dramatically reduce the room’s viral load, potentially equalizing
masks and testing effects. Allowing break times between meetings
modulates the room’s viral load. This study quantifies the relative
trade-off between face mask compliance, break times, testing,
and ventilation system. Finally, we empirically validate our
modeling framework by studying the disease dynamics generated
in three case studies: i) students daily meeting in a classroom,
ii) elderly individuals living in a long-term care facility, and
iii) the superspreading event of the Skagit Valley Choir (6, 28).
Our results are briefly stated below, and details are in
SI Appendix.

Multiscale Modeling Framework

Within-Meetings Virus Dynamics. Modeling the evolution of the
cumulative viral load in the meeting room is critical in order
to characterize the infection risk and, consequently, the disease
transmission process at the population level.

Assume that a group of size G arises from the population
(randomly or by some other mechanism like a network) to meet
for time T in a space (such as a restaurant, an airplane, or a
theater) with air mass A. Of the G people, let p be the fraction
that wears masks (i.e., M = p ·G), and the rest of the population
do not wear masks (i.e., N = (1 − p) · G). Mask wearing is
the result of individual decisions which may be influenced by
factors like risk perceptions and peer pressure (29). In general,

these subpopulations may change over meetings and even during
meetings. However, in this work, we assume that the M and N
subpopulations are exogenously determined, and constant from
one meeting to the next. We assume that both groups follow a
similar disease progression structure, formalized by the epidemic
model describing the individuals’ health status transitions. In
order to favor parsimony, we chose as the baseline model the SIR
(susceptible–infected–recovered) disease progression structure,
where M = Sm + I m + Rm, and N = Sn + I n + Rn. In the
proposed framework, the individuals’ health states are inherited
from prior meetings. In order to mechanistically model the
within-room virus dynamics, we assume that a typical infected
individual exhales virus particles, so the group’s aggregate flow v
of virus exhalation per unit of time, during the meeting period,
is given by v = k [η I m + I n] where 0 < η < 1 is the
efficacy of the mask in reducing virus exhalation in relation to the
non-mask-wearing, infected population; lower η implies higher
efficacy. Analogous formulations of the virus exhalation for
more complex epidemic models incorporating multiple infectious
health statuses are provided in SI Appendix.

Recovered individuals play no active role within a meeting;
they neither exhale virus particles (unlike the I types) nor do they
get infected by inhaling the virus (unlike susceptible individuals)
because they have immunity. The detailed formulation of the
baseline epidemic model is provided in a further section.

The stock V of the virus within the room evolves according
to dV

dt = v − ρV , where the initial condition is V (0) = V0,
and 0 < ρ < 1 is the efficiency of filters in the ventilation
system; a higher ρ implies higher efficiency. In general, the
initial condition V0 could be some residual “stale” air left over
from the previous meeting or zero, depending on the modeling
scenario: single meeting or multiple meetings per day. Therefore,
the virus stock at time t is given by

V (t) =
v (1− e−ρt)

ρ
. [1]

Let Pn(t) denote the probability that an Sn individual (not
wearing a mask) is infected by time t during the meeting. Its
hazard rate (the probability of being infected in a small interval
of time [t, t + dt] conditional on not having been infected before

Table 1. Scenarios, control variables, and policy insights
Control Dynamic

Scenario Description variables Policy insights components

Short time-scale Single meeting at
a single day.

a, b, c, d For short meetings, ventilation and masking have
similar effects.

Viral load

For long meetings, ventilation has a greater impact
than masking.

Medium short
time-scale

Multiple meetings
at a single day.

a, b, c, d, e For short meetings, break times of 10–15 min have a
similar impact than 50% mask compliance.

Viral load

For long meetings, break times of 20–25 min have a
similar impact than 50% mask compliance.

Medium-long
time-scale

Single meeting at
multiple days.

a, b, c, d, f For short meetings, masking and testing shows that a
trade-off follows a 2:1

Viral load

For long meetings, masking and testing shows a
trade-off of 1:1.

Infectious
individuals

Long time scale multiple meetings
at multiple days.

a, b, c, d, e, f For short meetings, a 60% testing reduction is
balanced by around 20-min breaks.

Viral load

For long meetings, a 40% testing reduction is
balanced by around 20-min breaks.

Infectious
individuals

(a) Group size, (b) air mass (room size), (c) mask compliance, (d) ventilation, (e) break times, and (f ) testing. We discuss scenarios of meeting periods of 50 min (short meetings) and
120 min (long meetings). For our simulations, we used the baseline parameter values.
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time t) is assumed to be a function of the virus concentration in
space at time t and assumed to be linear to allow a simple explicit
solution

dPn/dt
1− Pn

= δ
V (t)

A
, [2]

where A is the air mass volume in a room, and δ is the coefficient
linking hazard rate to virus load.

Our specification assumes that the air in the meeting space
(restaurant, auditorium, or airplane) represents a “public bad.”
For a public good, one person’s consumption does not detract
from another’s. Similarly, for a public bad, one susceptible person
inhaling some virus does not reduce (at least, not significantly)
the quantity of virus available to others. A single cough from
an infected person “may generate as many as 1.23× 105 copies
of viruses that can remain airborne after 10 s” (30), while only
“300 to 800 virions are needed to cause infection in 50% of the
population” (27). This modeling framework is intended to apply
to situations where people are not too tightly packed together in
the meeting space. Therefore, the number of susceptible people
in the space does not dilute the virus concentration significantly.
This yields the solution*

Pn(t) = 1− exp
[
−
δv
ρA

(
t −

1− e−ρt

ρ

)]
, [3]

alternatively, we can express the solution as

Pn(t) = 1− exp [δW (t)/A] , [4]

where W (t) =
∫ t

0 V (τ ) dτ = v
[
t − 1−e−ρt

ρ

]
is the cumulative

virus stock available for inhalation up to time t. For those
wearing a mask, the hazard rate is reduced by a factor α, where
0 < α < 1; a lower α implies higher mask efficiency in reducing
virus inhalation. Then, analogous calculations show that the
probability of a masked susceptible person being infected by
time t is of the form

Pm(t) = 1− exp [−α δW (t)/A] . [5]

Coupling the Meeting Virus Dynamics and the Population Dis-
ease Dynamics. We couple the within-meetings virus dynamics
(fast dynamics), and the population scale disease dynamics
(slow dynamics), via the daily infection probabilities and the
infectious individuals’ viral shedding. On the one hand, the
viral load (changing over minutes) determines the daily infection
probabilities, which are used to compute the newly infected
individuals. On the other hand, individuals infected during
one meeting contribute to the viral load at subsequent meetings.
Individuals change among health classes at a daily scale, according
to the disease progression model. Disease progression at the
population scale plays a role in the medium-long and long time-
scale scenarios, where the meetings are hosted on multiple days.
We compute the masked/unmasked daily infection probabilities
(Pn(T ) and Pm(T )), using the meeting-specific viral load upper
bounds (W (T ))—the cumulative total available for inhalation
during the meeting. For the medium-long and long time-scale
scenarios, the number of infected individuals contributing to the
within-meeting viral load changes as the epidemic propagates
in the population, so the cumulative viral load at the end of
each meeting changes. In short, the feedback loop in our model

*Details of the derivation, and similar mathematical details in what follows, are provided
in SI Appendix.

occurs between the viral load produced by the infected individuals
attending meetings and the daily newly infected individuals
produced by the viral load over meetings.

Fig. 2 shows the dynamics of the viral load over multiple
meetings, for the scenarios of having a single meeting per day,
and for the scenario of having multiple meetings per day, where
the meeting length is T = 50 min. Fig. 2A shows the scenario
of having a single meeting per day. In this scenario, the room
totally cleans overnight, so the viral load drops to zero before the
next meeting starts. In this scenario, the masked/unmasked daily
infection probabilities are determined by the viral load attained
at the end of each meeting.

Pn(T ) = 1− exp

[
−
δv
ρA

(
T −

1− e−ρT

ρ

)]
. [6]

In counterpart, Fig. 2B shows the scenario of having multiple
daily meetings. In this scenario, the room partially cleans during
breaks between meetings (at a rate determined by the ventilation
system). The initial and the final viral loads of subsequent
meetings depend on the number of infected individuals at-
tending, the ventilation system, and the break time. The daily
probability of infection in this scenario accounts for the viral
load accumulated over the multiple meetings each day †. Let
pi be the meeting-i probability of infection; therefore, the
probability of infection at day t, after n meetings, is given by
Pt = 1−

∏k=n
k=1(1− pk).

Population Level Disease Dynamics. Consider a structure or
sequence of meetings hosting a group of size G—these could
be flights, lectures, or meals in a dining room. In general,
the meeting group may be composed of people joining and
leaving the meetings at any day. We discuss this scenario in
SI Appendix. In order to illustrate the proposed framework,
here, we assume the medium-long time-scale scenario, where
individuals attend one daily meeting during multiple days, with
the following assumptions: i) The same G people are present at
all meetings. For instance, students in a course that meets for a
succession of lectures or residents of an over-55 community who
meet each night for dinner. ii) Infected individuals continue to
attend subsequent meetings, without any quarantine or isolation
requirement. The time scale of our population dynamics model
considers daily meetings (i.e., the group meets once per day).
Therefore, individuals’ health status does not change within a
meeting, but it changes after multiple days. Results of the model
extensions incorporating multiple daily meetings and testing are
shown in SI Appendix and summarized in Table 1.

It is known that the decision to wear a mask depends
on diverse incentives (risk perceptions, prosocial preferences,
peer pressure, etc.); in this work, we assume that individuals’
decision is exogenously motivated and fixed over the meetings
series (31–33). We assume that the meetings are relatively short
so that no persuasion is likely to occur. Therefore, individuals’
decision to wear masks does not change, either within one
meeting or from one meeting to the next. Our framework can
be extended to incorporate mask-wearing behavior in multiple
ways: for instance, as a complex contagion, where behavioral
adoption requires multiple incentives or discomfort perception
from different sources (29, 34, 35) or as a prosocial behavior

†Now the V(0) for subsequent meetings is the surviving load inherited from the previous
meeting after the partial clearing. To save space, we do not explicitly show the trivial
changes this implies for the solution in Eq. 1.
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A B

Fig. 2. Viral load dynamics over multiple meetings. The x-axis and y-axis are the accumulated meeting length and viral load over multiple meetings, respectively.
The infection probabilities are computed using the cumulative viral load at the end of each meeting W(T). Panel A shows the scenario of having a single meeting
per day; the figure shows the viral load attained over 15 meetings (or during 15 d) for meeting periods of 50 min each. Panel B shows the viral load attained on
the scenario of hosting 6 subsequent meetings in a single day, for break times of 5 and 15 min.

where infected individuals decide to use masks. Moreover, we
show in SI Appendix that our framework can be coupled with
more complex epidemic models, incorporating, for instance,
multiple infectious states, recruitment and leaving processes, and
testing.

The baseline population-level disease dynamics over a sequence
of meetings for the extreme scenario where nobody wears masks
and in the absence of testing are described by the following set of
difference equations:

Sn
j+1 = (1− Pn(T )) Sn

j + λP Rn
j

I n
j+1 = Pn(T ) Sn

j + (1− φP) I n
j

Rn
j+1 = (1− λP)Rn

j + φP I n
j ,

[7]

where φP and λP are the daily probabilities of recovering and
losing immunity, respectively. Similar equations hold for the all-
masked scenario. The general model in the absence of testing
considers that the full group G is composed of pG mask-wearers
and (1 − p)G non-mask-wearers, where p is the proportion of
people using masks. In this scenario, v = k (η Im + In), and
the masked and unmasked infection probabilities follow from
Eqs. (3) and (5). The disease dynamics for the succession of
meetings are given by the set of difference equations

(1− p)G = Sn
j + I n

j + Rn
j ,

Sn
j+1 = (1− Pn(T ))Sn

j + λPRn
j ,

I n
j+1 = Pn(T )Sn

j + (1− φP)I n
j ,

Rn
j+1 = φPI n

j + (1− λP)Rn
j ,

pG = Sm
j + I m

j + Rm
j ,

Sm
j+1 = (1− Pm(T ))Sm

j + λPRm
j ,

I m
j+1 = Pm(T )Sm

j + (1− φP)I m
j ,

Rm
j+1 = φPI m

j + (1− λP)Rm
j .

[8]

Our model is calibrated using the following baseline parameter
values. (We explore the impact of variations in the parameter
values in SI Appendix.) We assume mask efficiency values to
be broadly consistent with data (29), where virus exhalation and
virus inhalation are assumed to be reduced by 90% (η = 0.1)
and 70% (α = 0.3), respectively. The air-filtering parameter
is set at ρ = 0.1 per minute, corresponding to the expected
lifespan of the virus in the space at 10 min, which is broadly
consistent with what modern HEPA filters promise. The virus
load coefficient is set at k = 1, as a choice of units in which

the virus is measured. For our baseline simulations, we chose a
group size of G = 100 , and the air mass in the room is assumed
to be A = 9, 000 cubic feet, i.e., a 30-by-30 room with 10-foot
ceilings, which is reasonable for a dining room. The meeting
time is assumed to be T = 50 min, typical for a lecture or
an institutional dinner. The coefficient linking the hazard rate
to the virus load is set at δ = 0.226; this is calibrated so that
one infected person in this group of 100, meeting for 50 min,
creates a 1% risk of infecting another. This is reasonable, even
somewhat conservative, in light of the accounts of the spread of
COVID-19 in restaurants early in the pandemic when the spread
was running rampant. The recovery rate of infected individuals
is φ = 0.1; this corresponds to an expected recovery period of 10
d, the standard period specified for COVID patients. The rate
of loss of immunity is set at λ = 0.01, i.e., the expected period
of immunity is assumed to be 100 d, which is within the usual
range, if somewhat conservative.

We let the epidemic start with a single infected individual
in the population, who enters at the initial meeting, and we track
the evolution of the infection process among the population.
The discussion of the extreme scenarios where none or all
the attendees use masks and under more complex epidemic
dynamics is shown in SI Appendix. Fig. 3 shows the disease
dynamics in the masked and unmasked subpopulations, when
half of the group is masked (p = 0.5) as well as their
respective infection probabilities over meetings for a group size
of G = 100. We assume that the epidemic starts with a
nonmasked index case. Our simulations show that the epidemic
initially spreads among the nonmaskers, attaining the highest
infection levels in this subpopulation. Notice that, even when
half of the attendants are masked, this significantly decreases
the viral exhalation/inhalation, consequently reducing the disease
transmission. However, in the long run, both populations exhibit
similar infection levels.

Policy Insights

Depending on the time-scale scenario considered, our modeling
framework incorporates up to six control variables: room size,
reflected in the air mass (A), mask efficiency (η,α), masking
compliance (p), meeting length (T ), ventilation system efficiency
(ρ), and intermeeting break times. While short and medium
short time-scale scenarios involve dynamic viral load, the number
of infectious individuals shedding virus remains constant. In
contrast, medium-long and long time-scale scenarios involve
dynamic viral load at a given day and a dynamic number of
infectious individuals shedding virus over days. We aim to
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Fig. 3. Dynamics of the masked and unmasked populations and their infection probabilities for the medium-long time-scale scenario. Panel A shows the
dynamics of the health-specific number of individuals over days (meetings). Panel B shows the evolution of the masked and unmasked infection probabilities.
We assume a group size of G = 100 and mask compliance of 50%.

offer policy-makers a modeling framework to characterize the
trade-offs among potential policy choices acting over different
scales . The numerical explorations in this section correspond
to the trade-offs between the control variables involved in the
third scenario: having a single meeting per day over multiple days.
Additional results for the rest of the scenarios , and for more
complex epidemic models, are provided in SI Appendix and are
summarized in Table 1. A similar analysis can be done over the
variables playing at different scales.

Meeting Time, Mask Compliance, and Group Size Trade-Off. In
this section, we numerically explore the trade-off between the
meeting length (T ), the group size (G), and the proportion of
masked individuals (p), required to prevent the disease from
spreading over the group. Specifically, we explore the impact of
varying these conditions on the infection levels attained in two
schemes: i) at the steady state and ii) after two months of daily
meetings (60 meetings).

Fig. 4A shows the trade-off between the meeting time (T )
and the proportion of mask users (p) producing different total
numbers of infected individuals (masked and unmasked) at the
steady state. Notice that, when there is low mask compliance
(P ≈ 0), the infection level is highly sensitive to increments
of the meeting length. In contrast, moderate and high mask
compliance scenarios show smaller increments in the number of
infected individuals, even for daily long meetings. Our previous

scheme assumed a group size of G = 100. However, physical
distancing policies and other mandates would reduce the number
of individuals allowed to gather indoors. Fig. 4B shows the trade-
off between the meeting lengths and the mask compliance levels
at the epidemic eradication/propagation threshold R0 = 1, for
different group sizes. The computation of the basic reproductive
numberR0 can be found in SI Appendix. Notice that, assuming
similar room conditions, even medium group sizes dramatically
increase the requirement for mask compliance over 80% for
meeting times of 50 min.

Air Filter and Mask Compliance Trade-Off. Fig. 5 shows the
trade-off between the ventilation filter efficiency (ρ) and mask
compliance (p), on the infection level attained at the steady state
for a group size of G = 100. Our simulations show that during
short meetings, increasing ventilation filter efficiency by 10%
has a similar impact than increasing mask compliance by around
30%. In counterpart, for extended meetings (T = 120 min),
the marginal impact of increasing mask compliance is minimal
in the absence of appropriate air filtering levels. This is an
intuitive result, since the high concentration of viral load attained
during long meetings, in a room with reduced air filtration, might
overcome the masks’ protection.

We finally explore the scenario of recurrent single daily
meetings during two months. Our simulations focus on the
impact of both the meeting length and the group size on

A B

Fig. 4. Trade-off between the meeting length and mask compliance. Panel A shows the levels of infection attained at the steady state as a function of both, the
meeting length (T ) and mask compliance (p), for a group size of G = 100. Panel B shows the disease eradication/propagation threshold between mask users
and meeting length (T, p), for group sizes of G = 100,70,40 and G = 10.
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Fig. 5. The impact of ventilation filter efficiency (�), and mask compliance (p), at the steady state, for G = 100. Panel A shows that in short meetings (T = 30),
increasing mask compliance is highly effective, reducing secondary infections. Panel B shows that for long meetings (T = 120), the impact of increasing mask
compliance is dramatically reduced. All other parameters are set to their baseline values.

the produced cumulative cases, for different levels of mask
compliance. We consider the cumulative cases over 60 meetings,
for a baseline scenario hosting meetings of length T = 120,
for a group size of G = 100 and varying proportions of
masks users.

Fig. 6A shows the cumulative cases produced during the 60
meetings as a function of the proportion of mask users, for
meeting lengths of T = 120, 60, 30 and 20 min. Extremely high
masking compliance (around 95%) can decrease the cumulative
cases to half the baseline value without reducing the meeting time
(T = 120). On the other hand, meeting length reductions up to
20 min in the absence of masking, are not enough to achieve the
same decrease. In other words, the combination of high levels of
mask compliance and meeting length reductions is required to
dramatically decrease the cumulative cases.

Fig. 6B depicts the impact of mask compliance on reducing
the cumulative cases, for varying group sizes. Our selected
simulations show that, as expected, halving the group size
takes the cumulative cases below half of the baseline value.
We remark that the impact of increasing mask compliance
on decreasing the cumulative cases is minimal until extremely
high levels are attained. Our previous simulations show that the
combination of moderate mask compliance levels and meeting
length reduction is more effective on reducing the number of
cumulative cases generated in recurrent meetings, compared to
the combination of mask compliance and group reduction.

Case Studies

Under the SEIAR model (i.e., susceptible, exposed, symptomatic
infected, asymptomatic infected, and recovered), we consider
1) a typical classroom with 19 students and one teacher, meeting
every day for a 5-d wk, with a recess break in the middle of
every day, 2) a room with three occupants in a long-term care
facility, occupied all day for five days, and 3) the superspreading
event of the Skagit Valley Choir practice on March 10, 2020.
We simulate our model for these settings and ask what policies
would be effective in reducing infection spread. Our results are
summarized in Table 2, and details are in SI Appendix.

Discussion

In this work, we investigate the spread of disease in a population
attending meetings that would follow different time structures.
We study scenarios where meetings are hosted at different
time scales. Our modeling framework captures the feedback
dynamics between individuals’ viral shedding, the environment’s
viral dynamics, the group behavioral characteristics, and the
impact of control measures. We identify and quantify tradeoffs
between environmental variables and diverse control variables
acting at multiple scales, for instance, mask wearing and
ventilation (acting at the room’s level), and testing and isolation
(acting at the population scale). Indoor settings pose multiple

A B

Fig. 6. Trade-offs reducing the cumulative infections. This plot depicts the impact of meeting length reductions (Panel A) and the impact of group size reductions
(Panel B), required to reduce by half the cumulative infections, for different mask compliance levels. We assume a baseline group size G = 100 and a baseline
meeting length T = 120 min. Panel A shows that the minimum mask compliance required to take the cumulative cases below half the baseline value, for
meeting lengths of T = {120,60,30,20}, is p = {20%,55%,85%,95%}.
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Table 2. Results of case studies
Case study Room size (ft.3) Group size Meetings schedule Findings

Classroom 10595 20 2 meetings/5 d Break times play a critical role Small group sizes
also require high mask compliance

Long-term care facility 1,890 3 1 meeting/5 d The high vulnerability of elderly people requires
high masking levels if breathing activity is
medium or high

Skagit valley choir 28,605 61 1 meeting A single break time combined with medium mask
compliance would have reduced by half the
infections

intrinsic constraints (e.g., characteristics of the venue), social and
economic conditions (e.g., the population’s age structure and
compliance with social norms) would also restrict the intensity
of the response, for instance, poor organization reflected in low
compliance would require centralized policy choices, instead of
relying on decentralized responses like mask wearing and social
distancing, which require individuals to adopt new behaviors.
We focus on the epidemiological importance of policies such
as mask compliance, meeting breaks, and air filtration for
containing disease propagation in indoor events. We do not
attempt to identify optimal policies. That requires knowledge
of the economic costs of implementing them versus the costs of
higher disease levels, which are likely to differ widely from one
setting to another and, from one society to another.

Policies such as masking mandates, restrictions of spacing and
timing on public meetings, or even prohibiting meetings and
instituting lockdowns involve important political considerations
of public attitudes, the ruling parties-philosophies, and so on.
Making these judgments is obviously beyond our scope, but
our model helps to clarify the epidemiological consequences
of different measures, so policy-makers can properly take into
account the trade-offs between diverse control variables when
making their decisions.

Our goal is to provide a modeling framework on which
the multiple trade-offs emerging between processes and control
policies acting at different scales can be studied. In contrast to
previous work done, where the epidemic dynamics are addressed
at a single scale, the proposed multiscale framework allows
us to understand the multiple feedbacks arising by coupling
the dynamics occurring at the multiple instances at which
a contagion process occurs; namely, the daily within-room
contagions, potentially following multiple schedules, and the
disease progression among the population over days, which would
follow different within-host dynamics. It follows that previous
work done addressing the disease dynamics at a single time scale
corresponds to a specific scenario of our modeling framework.

The main limitations of our work lie in our modeling
assumptions. We assume that the population remains the same
throughout the sequence of daily meetings, whereas, in real-
world scenarios, the members of a population could change
between consecutive meetings. We included in SI Appendix
a short discussion of more complex epidemic models beyond
the SIR framework, for instance, epidemic models incorporating
presymptomatic and asymptomatic individuals, testing and
isolation, as well as people joining and leaving the group under
study. However, a more detailed framework to address dynamics
over multiple meeting rooms would require coupling a network
model in order to address the effect of people moving from one
meeting to another.

Moreover, mask-wearing behaviors in the group are assumed
to remain unchanged over the meetings. Again, this does not

fully reflect the realistic scenario where individual-level behavioral
responses are dynamic processes that would occur at multiple time
scales (within meetings and over meetings) affected by factors
such as peer pressure and fear of the disease. We also simplified
the proposed formulation of disease dynamics for mathematical
tractability; we assume a linear relationship between the group’s
aggregate flow of virus exhalation per unit of time and the number
of infected individuals. In general, it is possible to consider
more complex virus exhalation frameworks based on the quanta
emission rate (36).

We envision future work on studying disease transmission
dynamics over subsequent meetings, where these are embedded
into a more complex framework considering, for instance,
individuals’ mobility across multiple meeting rooms.

In particular, the potentially fast dynamics of mask-wearing
decisions, variations in the duration of meetings as dependent
on the group health status composition, or even the impact of
whether to have in-person meetings, remain to be examined.
Further, it is paramount to address the role of response policies
such as testing and isolation requirements. For instance, highly
accurate testing and a strict quarantine would potentially stop the
disease spread. However, this entails economic costs potentially
reflected in production lost and reduced consumption. On the
other hand, while testing has proven to be an exceptional tool,
the inherited limitations of imperfect testing (with type I and
type II errors) also add to the complexity. Such trade-offs are
important; we plan to develop such extensions in future work.
Lastly, exogenously defined conditions like mask compliance,
mask efficacy, group size, and airmass would be endogenized by
capturing the trade-offs involved, again considering the costs and
benefits (e.g., of better ventilation and higher-quality masks). We
believe that our model will remain an important component of
all such extensions.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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