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Significance

Learning from experience is 
ubiquitous: We get better the 
more we practice. Repetition 
learning has been studied using 
the Hebb repetition paradigm: 
Memory steadily improves for a 
repeated set appearing amid 
nonrepeated ones. 
These data have been 
interpreted as showing a gradual 
accumulation of knowledge, 
assumed to occur without explicit 
awareness. Here, we show these 
conclusions are at fault. 
First, individual data show 
variability in when people start 
learning and a fairly rapid 
performance increase afterward. 
This is inconsistent with a 
continuous accumulation of 
knowledge. Second, directly 
measuring repetition awareness 
revealed that awareness almost 
invariably preceded or 
co-occurred with learning. Our 
findings demand a reformulation 
of current theories: Recognition 
of the repetition triggers a swift 
boost on knowledge formation.
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Learning advances through repetition. A classic paradigm for studying this process 
is the Hebb repetition effect: Immediate serial recall performance improves for lists 
presented repeatedly as compared to nonrepeated lists. Learning in the Hebb para-
digm has been described as a slow but continuous accumulation of long-term memory 
traces over repetitions [e.g., Page & Norris, Phil. Trans. R. Soc. B 364, 3737–3753 
(2009)]. Furthermore, it has been argued that Hebb repetition learning requires 
no awareness of the repetition, thereby being an instance of implicit learning [e.g., 
Guérard et al., Mem. Cogn. 39, 1012–1022 (2011); McKelvie,  J. Gen. Psychol. 114, 
75–88 (1987)]. While these assumptions match the data from a group-level perspec-
tive, another picture emerges when analyzing data on the individual level. We used 
a Bayesian hierarchical mixture modeling approach to describe individual learning 
curves. In two preregistered experiments, using a visual and a verbal Hebb repetition 
task, we demonstrate that 1) individual learning curves show an abrupt onset followed 
by rapid growth, with a variable time for the onset of learning across individuals, 
and that 2) learning onset was preceded by, or coincided with, participants becoming 
aware of the repetition. These results imply that repetition learning is not implicit and 
that the appearance of a slow and gradual accumulation of knowledge is an artifact 
of averaging over individual learning curves.

repetition learning | Hebb repetition effect | working memory | long-term memory | implicit learning

Learning from repetition is ubiquitous; we get better, the more we practice. We learn to 
ride a bike through repeated practice; we learn the words of a foreign language by studying 
them over and over again. The benefit of repetition has been found to be one of the most 
general properties of memory, and decades of research have been put into understanding 
the cognitive mechanisms behind this effect (see, e.g., refs. 1–3 for overviews).

Back in 1961, Donald Hebb introduced a paradigm to study repetition learning: Participants 
were presented with several nine-digit lists for an immediate memory test. Unbeknownst to 
participants, one of these lists was repeated every third trial. Immediate memory performance 
for the repeated memory list improved steadily with the number of repetitions, whereas 
memory performance for the nonrepeated filler lists remained constant (4).

This so-called Hebb repetition effect has been studied extensively and replicated with 
various kinds of materials, including letters (5, 6), words (7), spatial locations (8, 9), visu-
ospatial configurations (10, 11), and faces (12, 13). Some researchers have proposed that 
the Hebb repetition effect can be used as a model for human language acquisition, in par-
ticular the learning of new word forms (2, 14–17), stressing the universality of the effect as 
an example of very general human learning processes. This general process is the acquisition 
of chunks (18), that is, of unified representations of repeatedly encountered configurations 
of elements, such as the sequence of phonemes that form a word or the constellations of 
chess pieces that form a recognizable pattern for experienced players (2, 19–21).

Chunk formation is key to the efficient interplay between working memory and 
long-term memory (20). Working memory is a capacity-limited system that holds mental 
representations temporarily available for use in thought and action (22, 23). Long-term 
memory, in contrast, is a capacity-unlimited system that stores our knowledge and expe-
riences (24). The immediate memory test in Hebb’s paradigm is a common test of working 
memory. The improvement through repetition of a memory set reflects the formation of 
new long-term memory traces, which are then used to support working memory in the 
immediate memory test (2, 25, 26). Thus, the Hebb repetition paradigm can serve as a 
model system for the interaction between working memory and long-term memory in 
the acquisition of new knowledge (2, 19, 27).

Current cognitive and computational models of the Hebb repetition effect have pro-
posed that repetition learning constitutes a slow, continuous process. It is initialized by 
the first occurrence of a repeated memory set and reflects the accumulation of new 
long-term memory traces, which gradually gain in strength over repetitions (2, 19, 25). 
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Furthermore, some authors have argued that the Hebb repetition 
effect is an instance of implicit learning (4, 8, 28–30). This means 
that people do not need to be aware of the memory set repetition 
to gradually build a long-term representation of it. However, other 
studies have questioned this claim (31–33). The role of repetition 
awareness for the Hebb repetition effect remains an open 
question.

A common problem underlying all existing studies on the Hebb 
repetition effect is that data of all participants are aggregated and 
analyzed on the group level. This has led to the typical observation 
of gradually increasing memory performance for the repeated 
memory set above nonrepeated sets (see Fig. 1A for typical 
 examples). However, as Estes has already noted in 1956, drawing 
inference about cognitive processes from aggregated curves can be 
problematic because the aggregated curve does not necessarily 
reflect the shape of the curve on the individual level (34, 35). This 
problem becomes evident for the Hebb repetition effect. Fig. 1B 
shows examples of individual learning curves, which were drawn 
from the same sample displayed on the aggregated level in Fig. 1A. 
The individual learning curves do not resemble the aggregated 
learning curve. Instead, individual data suggest a two-stage process 
in which an initial phase of no learning is followed by a rather 
sudden onset of the learning process. The data show variability in 
the onset of the learning process and that for some participants, 
no learning effect is observed at all.*

This observation challenges the assumption that learning occurs 
gradually over repetitions and demands a reevaluation of the learning 
process on the individual level instead. One general characteristic of 
the individual learning curves shown in Fig. 1B is a variable onset of 
the learning effect, followed by a substantial improvement in imme-
diate performance within just a few trials. This raises the question of 
what enables participants to suddenly improve on the repeated mem-
ory set. One possibility is that learning onset is caused by participants 
becoming aware of the repetition. This hypothesis contradicts the 
idea of repetition learning as an implicit process, but it is consistent 
with theoretical considerations about the repetition benefit in epi-
sodic long-term memory. Here, many findings have stressed the 
importance of study-phase retrieval or reminding as a crucial factor 
for learning from repetition (36–41). One idea emerging from this 
work is that the repeated presentation of a stimulus needs to cue the 
retrieval of a previous encounter of the same stimulus for strength-
ening effects to occur. Transferred to the Hebb paradigm, participants 
might need to explicitly retrieve a previous encounter of the repeated 
memory set before being able to benefit from the repetition.

This assumption leads to two predictions: First, the time at 
which people start to learn should correlate with the time at which 
they become aware of the repetition. Second, the time of awareness 
should precede, or coincide with, the onset time of learning. In 
contrast, if people become aware of the repetition only after the 
learning process had already started, learning would still reflect an 
implicit process, which leads to awareness in its wake. So far, no 
study has looked at the relationship between learning onset and 
awareness in the Hebb repetition paradigm at the level of individ-
uals or at their temporal relation.
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Fig. 1. (A) Examples of aggregated learning curves typically observed in Hebb repetition experiments. The data are from the “Awareness Rating Condition” of 
the verbal and visual Hebb experiments conducted in this study. (B) Examples of individual learning curves of four participants each, drawn from the aggregated 
samples shown on top. Note: P(correct) = proportion of correct responses. The x-axes in panels A and B show the repetition number for the Hebb set. For the 
filler sets, this corresponds to the average performance in each mini-block.

*A collection of individual learning curves from every participant in the samples of the two 
present studies can be found in our online repository at https://osf.io/dpkyb/, showing 
that this pattern generalizes for all participants, not only for the selected ones.

https://osf.io/dpkyb/
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Here, we introduce a modeling approach which allowed us to 
do both: to analyze data on the level of individual participants 
and examine the temporal relation between the onset of the indi-
vidual learning process and the onset of repetition awareness. In 
two typical Hebb experiments, one using verbal memory lists and 
one using visuospatial arrays, we combined the measurement of 
participants’ immediate memory performance with a trial-by-trial 
assessment of their awareness of the repeated memory set (see 
Fig. 2 for an overview). Repetition awareness was assessed after 
each trial by asking participants whether or not they had seen the 
just-presented memory set before. Participants gave their response 
by adjusting a slider scale ranging from “very certain new” to “very 
certain repeated”. This allowed us to measure if, and at which 
point in the experiment, a participant was able to distinguish 
between repeated and nonrepeated memory sets, thereby indicat-
ing awareness of the repetition. By relating this estimated onset 
of awareness to an estimate of the onset of learning, we identified 
the temporal relation between awareness and learning for each 
participant.

Asking participants about their awareness of a repeated memory 
set could affect the learning process itself, limiting the generality 
of our conclusions. To rule this out, we tested two control groups 
in which 1) participants did not perform the awareness rating task 
but were informed about the possibility of repeating memory sets 
(Information Only condition), or 2) participants did not perform 
the awareness rating task and received no additional information 
about the possibility of repeating memory sets (No Information 
condition). For all conditions, large samples of about 100 partic-
ipants were collected.

Results

Modeling of Individual Learning Curves and Model Comparisons. 
To describe the learning process on the individual level, we 
developed a Bayesian hierarchical mixture model. We assumed each 
sample to be a mixture of learning and not learning participants 
(Fig.  1B). Accordingly, the model first classified participants 
into learning and not learning and includes a parameter for the 

proportion of learners. Next, the model predicted the number of 
correctly recalled items on each trial through a logistic function of 
a latent variable θ reflecting a person’s ability to recall the current 
memory set.

For participants classified as not learning, we modeled θ as a 
linear function of mini-blocks of trials without distinguishing 
between repeated and unrepeated memory sets. Each mini-block 
included one presentation of the repeated Hebb set and three unre-
peated filler sets (Fig. 2A). For learning participants, we assumed 
that participants, at some point, start to improve on the repeated 
memory set. To describe learning, we modeled θ for the repeated set 
by a growth curve with a variable onset point, whereas the filler 
sets were modeled as for the not learning participants. The learning 
curve was governed by three parameters: the onset point of the 
learning curve, the rate of learning, and an upper asymptote. 
Fig. 3A shows an example of the model fitted to a learning and a 
not learning participant. Further information on the model can 
be found in SI Appendix, SI Methods.

The modeling approach described here incorporates the assump-
tion that the individual learning process should be described with 
a variable but instantaneous onset of the learning curve. This con-
trasts with the common assumption of repetition learning as a con-
tinuous process which starts with the first repetition. Therefore, we 
specified an alternative continuous model in which the onset of the 
learning process was fixed to the first occurrence of the repeated 
memory list and gradually accumulated over repetitions. Model 
comparisons using leave-one-out cross-validation (42) showed that 
our variable onset model outperformed the alternative continuous 
learning model for all collected samples. The exact results of the 
model comparison are presented in SI Appendix, Table S2.

Effect of the Awareness Rating Task on the Learning Effect. To 
track the onset of awareness, we assessed participants’ awareness 
of the repeated memory list by asking about it after every trial 
in the Awareness Rating condition. This could have influenced 
participants’ ability to learn the repeated list, thereby biasing the 
observed relation of interest. To control for this possibility, we 
included two control groups that were not requested to perform 

Fig. 2. Overview of the experimental design. (A) General structure of the Hebb paradigm as used in this study. One memory set, the Hebb set, is presented 
repeatedly among nonrepeated filler sets. The Hebb set appeared, on average, every fourth trial. (B) Flow of a trial in the visual Hebb experiment. (C) Flow of a 
trial in the verbal Hebb experiment. Note that in the actual experiment, the upcoming memory-list boxes were empty.

http://www.pnas.org/lookup/doi/10.1073/pnas.2218042120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2218042120#supplementary-materials
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the awareness rating task, and we fitted our measurement model 
separately to each group in both experiments. Comparing the 
estimated population-level learning parameters between the three 
groups allowed us to identify the putative impact of our awareness 
manipulations. Most important for this is the estimate of the 
mixture proportion, which indicates the proportion of participants 
who were able to learn the repeated set. Fig. 3C shows that there 
was no group difference in the proportion of participants learning 
the repeated set in both experiments. Fig. 3D displays the learning 
curves computed for each group from its population-level parameter 
estimates of the onset, rate, and asymptote of the learning curve. The 
three experimental groups did not show any substantial difference 
in any of these parameters. Hence, informing participants of the 
repetition, and testing their awareness of the repeated memory set, 
did not lead to a measurable effect on learning.

Awareness Rating Group: Temporal Relation between Awareness 
and Learning. In the Awareness Rating group, we fitted our 
measurement model not only to the learning data but also to the data 
from the awareness rating task to describe participants’ awareness 
curves. This was possible because of the continuous assessment of 
awareness using a visual slider scale. Again, our model 1) classified 
participants into aware and unaware participants and 2) estimated 
the onset, the rate, and the upper asymptote of the awareness curves. 
This allowed us to estimate whether and when a participant became 
aware of the repetition. An example for the model fit to an aware 
and a not aware participant is presented in Fig. 3B. Awareness ratings 
were jointly modeled with the data from the working memory task in 

a multivariate model which allowed to estimate correlations between 
the parameters of the learning and the awareness process. We next 
assessed the relation between learning and awareness in three steps.

First, we cross-tabulated the classification of participants with 
regard to learning and awareness (Fig. 4A). In both experiments, 
the majority of participants were classified consistently as either 
aware and learning, or unaware and not learning, showing a close 
relation between the two processes. Critically, overall, only three 
participants were found who were classified as learning without 
showing indications of awareness. This combination is diagnostic 
for the presence of an implicit learning effect, but almost no partic-
ipant met this condition. Additionally, none of these participants 
provided convincing evidence for the presence of an implicit learning 
effect because their performance was noisy: Either their awareness 
ratings were variable (verbal participants) or their learning effect was 
weak (visual experiment; SI Appendix, SI Results). Instead, a larger 
subset of participants was classified as being aware but without show-
ing a learning effect (SI Appendix, SI Results), which indicates that 
awareness is a required but not sufficient condition for learning.

Second, we analyzed the correlations between parameters in the 
learning and awareness models. For both experiments, strong cor-
relations were found between the onset points (verbal: r = 0.74 
[0.46; 0.97]; visual: r = 0.82 [0.63; 0.94]), the learning rates (verbal: 
r = 0.83 [0.67; 0.95]; visual: r = 0.43 [0.05; 0.73]), and the upper 
asymptotes (verbal: r = 0.75 [0.52; 0.92]; visual: r = 0.67 [0.31; 
0.91]) describing the learning and the awareness data, emphasizing 
that both processes were closely related (for a full posterior of all 
correlations, see SI Appendix, Fig. S1 in SI Appendix, SI Results).
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Fig. 3. Examples of learning (A) and awareness rating (B) data from two participants together with the fit of our model. The example shows the classification 
of participants into learning/not learning and aware/not aware. The dashed line indicates the predictions of the model with the best-fitting parameters. The 
colored areas indicate the range of model predictions with parameters sampled from their 95% highest density interval. (C) Estimated mixture proportions 
from the three experimental conditions in both experiments. The mixture proportion indicates the proportion of participants who were classified as learning. 
(D) Visualization of the estimated learning curves for the three experimental conditions in both experiments. Learning curves are generated with the medians 
of the posterior population-level parameters from the fitted model. Note: P(correct) = proportion of correct responses. The x-axes in panels A and B show the 
repetition number for the Hebb set. For the filler sets, this corresponds to the average performance in each mini-block.

http://www.pnas.org/lookup/doi/10.1073/pnas.2218042120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2218042120#supplementary-materials
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http://www.pnas.org/lookup/doi/10.1073/pnas.2218042120#supplementary-materials
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Third, we analyzed the temporal relation between the onset of 
awareness and the onset of learning within the subset of partici-
pants who had been classified as both aware and learning. For 
these participants, our model provided individual estimates of the 
onset point of repetition awareness and the onset point of learning. 
To evaluate how these onset points were related, we subtracted 
the posterior samples of the individual learning onset time from 
the posterior samples of the individual awareness onset. Because 
both onset points are estimated on the same temporal scale, the 
estimate of their difference tells us for each participant, which 
onset happened earlier. Negative onset differences show that rep-
etition awareness occurred prior to learning, whereas positive onset 
differences show that learning commenced prior to repetition 
awareness. Fig. 4B presents the onset differences for each partici-
pant in the two experiments. Almost no participant showed an 
onset of the learning effect before becoming aware of the repeti-
tion. Instead, for almost every participant, the onset of the learning 
effect was either accompanied (verbal experiment) or preceded 
(visual experiment) by the onset of repetition awareness. This is 
further evidence against the idea that learning can occur implicitly 
without the person’s awareness of the repetition. In contrast, it 
suggests that learning can only occur explicitly, when participants 
are also aware of the repetition.

Discussion

The present study investigated the mechanisms underlying repe-
tition learning using the Hebb paradigm as an experimental 
model. Researchers have described this learning process as an 
accumulation of new long-term representations, which gradually 

gain in strength over repetitions. Furthermore, some—including 
Hebb himself—have claimed that this learning process could hap-
pen implicitly, without repetition awareness. However, these 
assumptions have been reached from looking at data aggregated 
over participants. As we have demonstrated here, the aggregated 
curves do not resemble the learning curves on the individual level, 
thereby inviting a misconception about the cognitive processes 
underlying repetition learning. With a hierarchical mixture model, 
we have shown that individual learning curves were instead better 
described by a two-stage process in which a phase of no learning 
is followed by a rather rapid learning process with variable onset 
points over repetitions. Our finding that individual learning curves 
differ qualitatively from those aggregated over individuals reso-
nates with earlier work pointing toward potential artifacts of 
aggregation (34, 35, 43–47). The hierarchical mixture modeling 
approach introduced in this study offers a flexible and powerful 
tool for analyzing learning data on the level of individuals.

Our modeling approach also allowed us to investigate how the 
onset of learning is related to participants’ awareness of the repe-
tition. We found almost no participant who our model classified 
as learning without awareness, and for almost every participant 
who acquired awareness and learned, the learning effect was either 
preceded or accompanied by becoming aware of the repetition.

Our results are inconsistent with both the assumption of memory 
traces gaining in strength incrementally over repetitions and the 
assumption that this process could happen implicitly. Instead, our 
findings provide strong evidence for a two-stage process in which 
repetition awareness seems to be a necessary precursor for learning. 
This challenges existing explanations of the Hebb repetition effect 
and demands a reformulation of current theories and models.
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Fig. 4. Results for both experiments on the relation between awareness and learning in the “Awareness Rating” condition. (A) Cross-classification of participants 
into aware/not aware and learning/not learning. (B) Differences between the estimated onset of learning and estimated onset of awareness for each participant 
who was classified as aware and learning. Negative values indicate that the onset of awareness happened before onset of learning; positive values indicate that 
the onset of awareness happened after the onset of learning. Points reflect the median of the estimated onset difference. Error bars reflect the 95% highest 
density interval.
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We propose that during the first stage of learning, every epi-
sode—for instance, every trial of an immediate memory task—
leaves a separate trace in episodic memory. This is an assumption 
based on the instance theory and forms the basis of several successful 
models of episodic memory (41, 48–53). Across multiple trials of 
a Hebb learning experiment, multiple traces of similar memory sets 
accumulate in episodic memory. Every time a newly presented 
memory set is encoded, its current representation in working mem-
ory acts as a potential retrieval cue for similar experiences in episodic 
memory. In this way, repeated memory sets in a Hebb experiment 
could elicit the retrieval of a previous encounter with the same 
memory set. However, weak encoding of individual episodes, as 
well as interference between representations in episodic memory, 
often renders memory traces of such previous encounters inacces-
sible (54–56). In that case, the person does not become aware of 
the repetition, and the current experience is not integrated with the 
episodic traces of previous experiences with the same memory set. 
Instead, a new episodic memory trace is created for every trial.

Over several repetitions, multiple independent traces of the 
same memory set are laid down, increasing the chance that at least 
one of them is accessed when the repeated set is encountered again 
(1, 57, 58). When a previous memory trace of the repeated mem-
ory set is accessed successfully, the current experience is integrated 
with the retrieved representation, thereby creating a stronger epi-
sodic trace that is more accessible upon future experiences of the 
repeated memory set. This assumption builds on work on the 
importance of study-phase retrieval, or reminding, which suggests 
that repetition is only beneficial to memory, if the repeated pres-
entation of some information cues the retrieval of (i.e., “reminds 
of”) a previous encounter with the same information (36–40, 59). 
Our results strongly support this assumption by showing that 
beneficial effects of repetition on immediate memory performance 
can only be observed when participants are able to explicitly rec-
ognize the repeated memory set.

Once a previous instance of the repeated memory set is retrieved 
from episodic memory, two processes are enabled. One is that the 
person becomes aware of the repetition (i.e., is able to report it). 
The other is that the representation of the current memory set in 
working memory can be integrated with the retrieved episodic 
memory trace rather than generating a new trace in episodic mem-
ory. This integration of repeated experiences of the same memory 
set averages out idiosyncrasies of individual experiences and 
strengthens what they have in common, thereby transforming an 
episodic memory trace into a representation of knowledge that is 
independent of individual experiences. As has been suggested in 
previous models of the Hebb effect (e.g., ref. 2), this knowledge 
can be characterized as a chunk that represents a repeated pattern 
in a compact, unified form (14, 27, 60). Our data suggest that 
this process, once initiated by explicit recognition, operates much 
faster than assumed in previous models as participants are often 
able to reach perfect performance on the repeated list or array 
within a few trials.

One finding in our data which deserves notice is the time lag 
between the onset of repetition awareness and the onset of the 
learning process in the visual experiment, which was largely absent 
in the verbal experiment. At this point, we can only speculate 
about causes of this lag. For verbal memory lists, list repetition 
can only be recognized by retrieving a memory trace of the same 
letter sequence in an earlier trial. This memory trace already con-
tains information needed for recalling the list. By contrast, for 
visuospatial arrays, recognition of a repetition can rely on retrieval 
of the same spatial configuration of squares in a previous trial, 
without already retrieving which colors have been associated with 
each square location. This possibility is supported by evidence that 

people can remember the spatial locations of objects in an array 
but fail to remember which objects have been in which locations 
(61, 62). When that happens, recognition of the repeated array 
by its spatial configuration precedes retrieval of the color–location 
conjunction needed to improve task performance.

Is awareness of the repetition causally responsible for the onset 
of learning? In light of our proposed explanation of the two-stage 
learning process, we should expect not—rather, awareness and the 
onset of learning are both caused by the successful recognition 
and retrieval of a memory representation of a prior encounter with 
the same memory set. On that basis, purely informing people 
about a repetition should not accelerate learning. This is consistent 
with what we observe in this study: The between-group compar-
isons showed no evidence that informing participants of the rep-
etition, and even asking them to watch out for it, accelerates 
learning. To accelerate learning, we predict that improving par-
ticipants’ ability to access episodic memory traces of previous 
instances of the same memory set will be more helpful than mak-
ing them aware of the repetition.

Methods

Both experiments were preregistered prior to data collection, including the models 
which were used to analyze the data. Preregistrations, data, analysis scripts, model 
codes, and experimental software are available at https://osf.io/dpkyb/ (63). The 
experiments were part of a research project which received general ethics approval 
by the Ethics Committee of the Faculty of Arts and Social Sciences of the University 
of Zurich (approval no. 20.4.7). Both experiments were carried out in accordance 
with the regulations of that committee and did not require individual approval.

Experiments were programmed using the online study builder lab.js (64). The 
analytical models were programmed in Stan (65), and all analyses were carried 
out using R v4.2.1 (66) and the R package rstan v2.26.13 (67). A more extensive 
description of the experimental design, including a detailed description of the 
modeling approach, is provided in SI Appendix, SI Methods.

Participants. Data were collected online via the participant platform Prolific. 
We recruited a total of N = 301 participants for the visual (nno information = 99, 
ninformation only = 102, and nawareness rating = 100) and a total of N = 308 par-
ticipants for the verbal experiment (nno information = 107, ninformation only = 100, 
and nawareness rating = 101). All participants were between 18 and 35 y old, were 
English speaking, and provided online informed consent prior to participation.

Stimuli. In the verbal experiment, memory lists consisted of nine consonants 
which were sampled without replacement from the set of all consonants except 
W and Y. In the visual experiment, memory arrays consisted of six colors which 
were selected from a set of nine discrete colors (white, black, blue, cyan, green, 
yellow, orange, red, and magenta). For each memory set, the spatial locations 
for presenting the colors were selected at random from an invisible 7×7 grid 
centered in the middle of the screen.

Design. Both experiments employed the same general design and differed only 
in their type of stimulus material and the number of trials performed.

Upon starting the experiment, participants were randomly assigned to one of 
three between-subject conditions. The conditions differed in the instruction partic-
ipants received at the beginning of the study: Participants in the No Information 
condition received no information about the possibility that memory sets can 
repeat; participants in the Information Only group were informed about this 
possibility; participants in the Awareness Rating condition were informed about 
the possibility of repetition and additionally asked to rate their awareness of a 
repetition after each trial. To assure instructions were read carefully, participants 
answered a short questionnaire about the experiment before proceeding to 
the main task. For the Information Only and the Awareness Rating groups, this 
questionnaire contained a critical question about the possibility of repeating 
memory sets. Participants were only allowed to participate if all questions were 
answered correctly.

In both experiments, memory sets were randomly created anew for each par-
ticipant. For the verbal experiment, 80 memory lists were created; for the visual 
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experiment, 120 visual arrays were created. For each participant, one memory 
set was randomly selected as the repeated Hebb set, which was then repeated, 
on average, every fourth trial. For this, both experiments were divided into mini-
blocks of four trials each. Within each mini-block, the Hebb set was shown once 
at a random trial position, with the only constraint that two Hebb trials were not 
allowed to follow immediately after another. There was a total of 20 repetitions 
in the verbal and 30 repetitions in the visual experiment. The remaining trials 
involved the presentation of nonrepeated filler sets.

Procedure. The Fig. 2 B and C shows the flow of a trial in the visual experiment 
and the verbal experiment, respectively.

In the visual experiment, each trial started with the presentation of six unfilled 
squares at random screen locations for 500 ms. These served as placeholders to 
indicate the positions of the presented items. The squares were simultaneously 
filled with six colors for 200 ms, followed by a retention interval of 1,000 ms. 
Position placeholders remained on-screen throughout the trial. For the working 
memory test, participants were cued with a random location of the array and asked 
to select the color which was presented at the cued location by choosing from 
a 3×3 matrix of nine possible colors. Each response option could only be used 
once within each trial. After being tested on all colors of the array in a random 
order, participants received a short text message about how many items they had 
recalled correctly. In the No Information and the Information Only conditions, 
the experiment moved on to the next trial. In the Awareness Rating condition, 
participants were asked if they had seen the just-presented memory list before 
(repeated) or not (new). Participants responded by adjusting a visual slider scale, 
ranging from “very certain new” to “very certain repeated”. The center of the scale 
was labeled as “uncertain”.

In the verbal experiment, each trial started with the presentation of a row of 
nine unfilled boxes for 500 ms. Afterward, boxes were sequentially filled from left 
to right with the nine consonants of a list. Each consonant remained visible for 
500 ms, followed by a short interstimulus interval of 100 ms between consonants. 
Immediately after presentation of the last consonant, the working memory test 
started. Here, participants were cued with a random position of the list by high-
lighting one of the boxes on the screen and asked to type the consonant presented 
at the cued location. After being tested on all letters of a list in a random order, 
participants received a short information on how many items they had recalled 
correctly. Participants in the No Information and the Information Only groups 
moved on to the next trial, whereas participants in the Awareness Rating group 
performed the awareness rating task described above.

Data, Materials, and Software Availability. Anonymized CSV, TXT, analysis 
scripts, model codes, and experimental software data have been deposited in 
the Open Science Framework (https://doi.org/10.17605/OSF.IO/DPKYB) (63).
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