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Abstract

Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not 

IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to 

obtain in complex human diseases. However, our studies clearly document interferonopathy 

driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice with strong 

corroborative evidence in patients.

We recently reported Type II interferonopathy as an unexpected mechanism of 

oropharyngeal candidiasis (OPC) in mice lacking Aire, the disease gene in autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (1). This finding emerged 

from an unbiased discovery strategy after finding that mucosal IL-17 and IL-22 production 

and type 17 responses were intact in Aire−/− mice and that <10% of Aire−/− animals had 

IL-17 autoantibodies, which are common in APECED patients. Then, in all adult APECED 

patients whom we examined with chronic mucocutaneous candidiasis (CMC), we also found 

evidence of excessive IFN-γ responses in oral mucosal tissue, without evidence of impaired 

IL-17 signaling. Moreover, IFN-γ was toxic to human oral epithelial cells. We thus proposed 

that excessive IFN-γ produced in the oral mucosa of APECED patients may be an important 

determinant of CMC susceptibility, a hypothesis now being tested using FDA-approved 

agents.

Our results led us to re-examine the strength of evidence supporting the IL-17 autoantibody 

hypothesis promoted by both Technical Comments (2, 3). Puel and Casanova highlight the 

firmly established causal link between genetic IL-17 receptor (IL-17R) deficiencies and fully 

penetrant, severe, treatment-refractory CMC in humans (4). Increased OPC susceptibility 

also occurs in mice with genetic deficiencies of IL-17R signaling (5). However, here 

signals from all related IL-17-family ligands (IL-17A, IL-17A/F, IL-17F, IL-17B, IL-17C, 

and IL-17E/IL-25) are completely blocked. By contrast, patients receiving IL-17 pathway-

targeted monoclonal antibodies (mAbs) do not develop CMC. They occasionally develop 

OPC (mean frequency, ~3 to 10% with greater frequencies when targeting IL-17RA or 

combined IL-17A, IL-17F, and IL-17A/F, compared to IL-17A), but it is invariably mild, 
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non-refractory, and readily controllable with antifungal therapy (6). In this setting, resistance 

to CMC may simply reflect incomplete mucocutaneous IL-17 pathway blockade by the 

administered mAbs (7). Likewise, in mice OPC susceptibility is far greater with genetic 

Il17ra deficiency than with mAb blockade of IL-17RA or the combination of IL-17A and 

IL-17F than with mAb blockade of IL-17A (5). Increased OPC susceptibility does not occur 

with mAb blockade of IL-17F alone (5), consistent with the known agonist rank order of 

IL-17A>IL-17A/F>IL-17F (8). Thus, complete absence of IL-17R responses causes CMC, 

whereas a blockade regimen that spares a fraction of mucosal IL-17 immunity does not.

Regarding APECED, ~80 to 90% of patients will develop CMC, and there is an established 

association with serum IL-17 autoantibodies. However, the association is incompletely 

penetrant (the reported anti-IL-17F and anti-IL-17A incidence is ~20 to 85% and ~35%, 

respectively) and its pathogenic significance is undefined (9-13). Thus, many patients 

with persistent IL-17 autoantibodies lack CMC, and many patients with CMC lack IL-17 

autoantibodies (10-13). In some APECED cohorts, the frequencies of IL-17 autoantibodies 

in patients with or without CMC are similar (10, 12). Furthermore, IL-17 autoantibodies 

are less frequently detected in patient saliva, and when present there, titers are close to 

background levels (14). Moreover, although IL-17 autoantibodies correlate with decreased 

IL-17F and normal or increased IL-17A production in circulating T cells (9, 11), we found 

intact expression of IL17A and IL17F in patient oral mucosa (1), where CMC occurs. Thus, 

although some APECED patients have IL-17 autoantibodies, this is unlikely to be the only 

factor that might contribute to their CMC. Our data suggest that interferonopathy may also 

contribute.

Kisand et al. challenge this (2). First, they assert that IL-17 and IL-22 autoantibodies are 

implicated in CMC as the first sign of APECED. They reinterpret heightened mucosal 

type 1 inflammation in patients as being a normal reaction to repeated damage and 

incidental mucosal breaches instigated by IL-22 neutralization or deficiency, rather than 

as an “interferonopathy”. However, although IL-22 autoantibodies are detected in ~70 to 

90% of APECED patients and correlate with decreased IL-22 production in circulating and 

cutaneous T cells (9-13), we found intact expression of IL22 and IL-22-dependent genes in 

oral mucosal tissue (1) and intact salivary levels of IL-17- and IL-22-dependent S100A8 and 

S100A9 regardless of the presence of Sjögren’s syndrome and across all ages of APECED 

patients (Fig. 1, A and B). More directly, children with loss-of-function IL10RB (an IL-22 

receptor subunit) mutations, whose cells are completely unresponsive to IL-22, do not 

develop CMC (15).

Second, Kisand et al. criticize the mouse model we used by stating that “Candida is 

not a mouse commensal”, that only NOD Aire−/− mice were susceptible to OPC, and 

that NOD Aire−/− mice are an inappropriate model of APECED because they rapidly 

develop multiorgan infiltrates and most die prematurely, unlike APECED children. Although 

all mouse models of human disease have limitations and mice are indeed not normally 

Candida-colonized, murine responses to Candida in many other respects mirror those of 

humans, and the OPC model faithfully recapitulates key immune perturbations underlying 

human susceptibility. Indeed, the role of IL-17 in mucosal anti-Candida defense was 

originally discovered in mice. We found that Aire−/− mice were susceptible to experimental 
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OPC in all three examined backgrounds, albeit with differential severity and age of 

onset (NOD>BALB/c>C57BL/6) (1). Similar variation characterizes all endocrine and 

non-endocrine manifestations of Aire deficiency (16). NOD Aire−/− mice feature severe 

early-onset multiorgan lymphocytic infiltration, which differs from the milder disease of 

BALB/c and C57BL/6 Aire−/− mice. In our prospective cohort of >160 APECED patients, 

tissue infiltrates develop in early childhood (10). Patient mortality can exceed 30% despite 

optimal care. Thus, Aire deficiency on the NOD background more closely models human 

APECED.

Third, Kisand et al. state that “the connection between OPC susceptibility in NOD Aire−/− 

mice and exuberant mucosal IFN-γ responses is hard to sustain”. In fact, our data lead 

inescapably to this connection. NOD Aire−/− mice rarely have IL-17 autoantibodies and 

mount normal type 17 mucosal responses, yet are still highly susceptible to OPC (1). Thus, 

there is no evidence in the model for impaired type 17 immunity being the primary driver 

of fungal susceptibility. Importantly, Aire−/− T cells were both necessary and sufficient to 

promote OPC (1), revealing that OPC is a T cell-driven autoimmune manifestation, similar 

to all endocrine and non-endocrine disease components, and consistent with the impaired 

central tolerance of AIRE deficiency (16). Not only did exaggerated IFN-γ produced 

by mucosal Aire−/− T cells impair epithelial integrity and promote OPC, but IFN-γ or 

JAK–STAT inhibition ameliorated this, establishing a causative link (1). Enhanced type 1 

responses were similarly observed and temporally correlated with the age of onset of OPC 

susceptibility in BALB/c Aire−/− mice (1).

Both Technical Comments stipulate that the intact IL-17R-regulated genes that we reported 

in patient oral mucosal tissues were “inferred from mouse studies” and examined in 

“patients that did not display candidiasis”. Indeed, the patients who underwent mucosal 

biopsies were in CMC remission when sampled. However, (a) IL-17-regulated genes are 

highly concordant between murine OPC mucosa and Candida-infected human oral epithelial 

cells (17); (b) these genes are established as IL-17-regulated in human epithelial cells even 

without Candida stimulation (18); and (c) these genes are also IL-17-regulated in human 

skin in the absence of candidiasis (7). Consistent with our own findings, salivary levels of 

IL-17-regulated β-defensins were intact or even increased in European APECED patients 

(19). Our data point to residual type 17 cytokine activity in the mucosa of APECED patients, 

which may also explain the lack of mucocutaneous bacterial infections, which often occur in 

genetic complete IL-17RA deficiency (4).

The assertions of both Technical Comments that patients’ exacerbated type 1 mucosal 

responses, characterized by enrichment of IFN-γ–induced genes (e.g., CXCL9, IDO1, 

and GBP4), may be secondary to Sjögren’s syndrome or delayed complications of prior 

candidiasis or periodontitis are not supported by the data. Exaggerated type 1 mucosal 

responses were prominent across all ages, including <10-year-old children (Fig. 1C). Thus, 

they cannot reflect adult-specific sequelae. Moreover, it is noteworthy that (a) gingivae 

do not contain salivary glands; (b) enhanced type 1 transcriptional responses in mucosal 

tissue were prominent in patients with and without Sjögren’s syndrome (1); (c) increased 

salivary IFN-γ levels were independently reported in European APECED patients without 

Sjögren’s syndrome (14); and (d) increased salivary CXCL9 and CXCL10 levels were 
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present in patients with and without Sjögren’s syndrome (Fig. 1D). Congruently, salivary 

gland dysfunction did not underlie OPC in Aire−/− mice (1).

Finally, Puel and Casanova indicate that intermittent IFN-γ administration and certain 

immune disorders with enhanced IFN-γ responses are not associated with CMC. Although 

this is true, it is unknown whether mucosal type 1 responses are exaggerated in these 

settings. By contrast, excessive type 1 mucosal inflammation may explain CMC in trisomy 

21, which features intact circulating Th17 cells (20), and STAT1 gain-of-function, where 

many patients have intact circulating Th17 cells and IL-17 secretion by T cells and where 

JAK–STAT inhibitors ameliorate CMC (21). Circulating Th17 cells may poorly mirror 

mucosal IL-17 produced by αβ and γδ T cells and innate lymphoid cells (ILCs), as STAT3 

deficiency, which diminishes circulating Th17 cells, does not alter IL-17 in skin blisters 

(22). Decreased circulating Th17 cells may not be a reliable immunological biomarker 

for CMC risk assessment, since a reduction is seen in multiple clinical conditions that do 

not manifest with CMC including idiopathic CD4 lymphocytopenia (23). Because immune 

responses are cell type-, context-, and tissue-specific, direct evaluation of mucosal responses 

may be required to decipher CMC mechanisms.

Collectively, our data support a molecular framework to classify CMC subtypes across 

a spectrum of impaired type 17 immunity and/or immunopathology-promoting excessive 

type 1 inflammation (Fig. 2). These mechanisms are not mutually exclusive and could 

act combinatorially in APECED and other CMC conditions. Importantly, APECED is 

fundamentally a disease of impaired thymic education causing broad lymphocyte defects 

and autoantibody production. Many organs are damaged and multiple immune mechanisms 

may contribute, even beyond IFN-γ and IL-17 signaling. Our study highlights this point, 

expands our fundamental understanding of tissue-specific immunity, and may enable the 

development of targeted immunotherapies.
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Figure 1. Enhanced mucosal type 1 responses and intact mucosal type 17 responses in APECED 
patients are evident across all age groups and regardless of the presence of Sjögren’s syndrome.
(A) Concentrations of IL-17- and IL-22-dependent S100A8 and S100A9 in saliva of healthy 

volunteers (HV) (n=33) and APECED patients of the indicated age groups (n=11, 30, 12, 

13, and 8 for 0-10, 10-20, 20-30, 30-40, and >40-year-old APECED patients, respectively). 

(B) Concentrations of IL-17- and IL-22-dependent S100A8 and S100A9 in saliva of HV 

(n=33) and APECED patients with (n=25) or without Sjögren’s syndrome (n=49). (C) 

Concentrations of IFN-γ-inducible CXCL9 and CXCL10 in saliva of HV (n=28-31) and 

APECED patients of the indicated age groups (n=12, 30-32, 10-12, 13-14, and 8-9 for 0-10, 

10-20, 20-30, 30-40, and >40-year-old APECED patients, respectively). (D) Concentrations 

of IFN-γ-inducible CXCL9 and CXCL10 in saliva of HV (n=28-31) and APECED patients 

with (n=23-28) or without Sjögren’s syndrome (n=50-51). Data are excerpted from Figures 

2D, 5E, and 5F of Break et al (1). All quantitative data are means ± SEM. ns, not significant, 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 as calculated using Kruskal–Wallis H test 

with Dunn’s multiple-comparisons test.
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Figure 2. A conceptual framework for classifying molecular subtypes of chronic mucocutaneous 
candidiasis.
Susceptibility to chronic mucocutaneous candidiasis can be explained on the basis of 

either impaired antifungal resistance caused by type 17 mucosal immune defects and/or 

immunopathology promoted by excessive type 1 mucosal inflammation. CMC, chronic 

mucocutaneous candidiasis.
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