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Abstract

Vision-and-language (V&L) models take image and text as input and learn to capture the 

associations between them. These models can potentially deal with the tasks that involve 

understanding medical images along with their associated text. However, applying V&L models 

in the medical domain is challenging due to the expensiveness of data annotations and the 

requirements of domain knowledge. In this paper, we identify that the visual representation in 

general V&L models is not suitable for processing medical data. To overcome this limitation, we 

propose BERTHop, a transformer-based model based on PixelHop++ and VisualBERT for better 

capturing the associations between clinical notes and medical images.

Experiments on the OpenI dataset, a commonly used thoracic disease diagnosis benchmark, show 

that BERTHop achieves an average Area Under the Curve (AUC) of 98.12% which is 1.62% 

higher than state-of-the-art while it is trained on a 9× smaller dataset.1
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1 Introduction

Computer-Aided Diagnosis (CADx) [10] systems provide valuable benefits for disease 

diagnosis including but not limited to improving the quality and consistency of the diagnosis 

and providing a second option to reduce medical mistakes. Although most existing studies 

focus on diagnosis based on medical images such as chest X-ray (CXR) images [2, 1], 

the radiology reports often contain substantial information in the text(e.g. patient history 

1We will make our code public
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and previous studies) that are difficult to be detected from the image alone. Besides, the 

diagnosis from both image and text is more closely aligned with disease diagnosis by human 

experts. Therefore, V&L models that take both images and text as input can be potentially 

more accurate for CADx.

However, the shortage of annotated data in the medical domain makes utilizing V&L models 

challenging. Annotating medical data is an expensive process as it requires human experts. 

Although a couple of recent large-scale auto-labeled datasets have been provided for some 

medical tasks, e.g., chest X-ray [26, 12], they are often noisy (low-quality) and degrade 

the performance of models. Besides, such datasets are not available for most medical tasks. 

Therefore, training V&L models with limited annotated data remains a key challenge.

Recently, pre-trained V&L models have been proposed to reduce the amount of labeled 

data required for training an accurate downstream model [14, 25, 6] in the general domain 

(transfer learning). These models are first trained on large-scale image caption data with 

self-supervision signals (e.g., using masked language model loss 2) to learn the association 

between objects and text tokens. Then, the parameters of the pre-trained V&L models 

are used to initialize the downstream models and fine-tuned on the target tasks. In most 

V&L tasks, it has been reported that V&L pre-training is a major source of performance 

improvement However, we identify a key problem in applying common pre-trained V&L 

models for the medical domain: the large domain gap between the medical (target) and 

the general domain (source) makes such pre-train and fine-tune paradigm considerably less 

effective in the medical domain. Therefore, domain-specific designs need to be applied.

Notably, V&L models mainly leverage object-centric feature extraction methods such as 

Faster R-CNN [20] which is pre-trained on general domain to detect everyday objects, e.g., 

cats, and dogs. However, the abnormalities in the X-ray images do not resemble everyday 

objects and will likely be ignored by a general-domain object detector.

To overcome this challenge, we propose BERTHop, a transformer-based V&L model 

designed for medical applications. In BERTHop, the visual encoder of the V&L architecture 

is redesigned leveraging PixelHop++ [7] and is fully unsupervised which significantly 

reduces the need for labeled data [21]. PixelHop++ can extract image representations at 

different frequency levels. This is significantly beneficial for highlighting abnormalities in 

different levels to be captured by the transformer in relation to the input text.

Furthermore, BERTHop resolves the domain gap issue by leveraging a pre-trained language 

encoder, BlueBERT [18], a BERT [9] variant that has been trained on biomedical and 

clinical datasets.

2part of the input is masked and the objective is to predict the masked words or image regions based on the remaining contexts
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2 Related Work

Transformer-based V&L models

Inspired by the success of BERT for NLP tasks, various transformer-based V&L models 

have been proposed [14, 6, 25]. They generally use an object detector pre-trained on Visual 

Genome [13] to extract visual features from an input image and then use a transformer to 

model visual features and input sentences. They are pre-trained on a massive amount of 

paired image-text data with a mask-and-predict objective similar to BERT.

Such models have been applied to many V&L applications. [28, 17, 8]. However, for 

transferring the knowledge from these pre-trained models, the data distribution of source and 

target should be close enough or otherwise we need enough data for the target domain to 

properly transfer the knowledge.

V&L models in the medical domain

Various V&L architectures have been proposed for disease diagnosis on CXR.

TieNet is a CNN-RNN-based model for V&L embedding integrating multi-level attention 

layers into an end-to-end CNN-RNN framework for disease diagnosisTieNet uses a 

ResNet-50 pre-trained for general-domain visual feature extraction and an RNN for V&L 

fusion. As a result, it requires a large amount of in-domain training data (ChestX-ray14) for 

adapting to the medical domain, limiting its practical usage.

Recently, Li et al. [15] evaluated the transferability of well-known pre-trained V&L models 

by fine-tuning them on MIMIC-CXR [12] and OpenI. However, the pre-trained models are 

designed and pre-trained for general-domain, and directly fine-tuning them with limited 

in-domain data leads to suboptimal performance. We refer to this method as VB w/BUTD 

(section 4.2).

PixelHop++ for visual feature learning

PixelHop++ is originally proposed as an alternative to deep convolutional neural networks 

for feature extraction from images and video frames in resource-constrained environments. 

It is a multi-level model which generates output channels representing an image at different 

frequencies. PixelHop++ is used in various applications and shown to be highly effective on 

small datasets. These applications include face gender classification [22], face recognition 

[23], deep fake detection [5], and medical application [16]. To the best of our knowledge, 

this is the first study which integrates PixelHop++ and DNN models. Although using 

The PixelHop++ features alone as input to the transformer (no input text) underperform 

other vision-only models i.e. ChexNet [19], Our proposed model takes advantage of 

the attention mechanism to combine visual features extracted from PixelHop++ and the 

language embedding to better find the association between both modalities.

3 Approach

Inspired by the architecture of VisualBERT, our framework uses a single transformer to 

integrate visual features and language embeddings. The overall framework of our proposed 
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approach is shown in Fig. 1. We first utilize PixelHop++ to extract visual features from the 

X-ray image; then the text (a radiology report) is encoded into subword embeddings; a joint 

transformer is applied on top to model the relationship between two modalities and capture 

implicit alignments.

3.1 Visual encoder

We argue that extracting visual features from a general-domain object detector, i.e. the 

BUTD [3] approach that is dominant in most V&L tasks, is not suitable for the medical 

domain. BUTD3 takes an image and employs a ResNet-based Faster-RCNN [20] for object 

detection and feature extraction from each object. The detector is pre-trained on Visual 

Genome [13] to detect objects in everyday scenes. Such an approach fails to detect medical 

abnormalities when applied to X-ray images. The reason is that the abnormalities in the 

image, which are of high importance for facilitating diagnosis, usually do not resemble the 

normal notion of an “object” and will likely be ignored by a general-domain object detector. 

Further, there exists no large-scale annotated dataset for disease abnormality detection from 

which to train a reliable detector [24].

We propose to adopt PixelHop++ [7] for unsupervised visual feature learning in the 

medical domain, which has been shown to be highly effective when trained on small-scale 

datasets. The key idea of PixelHop++ is computing the parameters of its model by a 

closed-form expression without using back-propagation [21]. As PixelHop++ leverages PCA 

for computing parameters, the model is able to extract image representations at various 

frequencies in an unsupervised manner. Inspired by the architecture of DNN models, 

PixelHop++ is a multi-level model in which each level consists of one or several PixelHop+

+ units followed by a max-pooling layer. When training a PixelHop++ model, parameters of 

PixelHop++ units (kernels and biases) are computed, and during the inference, they are used 

for feature extraction from pixel blocks. Given the visual features from PixelHop++ and the 

radiology report, we then only train/fine-tune the transformer on the given task. PixelHop++ 

is unsupervised by nature meaning that it is not learned to extract specific features for a 

specific task. Therefore, the transformer has better access to raw features and has more 

flexibility to find the optimum alignments between input data (text and image) given less 

data.

3.2 In-domain text pre-training

In BERTHop, the text report plays an important role in guiding the transformer to pay 

more attention to the right visual features in the attention mechanism. The report is 

written by an expert radiologist, who lists the normal and abnormal observations in the 

“finding” section and other important patient information including patient history, body 

parts, and previous studies in the “impression” section of the report. The text style of the 

report is drastically different from that of the pre-training corpora of BERT (Wikipedia 

and BookCorpus) or V&L models (MSCOCO and Conceptual Captions). Therefore, we 

propose to use BlueBERT [18] as the backbone in BERTHop to better capture the text report 

3In the following, we use the term “BUTD” to refer to extracting visual features from a pre-trained object detector rather than the full 
model from [3].
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information. Pre-training with text-only corpora has been reported to how only marginal 

or no benefit [25]. In the medical domain, however, we find that using a transformer 

pre-trained on in-domain text corpora as our initialized backbone serves as a simpler yet 

stronger approach. Previous methods [15] do not take such a significant domain gap into 

consideration. Rather, they initialize the transformer with a model trained on general-domain 

image-text corpora, as in most V&L tasks.

4 Experiments

In this section, we evaluate BERTHop on the OpenI dataset and compare it with other 

existing models. To understand the effectiveness of the model designs, we also conduct 

detailed studies to verify the value of the visual encoder and the transformer initialization.

4.1 Experiment setup

Dataset—We focus on the OpenI dataset comprising 3,996 reports and 8,121 associated 

images from 3,996 unique patients. Its labels include 14 commonly occurring thoracic chest 

diseases, OpenI is a reliable choice for both training and evaluating V&L models as it is 

annotated by experts (labels are not generated or learned from text reports or images). The 

disadvantage of using OpenI for training is that it contains a small amount of training data 

which is a challenge for DNN models. We apply the same pre-processing as TieNet and 

obtain 3,684 image-text pairs.

Model and training parameters: We first resize all images of OpenI to 206 × 206 and 

apply a three-level PixelHop++ for unsupervised feature learning from them. Then, we apply 

PCA to PixelHop++ output channels and concatenate the generated vectors to form a set of 

Q visual features of dimension D, i.e., V = v1, v2, …, vQ , vi ∈ ℝD. In BERTHop, D is set to be 

2048. In our experiments setup, Q is equal to 15 but may vary depending on the size of the 

output channels of the PixelHop++ model and also the number of PCA components.

As for the transformer backbone, we use BlueBERT-Base (Uncased, PubMed + MIMIC-III) 

from Huggingface [27], a transformer library. Having the visual features from the visual 

encoder and text embedding, we train the transformer on the training set of OpenI with 

2,912 image-text pairs. We use batch size = 18, learning rate = 1e − 5, max-seq-length = 

128, and Stochastic Gradient Descent (SGD) as the optimizer with momentum = 0.9 and 

train it for 240 epochs.

Evaluation metric: All mentioned datasets are highly imbalanced and mostly contain 

normal cases. Therefore, evaluating models using metrics such as accuracy does not reflect 

model performance. Instead, we follow prior studies to evaluate models based on Receiver 

Operating Characteristic (ROC) and Area Under the ROC Curve (AUC) score.

4.2 Main results

We train BERTHop on the OpenI training dataset containing 2,912 image-text pairs and 

evaluate it on the corresponding test set comprising 772 image-text pairs. The ROC curve 

for each disease is plotted in Fig. 2 b). We evaluate all the models using the same AUC 
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implementation in scikit-learn [4]. Fig. 2 a) summarizes the performance of BERTHop 

compared with existing methods. The results demonstrate that BERTHop outperforms 

TieNet, which is the current best model, in 11 out of 14 thoracic disease diagnoses and 

achieves an average AUC of 98.23% which is 14.37%, 12.83%, and 1.73% higher than VB 

w/BUTD, TNNT, and TieNet, respectively. Note that TieNet has been trained on a much 

larger annotated dataset, i.e., the ChestX-ray14 dataset containing 108,948 training data 

while BERTHop is trained on only 2,912 case examples.

Regarding the VB w/BUTD results, we reevaluate the results based on the released code4 

from the original authors. However, we cannot reproduce the results reported in the paper 

even after contacting the authors.

4.3 In-domain text pre-training

We further investigate the influence of different transformer backbone initialization on 

model performance by pairing it with different visual encoders. The results are listed in 

Table 1. First, we find that the proposed initialization with a model pre-trained on in-domain 

text corpora (BlueBERT) brings significant performance boosts when paired with PixelHop+

+. Initializing with BlueBERT gives a 6.46% performance increase compared to initializing 

with BERT. Second, when using BUTD, the model is less sensitive to the transformer 

initialization and the performance is generally low (from 83.09% to 85.64%). In contrast 

to other V&L tasks [14], general-domain V&L pre-training is not instrumental. The above 

findings suggest that for medical V&L applications, in-domain single modality pre-training 

can bring larger performance improvement than using pre-trained V&L models from the 

general domain, even though the latter is trained on a larger corpus. The relation and trade-

off between single-modality pre-training and cross-modality pre-training are overlooked by 

previous works [14] and we advocate for future research on this.

4.4 Visual encoder

To better understanding what visual encoder is suitable for medical applications, we 

compare three visual feature extraction methods (BUTD, ChexNet [19], and PixelHop++). 

In particular, we replace the visual encoder of BERTHop with different visual encoders and 

report their performance. BUTD extracts visual features from a Faster R-CNN pre-trained on 

Visual Genome, which is prevailing in recent V&L models.

ChexNet is a CNN-based method that is proposed for pneumonia disease detection. It is 

a 121-layer DenseNet [11] trained on the ChestX-ray14 dataset for pneumonia detection 

having all pneumonia cases labeled as positive examples and all other cases as negative 

examples. By modifying the loss function, it is also trained to classify all 14 thoracic 

diseases and achieved state-of-the-art among existing vision-only models, e.g., [26]. To 

augment the data, it extracts 10 crops from the image (4 corners and one center and 

horizontally flipped version of them) and feeds it into the network to generate a feature 

vector of dimension 1024 for each of them. In order to make it compatible with our 

transformer framework, we apply a linear transformation that maps feature vectors of size 

4 https://github.com/YIKUAN8/Transformers-VQA 
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1,024, generated by ChexNet, to 2,048. We fine-tune ChexNet and train the parameters of 

the linear transformation on the OpenI dataset. The results in Table 2 show that the visual 

encoder of BERTHop, PixelHop++, can provide more raw features of the CXR images 

as it uses a data-efficient method in an unsupervised manner and is capable of extracting 

task-agnostic image representations at different frequencies.

5 Discussion and Conclusion

We proposed a high-performance data-efficient multimodal neural network model that 

jointly models X-ray images and clinical notes. In contrast with general V&L models which 

use an object detector to extract visual representations, our approach uses a parameter-

effective visual encoder, PixelHop++, in an unsupervised setting. Our studies verify the 

effectiveness of the visual feature extractor PixelHop++ and the transformer backbone 

initialization BlueBERT. we illustrate that properly pre-training the transformer is of 

significance, which would provide valuable insight for designing future models. We urge 

our community to explore leveraging this method for other medical tasks suffering lack of 

annotated data. We believe that BERTHop is highly beneficial for reducing medical mistakes 

in disease diagnosis.
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Fig. 1. 
The proposed BERTHop framework for CXR disease diagnosis. A PixelHop++ model 

followed by a “PCA and concatenation” block is used to generate Q feature vectors. These 

features along with language embedding are fed to the transformer that is initialized with 

BlueBERT.
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Fig. 2. 
a) The AUC thoracic diseases diagnosis comparison of our model with other three methods 

on OpenI. BERTHop significantly outperforms models trained with a similar amount of data 

(e.g. VB w/BUTD). b) The ROC curve of BERTHop for all 14 thoracic diseases.
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Table 1.

Effect of the transformer backbones when paired with different visual encoders. When using BUTD features, 

the model becomes insensitive to the transformer initialization and the expensive V&L pre-training brings 

little benefit compared to BERT. When using PixelHop++, the model benefits significantly from BlueBERT, 

which is pre-trained on in-domain text corpora.

Visual Encoder
Transformer Backbone

BUTD PixelHop++

VB BERT BlueBERT BERT BlueBERT

Atelectasis 0.9247 0.8677 0.8866 0.9890 0.9838

Cardiomegaly 0.9665 0.8877 0.8875 0.9772 0.9896

Effusion 0.9049 0.8940 0.9120 0.9013 0.9432

Mass 0.6428 0.7365 0.7373 0.8886 0.9900

Consolidation 0.7870 0.8766 0.8906 0.8949 0.9671

Emphysema 0.8565 0.7313 0.8261 0.9641 0.9971

AVG 0.8386 0.8309 0.8564 0.9177 0.9823
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Table 2.

Comparison between different visual encoders (BUTD, ChexNet, and PixelHop++) under the same 

transformer backbone of BlueBERT. PixelHop++ outperforms BUTD and even ChexNet, which is pre-trained 

on a large in-domain disease diagnosis dataset.

BUTD ChexNet PixelHop++

Atelectasis 0.8866 0.9787 0.9838

Cardiomegaly 0.8875 0.9797 0.9896

Effusion 0.9120 0.8894 0.9432

Mass 0.7373 0.7529 0.9900

Consolidation 0.8906 0.9000 0.9671

Emphysema 0.8261 0.9067 0.9971

AVG 0.8564 0.8798 0.9823
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