Skip to main content
. 2023 Apr 21;23:74. doi: 10.1186/s12911-023-02166-8

Table 2.

The AUC comparison of different ML models in different sets

ML models Difference of AUC S. E 95% CI Z statistic p
Train set
 DT ~ KNN 0.0500 0.00551 0.0391—0.0608 9.059  < 0.0001
 DT ~ SVM 0.0649 0.00629 0.0526—0.0772 10.321  < 0.0001
 DT ~ XGB 0.0689 0.00433 0.0605—0.0774 15.940  < 0.0001
 KNN ~ SVM 0.0150 0.00462 0.00591—0.0240 3.241 0.0012
 KNN ~ XGB 0.0190 0.00356 0.0120—0.0260 5.339  < 0.0001
 SVM ~ XGB 0.00404 0.00388 -0.00355—0.0116 1.043 0.2970
Test set
 DT ~ KNN 0.0105 0.0267 -0.0418—0.0627 0.392 0.6952
 DT ~ SVM 0.0528 0.0352 -0.0161—0.122 1.503 0.1328
 DT ~ XGB 0.00503 0.0160 -0.0263—0.0363 0.315 0.7529
 KNN ~ SVM 0.0424 0.0306 -0.0175—0.102 1.386 0.1656
 KNN ~ XGB 0.0155 0.0219 -0.0275—0.0585 0.706 0.4801
 SVM ~ XGB 0.0579 0.0317 -0.00421—0.120 1.827 0.0677
External validation set
 DT ~ KNN 0.0882 0.0836 -0.0757—0.252 1.054 0.2917
 DT ~ SVM 0.165 0.120 -0.0695—0.399 1.378 0.1681
 DT ~ XGB 0.0368 0.0526 -0.0663—0.140 0.700 0.4838
 KNN ~ SVM 0.0766 0.0978 -0.115—0.268 0.784 0.4332
 KNN ~ XGB 0.125 0.0616 0.00434—0.246 2.030 0.0423
 SVM ~ XGB 0.202 0.0789 0.0471—0.356 2.557 0.0106