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Abstract 
 
Engineered plasmids have been workhorses of recombinant DNA technology for nearly 
half a century. Plasmids are used to clone DNA sequences encoding new genetic parts 
and to reprogram cells by combining these parts in new ways. Historically, many genetic 
parts on plasmids were copied and reused without routinely checking their DNA 
sequences. With the widespread use of high-throughput DNA sequencing technologies, 
we now know that plasmids often contain variants of common genetic parts that differ 
slightly from their canonical sequences. Because the exact provenance of a genetic part 
on a particular plasmid is usually unknown, it is difficult to determine whether these 
differences arose due to mutations during plasmid construction and propagation or due 
to intentional editing by researchers. In either case, it is important to understand how 
the sequence changes alter the properties of the genetic part. We analyzed the 
sequences of over 50,000 engineered plasmids using depositor metadata and a metric 
inspired by the natural language processing field. We detected 217 uncatalogued 
genetic part variants that were especially widespread or were likely the result of 
convergent evolution or engineering. Several of these uncatalogued variants are known 
mutants of plasmid origins of replication or antibiotic resistance genes that are missing 
from current annotation databases. However, most are uncharacterized, and 3/5 of the 
plasmids we analyzed contained at least one of the uncatalogued variants. Our results 
include a list of genetic parts to prioritize for refining engineered plasmid annotation 
pipelines, highlight widespread variants of parts that warrant further investigation to see 
whether they have altered characteristics, and suggest cases where unintentional 
evolution of plasmid parts may be affecting the reliability and reproducibility of science.  

Author Summary 
 
Plasmids are used in molecular biology and biotechnology for a wide variety of tasks 
such as cloning DNA, expressing recombinant proteins, and creating vaccines. One 
challenge in working with plasmids is that there has been a long, and often lost history 
of pieces of plasmids being copied and remixed by researchers to create new plasmids. 
Current databases used for annotating key genetic parts in plasmids are incomplete, 
especially with respect to cataloguing closely related versions of parts that can have 
very different characteristics. Some genetic part variants have arisen due to purposeful 
editing while others are the result of unplanned mutations and evolution. When a 
researcher finds differences between a database sequence and a genetic part in their 
newly constructed plasmid, it is often unclear how and when it arose and whether it will 
affect their experiments. We identified 217 genetic part variants that are either 
widespread or have likely arisen independently more than once on plasmids due to 
convergent evolution or engineering. We propose that these variants should be 
prioritized for inclusion in curated databases of engineered DNA sequences and for 
functional characterization to improve the reliability and reproducibility of science. 
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Introduction 
 
Engineered plasmids are ubiquitous tools in the biological sciences. They are used for a 
wide variety of tasks, ranging from routine cloning of recombinant DNA and protein 
overexpression to reprogramming cells with new enzymes, sensors, and genetic circuits 
[1–3]. Engineering plasmids by assembling DNA from different natural sources began in 
1973 with the construction of plasmid pSC101 [4]. Chemically synthesizing DNA 
sequences and introducing them into plasmids has now been commonplace for 
decades [5]. Many plasmids have been passed from researcher to researcher, and their 
genetic parts have been copied and remixed, practices facilitated by plasmid 
repositories [6–8]. The net result is that the genetic components on any plasmid used in 
a laboratory today often have long, circuitous, and usually incompletely known histories. 
It has only been standard practice to check the sequences of certain pieces of plasmids, 
such as by Sanger sequencing a gene of interest inserted by a researcher into a vector 
backbone, to validate that they are present exactly as designed. Large portions of these 
plasmids, including origins of replication and antibiotic resistance genes that are critical 
for plasmid maintenance, are typically assumed to be immutable or to have only 
sustained mutations with no effect on their performance. 
 
 Recently, DNA sequencing has become much more affordable and high-
throughput [9,10]. Computational pipelines have been developed for assembling 
accurate and complete plasmid sequences [11–13], and researchers now have 
complete information about pieces of plasmids that were rarely sequenced in the past. 
These full plasmid sequences reveal that there are often discrepancies, usually of one 
to a few nucleotides, between the actual parts on a plasmid and their expected, 
canonical sequences. Plasmid DNA sequences need to be annotated with information 
about the genetic parts they contain so that their contents can be checked. Annotation 
programs, such as PlasMapper [14], and commercial software, like SnapGene, tolerate 
some variation in the matches they report to the consensus sequence for a genetic part 
in a database. However, they do not alert a user when they encounter these imperfect 
matches, which may obscure changes in the sequence of a part that have functional 
consequences. We recently developed a plasmid annotation tool, pLannotate [15], that 
reports the nucleotide identity of imperfect matches so users can evaluate parts that are 
not in agreement with the reference sequences. 
 
 When a researcher encounters a change from the consensus sequence for a 
critical genetic part, they are confronted with questions and choices. Should they use 
the plasmid “as is” or spend time trying to correct the change? Does the change matter 
for the function of the genetic part? Was the change an edit that was introduced by a 
prior researcher for some forgotten purpose or was it due to a random mutation?  
 
 Unfortunately, there is no comprehensive central repository of genetic part 
sequences that a researcher can consult to answer these questions. Databases like 
iGEM’s Registry of Standard Biological Parts [16], the Joint BioEnergy Institute's 
Inventory of Composable Elements (JBEI ICE) [17], and SynBioHub [18] contain many 
plasmid and genetic part sequences. However, they are not fully curated and are known 
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to also contain spurious and incorrect information [19]. GenoLib [20] and the related 
SnapGene database are computationally and manually compiled databases of a 
fundamental set of 293 common plasmid parts. They include multiple, curated entries 
for major families of related parts (e.g., different aminoglycoside resistance genes), but 
do not attempt to capture the functional implications of more subtle sequence variation. 
Only specialized databases reach this level of precision (e.g., FPbase for fluorescent 
proteins) [21]. These resources do not exist for most categories of critical genetic parts. 
 
 How do new variants of genetic parts found on engineered plasmids originate? 
Often these changes are due to researchers finding ways to improve or modify part 
performance. For example, the lacIq promoter has a single base change that increases 
its transcription initiation rate by 10-fold relative to the wild-type lacI promoter found in 
the E. coli genome [22]. Hundreds of fluorescent proteins have been engineered by 
introducing changes into natural sequences to alter their spectra, stability, maturation 
rates, and other properties for imaging applications [21]. CRISPR interference 
(CRISPRi) uses a catalytically dead Cas9 (dCas9) for the purposes of knocking down 
gene expression [23]. This variant has two mutations that inactivate the nuclease 
domain of Cas9, and these mutations have been engineered independently by different 
groups in Cas9 proteins encoded by different plasmid lineages [24,25]. Other changes 
may have purposes that are more difficult to ascertain, such as when researchers 
introduce silent changes in protein-coding sequences to add or avoid restriction enzyme 
cut sites to make parts compatible with certain DNA assembly methods. 
 
 Further complicating the picture, genetic part variants can also arise due to 
evolution. Mutations occur when DNA sequences are copied and assembled into new 
plasmids in vitro. When a single-cell transformant of a plasmid is picked, any mutations 
it harbors become fixed in all of that plasmid’s progeny. There are further opportunities 
for mutations to arise due to in vivo errors in DNA replication and repair as plasmids are 
propagated in bacterial cells. If the mutated plasmid functions as expected by a 
researcher, and they don’t detect or reject a mutation when validating the plasmid 
sequence, it will be retained. In some cases, selection will even favor mutated plasmids. 
Engineered plasmids can impose a significant fitness burden on the host cell if they 
divert resources needed for cellular replication or produce toxic products [26–29]. In 
these cases, there is a strong selection pressure favoring cells with plasmids mutated in 
ways that alleviate this burden by reducing or eliminating the designed function [30–33]. 
Researchers may also impose other types of selection on part/plasmid function, by 
picking the most fluorescent or largest colonies after a transformation, for example.   
 

Precisely annotating the presence and properties of common genetic part 
variants—whether they result from undocumented engineering or unintentional 
evolution—is key to improving reliability and reproducibility in the biological sciences.  
However, there are many of these variants, and determining which ones to prioritize for 
time-consuming manual curation and experimental characterization is a challenge. 
Here, we develop methods for computationally identifying widespread genetic part 
variants and variants that recurrently arose from convergent engineering or evolution 
given a large set of plasmid sequences. We use these approaches to create a list of 
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217 currently uncatalogued genetic part variants that should be prioritized for further 
characterization and inclusion in annotation databases.  

 

Results 
 
We used pLannotate [15] to annotate 983,436 genetic parts in 51,384 engineered 
plasmids in the Addgene repository [6,7] that have been fully sequenced. We found 
171,828 examples of parts that did not match their canonical sequences present in the 
databases used for annotation. These part variants can be broadly classified into 14 
different categories (Fig 1). As expected, we observed more variants for more common 
types of parts and for types of parts that generally have longer sequences. The most 
common non-canonical plasmid parts are protein-coding sequences, with 73,884 total 
observations (Fig 1A, blue) and 10,406 unique variant sequences (Fig 1A, orange). 
The part type that had the next the greatest number of variants was origins of replication 
(46,677 observations of 607 unique variants), and the third most common variant type 
was promoters (24,319 observations of 905 unique variants).  
 
 

 
 
Fig 1. Many non-canonical genetic parts are found on plasmids. (A) Representation of 
genetic part variants in Addgene plasmids with sequences that differ from those present in 
annotation databases. Each blue points represent the total number of variant genetic parts 
observed in a category. Each orange points represents the number of unique genetic part 
variants with distinct sequences. (B) How different variant genetic part sequences are from their 
canonical sequences in the annotation databases. Boxes represent lower and upper quartiles 
(the interquartile range). Vertical lines within each box are medians. The whiskers correspond to 
1.5 times the interquartile range. Points are outliers outside this range. 
 
 Variants of protein coding sequences and origins of replication are relatively 
close in sequence to their database counterparts. Variants of smaller parts, such as 
promoters or protein binding sites, exhibit higher relative levels of sequence divergence 
(Fig 1B). Some of the variants we found are known but not differentiated in current 
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databases used for plasmid annotation. For example, pLannotate and SnapGene 
currently have a single database entry for the ColE1 plasmid origin of replication, which 
is the pBR322 variant, the wild-type sequence found in a natural plasmid. However, 
most plasmids contain the engineered pUC19 variant of this origin, which includes a 
single point mutation that increases plasmid copy number by a factor of about 10-fold 
[34,35]. 
 

The sheer number of plasmid part variants is a challenge for improving plasmid 
annotation. Our goal is to determine which variants should be catalogued and prioritized 
as candidates for further investigation, better documentation, and inclusion in annotation 
databases. The naïve approach to would be to catalog all previously undocumented 
variants, but this is not practical. Engineered plasmids experience severe population 
bottlenecks when they are constructed and propagated in the laboratory. When 
plasmids are transformed into a population of cells, typically only a single plasmid 
enters a successful transformant. It is also standard practice to re-streak cells and 
isolate a colony derived from a single cell when obtaining a new plasmid from another 
researcher or from a repository. Therefore, many part variants may be a result of recent 
genetic drift (fixation of mutations due to chance) caused by these extreme population 
bottlenecks. Cataloging these “random” variants is not likely to be particularly 
informative, especially if they are found in just one or a few plasmids.  

 
One might, therefore, propose documenting part variants with the most overall 

observations. However, this strategy still encounters the same issue. Most variants are 
found on sets of plasmids deposited by just one or two labs (Fig 2A), and some of these 
variants have become prevalent due to chance (Fig 2B). These cases typically occur 
when a single lab deposits a collection of hundreds of related plasmids that all share the 
same unique variant of a genetic part. For example, one lab deposited 597 highly 
similar plasmids, which includes their general lab plasmids as well as a subset used for 
expressing human SH3 domains [36]. These plasmids all share a single base change in 
the ColE1 origin of replication. This mutation was almost certainly present in the 
backbone of an ancestral plasmid they inherited, and its propagation does not seem to 
be intentional. Even though this variant is the most common origin of replication variant 
measured in terms of the gross number of observations (besides the canonical pUC19 
variant), we would assign it a relatively low priority for characterization since it appears 
to be a one-off mutation that was accidentally cloned into one set of related plasmids. 
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Fig 2. Most genetic part variants are found in plasmids from 1 or 2 labs. (A) Total number 
of unique variants found in one or two depositing labs (1-2) versus variants found in three or 
more depositing labs (≥3). (B) All unique genetic part variants plotted by how many times they 
were observed versus the number of labs that deposited a plasmid with that variant. The blue 
horizontal line at 20 labs is the minimum threshold we used for selecting variants that were 
widespread. The orange vertical line at 1205 variant observations is the cutoff above which we 
did not perform the authorship analysis to find cases of convergent evolution or engineering.  
 

While deciding which variants to prioritize based on their raw frequency may not 
be particularly useful, we believe that cataloging variants found in plasmids deposited 
by many independent labs does have value. In this case, these variants may also have 
arisen due to chance in a single progenitor plasmid, but this event likely occurred years 
or decades in the past, so the potential impact has spread such that it could be affecting 
many more researchers and experiments. Therefore, we flagged all 75 genetic part 
variants found in plasmids from least 20 labs (Fig 2B, above the blue horizontal line) for 
inclusion in our set of high-priority variants of interest. 
 

 Variants that are from a few or a middling number of labs are harder to classify. 
If a variant appears in unrelated plasmids, it could be an engineered variant that is 
missing from current annotation databases or an evolved variant that arose more than 
once in unrelated plasmid lineages. Whether designed or evolved, these recurrent 
mutations are especially likely to affect the function of a part, so it is a high priority to 
document these cases even if they are in fewer total plasmids. To identify likely 
examples of convergent engineering and evolution, we analyzed plasmids as authored 
works. In the natural language processing and information retrieval fields, inverse 
document frequency (IDF) [37,38] is a metric employed to predict shared authorship 
[39–41]. IDF scores the rarity of a word or phrase by counting the observations within a 
document and compares that to its relative frequency in an entire corpus of documents. 
We created an IDF-inspired metric for use with biological sequences, calculating a 
quantity that we term the Design Similarity (DS) score and using it to group plasmids.  
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The procedure we developed to analyze sets of plasmids containing the same 
part variant (shared unique word) for signs of shared authorship is shown in Figure 3. 
We began by identifying all other contiguous sequence segments shared by these 
plasmids (shared phrases between documents) and tabulating the frequencies of each 
of these segments in the entire database of all plasmids (how rare the phrases are). We 
calculated a DS score for each pair of plasmids from these frequencies. Then, we 
grouped plasmids by constructing a network graph from an adjacency matrix of these 
DS scores. This step used a score cutoff determined by examining the distribution of DS 
scores between random plasmids from different labs (Fig 4, Top). Finally, we divided 
the resulting network graph into connected clusters that represent groups of plasmids 
that are unlikely to share the part variant due to common descent or copying of the part. 

 
 

 
 
Fig 3. Method for identifying recurrent genetic part variants that likely arose from 
convergent evolution or engineering. All plasmids containing the same genetic part variant 
are analyzed as a set. Segments shared by each pair of these plasmids are identified and 
queried against the full plasmid database. The results are used to calculate a design similarity 
(DS) score between the two plasmids. DS scores for all comparisons are used to construct a 
network graph of plasmid relatedness. Each separate cluster in the final graph is predicted to 
represent a set of plasmids in which the variant arose independently.  
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Fig 4. Design similarity scores reliably identify plasmids that are likely to be related while 
percent identity does not. The distributions of DS scores and percent identities for 7,500,000 
pairwise comparisons of plasmids that share undocumented part variants are plotted. High 
pairwise percent identity is not compelling evidence that plasmids are related when they share a 
commonly used backbone, as illustrated by the plasmid pair shown to the left. The DS score of 
these two plasmids is low in this instance. Low pairwise percent identity also does not 
necessarily indicate that plasmids are unrelated, as illustrated by the plasmid pair shown to the 
right. In this case, a high DS score highlights small, but unique sequences present in both 
plasmids, which is evidence of shared authorship. Asterisks indicate the location of the shared 
mutation in the associated genetic part variant that differentiates it from the canonical sequence 
in the annotation database. The distribution of DS scores between 100,000 randomly selected 
pairs of plasmids from different labs is shown above the plot. The grey line indicates the 95th 
percentile of the distribution, which was used as the score cutoff for shared plasmid authorship.  

 
If multiple distinct authorship clusters are predicted for a variant, it likely had 

more than one independent origin due to recurrent engineering or evolution. In this 
case, it should be a priority to document the variant and further characterize whether its 
function differs from that of the canonical sequence. Because the DS scoring algorithm 
involves making pairwise comparisons of all plasmids containing a given genetic part 
variant, it was only computationally feasible for us to apply it to variants with 1205 or 
fewer observations (Fig. 2B, left of orange vertical line), which included all variants 
found on plasmids deposited by fewer than 20 labs that we had not already flagged as 
being of interest simply because they were widespread. As expected, plasmids sharing 
a variant that were deposited by the same lab are almost always found within a single 
cluster at the end of this procedure. This tracks with the intuition that a depositing lab 
likely recycles their plasmid backbones and pieces of those plasmids for various 
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purposes. In total, 149 of the variants tested using the DS clustering procedure were 
predicted to occur in two or more author groups. This total includes 7 of the 64 variants 
tested in this way that were found in plasmids deposited by 20 or more labs.  

 
Using the DS score as a metric has advantages over using a percent identity-

cutoff to determine if instances of the same genetic part variant on two plasmids are 
related (Fig 4). Any two plasmids often share extensive stretches of DNA, but this may 
not actually indicate anything about how related the plasmids are to each other. For 
example, the ColE1 origin of replication is used in nearly 95% of the plasmids in our 
dataset, and 62% of plasmids contain β-lactamase as an antibiotic resistance marker. 
Since these features are widely used, their co-occurrence is not convincing evidence 
that a pair of plasmids is related, even if they constitute a majority of the shared 
sequence identity between them (Fig. 4, left). The DS metric weights features based on 
their overall rarity rather than their length or context, so that even a small part or cloning 
scar can be a strong signal of shared authorship (Fig. 4, right).  
 

We combined the widespread and recurrent part variants we identified into a final 
list of 217 currently uncatalogued genetic part variants (Table S1). This list includes 
diverse genetic parts with a wide range of functions that are used for engineering all 
kinds of organisms (Fig 5). For parts designed to function in bacteria, most of the newly 
identified variants of interest were plasmid origins of replication or antibiotic resistance 
markers. For eukaryotic parts, promoter variants were most common. Many fluorescent 
proteins, which function in both types of organisms, were also present in this list of 
uncatalogued variants not found in current annotation databases. 

 
To validate our inclusion criteria, we looked for cases of known variants that were 

uncatalogued in the initial annotation databases but were identified by our analysis. The 
top two variants with 38,693 and 25,995 total observations are the pUC19 variant of the 
ColE1 origin of replication and TEM-116 β-lactamase antibiotic resistance marker, 
respectively (Fig 5B). These are both engineered variants that differ from their parent 
sequences, pBR322 and TEM-1, by one or two bases, respectively [35,42]. These 
variants were included in our list because they occurred in ≥20 labs. We also identified 
one other canonical variant, TEM-171, which was both a frequent and recurrent variant. 
TEM-171 has one of the two mutations that TEM-116 has relative to TEM-1 [42]. 
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Fig 5. Uncatalogued genetic part variants to prioritize for characterization and inclusion 
in annotation databases. (A) The final 217 variants of interest categorized by part type and by 
the kind of organism in which the part is typically used. Bars are shaded according to the 
method by which each variant was judged to be a priority for characterization and annotation: 
either it occurred in plasmids from ≥20 depositing labs (widespread, orange) or it was in 
plasmids from fewer labs but there was evidence that it was engineered or evolved multiple 
times from the authorship analysis (convergent, blue). (B) Names of the canonical parts to 
which the 217 variants are most closely related. Parts are categorized and sorted by function. 
 
 As an example of how these predictions can aid in directing efforts to refine 
annotations of engineered DNA, one fluorescent protein variant in our list had a clear 
signal of a recurrent origin due to convergent engineering. Seventeen plasmids with the 
variant that were deposited by five different labs were from four authorship clusters. 
This variant is a derivative of enhanced GFP (eGFP) originally described in 1996 by 
Cormack et al. [43] with additional A164V and G176S amino acid substitutions. This 
derivative of eGFP is not currently listed in FPbase, and none of the five publications 
associated with the plasmids containing this derivative mention its provenance or the 
mutations it harbors [44–48], so their effects on its function are unknown. 
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Discussion 
 
It is becoming standard practice for researchers to fully sequence plasmids and other 
engineered DNA constructs they use in their experiments. These sequences need to be 
validated by precisely annotating the genetic parts they contain and recognizing 
unexpected sequence variation in these parts in order to ensure the reliability and 
reproducibility of science. In the work reported here, we created a list of 217 currently 
uncatalogued variants of common genetic parts that can be added to databases used 
by annotation pipelines. These variants are a priority because they are either already 
widespread in plasmids being exchanged by researchers or they appear to have 
originated multiple times due to convergent engineering or evolution.  
 
 To detect recurrent variants that likely had multiple origins, we developed an 
approach for grouping plasmids based on signals of shared authorship. Previously, 
authorship of plasmid sequences has been analyzed from a biosecurity standpoint, with 
the aim of attributing an unknown plasmid to a specific lab [49,50]. All of these prior 
studies analyzed the Addgene plasmid corpus. The first used deep learning to train a 
convolutional neural network to predict the lab of origin of a plasmid from its DNA 
sequence [51]. It correctly identified the source lab 48% of the time and the source lab 
appeared in the top 10 predicted labs 70% of the time. A comparable method, 
deteRNNt, used recurrent neural networks trained on plasmid sequences and 
associated phenotype data to identify DNA motifs indicative of different genetic 
designers [52]. It demonstrated an improvement in accuracy to 70% correct attribution 
to one lab among 1,300 in the dataset. An alternative approach, PlasmidHawk [53], 
opted to not use deep learning, citing the higher accuracy and higher interpretability of 
sequence alignment-based techniques compared to machine learning approaches. 
Their approach had 76% accuracy in identifying the lab that deposited an unknown 
plasmid and could precisely single out the signature sub-sequences responsible for a 
prediction. Notably, this study used an approach similar to our own where they down-
weighted observations of sequence segments that are frequent in the overall dataset, 
though their metrics differ from our IDF-inspired design similarity score.  
  

We had to infer shared authorship of plasmids to predict when a variant had 
arisen multiple times because the cloning history of most plasmids is not fully known. 
Ideally, one would be able to track the provenance of plasmids and their parts using the 
scientific literature and/or metadata in plasmid repositories to understand which 
changes to the sequence of a genetic part were intentional and when and how many 
times they were introduced or arose due to mutations. QUEEN is a recent framework 
which proposes to record traceable linages of engineered plasmids by having 
researchers meticulously document their construction process and store this information 
as metadata in GenBank flat files [54]. Addgene is now encouraging researchers to use 
QUEEN when submitting new constructs. If this or a similar metadata format for tracking 
how engineered DNA sequences have been copied, remixed, and modified is widely 
adopted, it will be very useful for tracking the engineering and evolution of plasmids in 
the future. Many scientists who performed foundational research creating key plasmid 
backbones and genetic parts in the early days of recombinant DNA technology are 
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retired or will be soon. It would be extremely valuable if the community could also 
capture or reconstruct their knowledge of earlier plasmid construction efforts. 

 
pLannotate and other plasmid annotation pipelines use BLAST to find matches to 

genetic part sequences in a database. This simple approach has some potential 
shortcomings with respect to variant detection and prediction. One is that BLAST 
matches may not detect instances of a part or properly delineate their extent when there 
are mutations at or near its ends. For example, if a bacterial promoter variant has a 
mismatch in the −35 box at the end of the canonical promoter core sequence and this is 
also where the part sequence in a database ends, the BLAST hit may only match the 
downstream part of the promoter. This could result in reporting an incomplete match 
that is not recognized as a variant or potentially no match at all. Compounding this 
problem is the issue that some types of genetic parts and important functional variants 
of these parts can be defined on multiple, overlapping scales. For a bacterial promoter, 
the database sequence could be just the core element containing the −10  and −35 
boxes, or it could be an extended element that includes upstream sequences such as 
UP-elements [55] or adjacent cis-regulatory elements. Computational matching 
methods that force extending alignments to the boundaries of part sequences and 
expert curation of how a core part and elaborated variants of that part are related could 
help annotation programs deal with these difficult cases. 
 
 Ideally, we would be able to provide annotation programs with detailed 
information to accompany the sequences of the 217 high-priority variants we identified, 
including their provenance and functional characteristics. It may be possible to trace 
more of our variants of interest to existing publications in which a researcher engineered 
mutations on purpose. However, this will require analyzing hundreds or thousands of 
publications. Since some variants are bound to be the result of de novo mutations in the 
laboratory, these searches will sometimes come up empty. In these cases, one needs 
to test whether and how the performance of the part variant differs from the canonical 
sequence and associate that information with the database sequence. Such efforts will 
take years of expert curation and laboratory experiments by a community of scientists. 
A framework is needed to centrally collect and organize this information and encourage 
community participation. FBbase is an outstanding example of continuous and expert 
curation of a specific type of engineered part [21]. This type of resource needs to be 
extended to more types of genetic parts. Integrating work on documenting part variants 
using a micropublication [56,57] or wiki model [58] could be ways to recognize the 
contributions of curators and researchers to this kind of resource, hopefully including 
those with first-hand knowledge of the histories of important genetic parts. In the end, a 
combination of computational and community-based curation efforts will likely be the 
most effective path forward for improving plasmid annotation. 
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Conclusions 
 
As fully sequencing engineered plasmids becomes commonplace, researchers are 
encountering an overwhelming number of uncatalogued variants of canonical genetic 
parts and being forced to reckon with whether these differences are important or not. 
We developed a procedure for predicting variants that are likely to have arisen due to 
convergent evolution or engineering. We combined these predictions with genetic part 
variants that are found in plasmids from many labs, under the premise that both 
widespread and recurrent variants are more likely to affect the function of a genetic part 
and the reproducibility of research than random one-off changes. Genetic part variants 
in our final list of 217 predictions warrant further investigation and should be integrated 
into tools that annotate engineered DNA. This work is a promising step towards 
automating better plasmid annotation, but there is still a need for integrating this 
information with expert curation to create comprehensive databases of genetic parts. 

Materials and Methods 
 
Identification of genetic part variants in engineered plasmids 
 
We downloaded 51,359 complete plasmid sequences from Addgene, a non-profit 
plasmid repository based in Cambridge, Massachusetts, on August 9th, 2021. Plasmid 
sequences were annotated using pLannotate v1.2.0, which identifies matches to the 
Swissprot [59] (release 2021_03), Snapgene (2021-07-23), FPbase [21] (2020-09-02), 
and Rfam [60] (release 14.5) databases. We extracted all annotated features from every 
plasmid, keeping matches that pLannotate identified as covering ≥ 95% of the length of 
the feature in the database. Matches that were 100% identical at either the nucleotide or 
amino acid level to annotation database entries were removed. Protein-coding 
sequence features with 3′ or 5′ deletions were also removed. The remaining non-
consensus features were considered genetic part variants and further analyzed. 
 
Grouping genetic part variants on related plasmids 
 
The Design Similarity (DS) score is calculated based on a formula that is similar to that 
for the Inverse Document Frequency (IDF) of the most common segment shared by two 
plasmids, except extra terms are added when there are multiple segments shared by 
the two plasmids. For each genetic part variant found in plasmids from two or more 
depositing labs, we first performed a pairwise BLASTN search (BLAST 2.10.1+) [61] 
between all plasmids that contained that variant to identify shared plasmid segments. 
Each of these segments was then queried against the entire database using BLASTN to 
find the number of plasmids that contained the segment. The following BLASTN 
parameters were used in both cases: mismatch penalty −8, match reward 2, gap open 
penalty 4, gap extend penalty 6, and word size 28. These parameters were chosen to 
maximize the reporting of matches consisting of contiguous segments with few point 
mutations. A segment match was defined as having ≥98% identity, an E-value ≤ 10–5, 
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and a length difference of at most 10 bp. The DS score was then calculated using the 
following equation: 

 

Design	Similarity	 = 	log1
𝑝
𝑥!
+
∑ 𝑝

𝑥"
#
"$%

𝑛 7 

 
Where, 𝑥 is a vector of length 𝑛 containing the number of plasmids matching 

each segment query, sorted from the smallest to the largest value. 𝑝 is the number of 
reference plasmids in the database. The right term of the equation is an extra score 
heuristic that is applied when there is more than one matching segment. 

We also cataloged all variants that were found in plasmids from ≥ 20 depositing 
labs, irrespective of DS. It was not computationally feasible to calculate pairwise DS 
scores for variants with > 1,205 observations, but all 11 of these variants were 
catalogued because they were found on plasmids originating in ≥ 20 labs. 
 
Determining a threshold for plasmid relatedness 
 
To determine a DS score threshold that indicates two examples of a genetic part variant 
on different plasmids likely shared an ancestor, we examined the distribution of DS 
scores for 100,000 random plasmid pairs. We picked only plasmid pairs that did not 
share a common depositing lab to increase the likelihood that we did not include pairs 
that did share a construction history in this set. We picked a DS cutoff for plasmid 
relatedness that gave a 5% false-positive rate on this dataset as the metric for calling 
two plasmids as related. 
 After calculating the pairwise DS scores for each group of plasmids that shared 
the same genetic part variant, we binarized the results based on the DS score cutoff 
threshold. The binary adjacency matrices were then analyzed as a network, and we 
counted the number of unlinked subgraphs within each plasmid network to estimate the 
number of times the variant had independently appeared. 
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