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Abstract  23 

Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization 24 

within thin tissue sections. However, comparing spatial observations across sections, samples, and 25 

technologies remains challenging. To address this challenge, we developed STalign to align ST 26 

datasets in a manner that accounts for partially matched tissue sections and other local non-linear 27 

distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and 28 

across technologies as well as to align ST datasets to a 3D common coordinate framework. We 29 

show that STalign achieves high gene expression and cell-type correspondence across matched 30 

spatial locations that is significantly improved over landmark-based affine alignments. Applying 31 

STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the 32 

Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and 33 

enable the interrogation of compositional heterogeneity across anatomical structures.  STalign is 34 

available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as 35 

supplementary software with additional documentation and tutorials available at 36 

https://jef.works/STalign. 37 

  38 

Introduction 39 

Spatial transcriptomics (ST) technologies have enabled high-throughput, quantitative profiling of 40 

gene expression within individual cells and small groups of cells in fixed, thin tissue sections. 41 

Comparative analysis of ST datasets at matched spatial locations across tissues, individuals, and 42 

samples provides the opportunity to interrogate spatial gene expression and cell-type 43 

compositional variation in the context of health and disease. Such comparative analysis is 44 

complicated by technical challenges such as in sample collection, where the experimental process 45 
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may induce tissue rotations, tears, and other structural distortions. Other challenges include 46 

biological variation such as natural inter-individual tissue structural differences. In order to reliably 47 

characterize spatial molecular differences between ST datasets along comparative axes of interest, 48 

it is integral to control for potentially confounding tissue structural variation by spatially aligning 49 

these tissue structures across ST datasets.  50 

Considering the recent development of such ST technologies, options for spatially aligning 51 

across ST datasets are still limited. Previous computational methods have focused on spatial 52 

alignment of ST datasets for which each dataset is assayed using the same pixel-resolution ST 53 

technology with only a few hundred to a few thousand spatial measurements1,2. These methods 54 

face challenges in scaling to larger, single-cell resolution ST datasets with tens to hundreds of 55 

thousands of spatial measurements. Further, spatial alignment of datasets across different ST 56 

technologies remains challenging. Other alignment methods are limited to rigid, affine 57 

transformation such as based on landmarks3 and cannot accommodate non-linear distortions. To 58 

address these challenges, we present an approach called STalign that builds on recent 59 

developments in Large Deformation Diffeomorphic Metric Mapping4,5 (LDDMM) to align ST 60 

datasets using image varifolds. STalign is amenable to data from single-cell resolution ST 61 

technologies as well as data from multi-cellular pixel-resolution ST technologies for which a 62 

corresponding registered single-cell resolution image such as a histology image is available. 63 

STalign is further able to accommodate alignment in both 2D and 3D coordinate systems. STalign 64 

is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as 65 

supplementary software with additional documentation and tutorials available at 66 

https://jef.works/STalign. 67 

 68 
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 4 

Results 69 

 70 

Overview of Method 71 

To align two ST datasets, STalign solves a mapping that minimizes the dissimilarity between a 72 

source and a target ST dataset subject to regularization penalties (Online Methods). Within single-73 

cell resolution ST technologies, both the source and target ST datasets are represented as cellular 74 

positions (𝑥!! 	,  𝑦!!) and (𝑥!" ,  𝑦!") respectively (Fig 1a). Solving the mapping with respect to 75 

single cells has quadratic complexity and is computationally intractable, so STalign applies a 76 

rasterization approach to reduce computational time (Fig 1b). Briefly, STalign models the 77 

positions of single cells as a marginal space measure 𝜌	within the varifold measure framework6. 78 

STalign then convolves the space measure 𝜌	with Gaussian kernels 𝑘	to obtain the smooth, 79 

rasterized function 𝐼(𝑥,  𝑦) = ,𝑘
#
$ ∗ 𝜌. (𝑥,  𝑦). Finally, STalign samples from the continuous 80 

𝐼(𝑥,  𝑦) to get a discrete image of a specified size with a specified pixel resolution. STalign focuses 81 

on minimizing the dissimilarity between the source and target images 𝐼" and 𝐼# rather than 82 

minimizing the dissimilarity between the source and target space measures because, while 83 

approximately equivalent, the former can be calculated more efficiently (Online Methods). To 84 

solve for a mapping that minimizes the dissimilarity between source and target images 𝐼" and 𝐼#, 85 

STalign utilizes the LDDMM framework (Fig 1c). Using LDDMM to identify a diffeomorphic 86 

solution allows us to have a smooth, continuous, invertible transformation which permits mapping 87 

back and forth from the rasterized image and original cell positions while respecting the biological 88 

constraints such that cell neighbor relationships stay relatively the same7. The mapping 𝜙$,& is 89 

constructed from two transformations, an affine transformation Α	and a diffeomorphism 𝜑'& such 90 

that 𝜙$,&(𝑥)  = Α𝜑'&(𝑥), where 𝜑'& is generated by integrating a time varying velocity field 𝑣( over 91 
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time and Α acts on  𝜑'&(𝑥) through matrix vector multiplication in homogeneous coordinates. The 92 

optimal 𝜙$,&  is computed by minimizing an objective function that is the sum of a regularization 93 

term, 𝑅(𝑣) and a matching term, 𝑀)(𝜙$,& ∙  𝐼",  𝐼#). The relative weights of the regularization term 94 

and matching term can be tuned with 𝜎*+  and 𝜎*,. The regularization term controls spatial 95 

smoothness. In this term, we optimize over 𝑣( , 𝑡 ∈ [0, 1]  noting that if 𝑣( is constricted to being 96 

a smooth function, the 𝜑'& constructed from 𝑣( is guaranteed to be diffeomorphic. The matching 97 

term incorporates a Gaussian mixture model 𝑊(𝑥) to estimate matching, background, and artifact 98 

components of the image to account for missing tissue such as due to partial tissue matches or 99 

tears. Additionally, the matching term contains an image contrast function 𝑓) to account for 100 

differences due to variations in cell density and/or imaging modalities. To solve all parameters in 101 

each term a steepest gradient descent is performed over a user-specified number of epochs. Once 102 

𝜙$,&  is computed, STalign applies this computed transformation to the source’s original cell 103 

positions (𝑥!! 	,  𝑦!!) to generate aligned source coordinates (𝑥!!% 	,  𝑦!!%) (Fig 1d).  104 

 105 

 106 
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Figure 1. Overview of STalign on ST data from a single-cell resolution technology. a. STalign takes as input a 107 

source and target ST dataset as x- and y-coordinates of cellular positions. b. Source and target coordinates are then 108 

rasterized into images 𝐼"	and 𝐼# . c. To align 𝐼"	and 𝐼# , STalign solves for the mapping 𝜙$,& that when applied to 109 

𝐼"	estimates 𝐼#  such that 𝐼	&(𝑥)  =  [𝜙𝐴,𝑣 ⋅ 𝐼'](x). Gradient descent is used to solve affine transformation 𝐴	and large 110 

deformation diffeomorphic metric mapping (LDDMM) 𝜑'&  that compose 𝜙$,&	such that 𝜙$,&(𝑥) = 𝐴𝜑'&(𝑥) . 111 

The objective function minimized includes a regularization term 𝑅(𝑣) to penalize non-smooth solutions and a 112 

matching term 𝑀( 0𝜙
𝐴,𝑣 ∙ 𝐼𝑆, 𝐼𝑇1 that minimizes the dissimilarity between the transformed source image and the 113 

target image while accounting for tissue and technical artifacts with 𝑊(𝑥)	 and 𝑓(, respectively.  Balance between 114 

regularization and matching accuracy can be tuned with the parameters 𝜎)*  and 𝜎)+. Components of the objective 115 

function decrease over epochs with transforms at different stages of the diffeomorphism. d. Once 𝜙$,&		is solved, 116 

visualized as a deformation field, the mapping is applied to the coordinates of the source to obtain the coordinates for 117 

the aligned source.  118 

 119 

STalign enables alignment of single-cell resolution ST datasets within technologies 120 

As a proof of concept, we first applied STalign to align two single-cell resolution ST datasets from 121 

the same technology. Specifically, we aligned, in a pairwise manner at matched locations, ST data 122 

from 9 full coronal slices of the adult mouse brain representing 3 biological replicates spanning 3 123 

different locations with respect to bregma assayed by MERFISH (Methods). Inherent local spatial 124 

dissimilarities between slices, due to biological variability and further exacerbated by technical 125 

variation as well as tears and distortions sustained in the data acquisition process, render affine 126 

transformations such as rotations and translations often insufficient for alignment.  127 

To evaluate the performance of STalign, we first evaluated the spatial proximity of 128 

manually identified structural landmarks between the source and target ST datasets, expecting the 129 

landmarks to be closer together after alignment. We manually placed 12 to 13 landmarks that could 130 
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be reproducibly identified (Supp Fig 1, Supp Table 1). To establish a supervised affine 131 

transformation for comparison with STalign, we solved for the affine transformation that 132 

minimized the error between these landmarks using least squares. We then compared the positions 133 

of the corresponding landmarks after both the supervised affine alignment and STalign alignment 134 

using root-mean-square error (RMSE). When the supervised affine transformations were used for 135 

alignment, RMSE was 202 +/- 17.1 µm, 170 +/- 3.47 µm, and 266 +/- 6.65 µm for biological 136 

replicates of each slice location respectively. When STalign based on an LDDMM transformation 137 

model was used for alignment, RMSE was 113 +/- 10.5 µm, 169 +/- 4.53 µm, and 175 +/- 5.47 138 

µm for biological replicates of each slice location respectively. STalign was thus able to 139 

consistently reduce the RMSE between landmarks after alignment compared to an affine 140 

transformation, suggestive of higher alignment accuracy.  141 

Given the ambiguity of where landmarks may be manually reproducibly placed and their 142 

inability to evaluate alignment performance for the entire ST dataset, we next took advantage of 143 

the available gene expression measurements to further evaluate the performance of STalign. 144 

Because of the highly prototypic spatial organization of the brain, we expect high gene expression 145 

correspondence across matched spatial locations after alignment. We focused our evaluation on 146 

one pair of ST datasets of coronal slices from matched locations (Methods). We visually confirm 147 

that alignment results in a high degree of spatial gene expression correspondence (Fig 2a, Supp 148 

Fig 2a). To further quantify this spatial gene expression correspondence, we evaluated the gene 149 

expression magnitudes at matched spatial locations across the aligned ST datasets. Specifically, 150 

we aggregated cells into pixels in a 200μm grid to accommodate the differing numbers of cells 151 

across slices and then quantified gene expression magnitude correspondence at spatially matched 152 

200μm pixels using cosine similarity (Fig 2b-c, Supp Fig 2b). For a good alignment, we would 153 
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expect a high cosine similarity approaching 1, particularly for spatially patterned genes. To identify 154 

such spatially patterned genes, we applied MERINGUE8 to identify 457 genes with highly 155 

significant spatial autocorrelation (Methods). For these genes, we observe a high spatial 156 

correspondence after alignment as captured by the high median cosine similarity of 0.73. In 157 

contrast, for the remaining 192 non-spatially patterned genes, we visually confirm as well as 158 

quantify the general lack of spatial correspondence (Fig 2d-f, Supp Fig 3a-b). We note that these 159 

non-spatially patterned genes are enriched in negative control blanks (57%), which do not encode 160 

any specific gene but instead represent noise such that we would not expect spatial correspondence 161 

even after alignment. Further, we observe a low median cosine similarity of 0.21 across non-162 

spatially patterned genes that is significantly lower than for spatially patterned genes (Wilcoxon 163 

rank-sum test p-value < 2.2e-16).  164 

We next compare the alignment achieved with STalign to the alignment from a supervised 165 

affine transformation based on our previously manually placed landmarks (Supp Fig 4a, Methods). 166 

We visually confirm that a supervised affine alignment results in a lower degree of spatial gene 167 

expression correspondence than alignment by STalign (Supp Fig4b). We again evaluate 168 

performance of the supervised affine transformation using a pixel-based cosine similarity 169 

quantification (Supp Fig4c). We find that for spatially patterned genes, the cosine similarity is 170 

consistently higher with a mean difference of 0.09 for the alignment by STalign compared to 171 

supervised affine (Supp Fig 4d). In contrast, for non-spatially patterned genes, the cosine similarity 172 

is more comparable with a mean difference of 0.02 for the alignment by STalign compared to 173 

supervised affine (Supp Fig 4e). This greater improvement in spatial gene expression 174 

correspondence for the alignment achieved with STalign compared to supervised affine 175 

transformation for spatially patterned genes suggests that modeling non-linearity in alignment with 176 
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approaches like STalign can achieve a higher alignment accuracy compared to linear alignment 177 

approaches.  178 

 179 

 180 

Figure 2. Evaluation of STalign based on spatial gene expression correspondence. a. Correspondence of gene 181 

expression spatial organization between the target and aligned source for select spatially patterned genes. b. Transcript 182 

counts in the target compared to the aligned source at matched pixels for select genes: Gabbr2, Gpr6, and Cckar. c. 183 

Distribution of cosine similarities between transcript counts in target versus aligned source at matched pixels for 457 184 

spatially patterned genes with select genes marked. d. Spatial pattern of expression for a select non-spatially patterned 185 
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gene in the target and aligned source (inset displays cells at higher magnification). e. Counts for the target versus 186 

aligned source at matched pixels for a select non-spatially patterned gene, Mrgprf. f. Distribution of cosine similarities 187 

between counts in target compared to the aligned source at matched pixels for 192 non-spatially patterned genes. 188 

 189 

STalign enables alignment of ST datasets across technologies 190 

Many technologies for spatially resolved transcriptomic profiling are available, varying in 191 

experimental throughput and spatial resolution9. We thus applied STalign to align two ST datasets 192 

from two such different ST technologies. Specifically, we applied STalign to align the previously 193 

analyzed single-cell resolution ST dataset of a full coronal slice of the adult mouse brain assayed 194 

by MERFISH to a multi-cellular pixel resolution ST dataset of an analogous hemi-brain slice 195 

assayed by Visium (Fig 3a). As such, in addition to being from different ST technologies, these 196 

two ST datasets further represent partially matched tissue sections. Because of this partial 197 

matching, we incorporated manually placed landmarks to initialize the alignment as well as further 198 

help steer our gradient descent towards an appropriate solution (Online Methods). For the Visium 199 

dataset, we leveraged a corresponding registered single-cell resolution hematoxylin and eosin 200 

(H&E) staining image obtained from the same tissue section for the alignment (Methods).  201 

To evaluate the performance of this alignment, we again take advantage of the available 202 

gene expression measurements. Due to partially matched tissue sections, we restricted downstream 203 

comparisons to tissue regions STalign assessed with a matching probability > 0.85 (Methods). We 204 

again visually confirm that the spatial alignment results in a high spatial gene expression 205 

correspondence albeit at differing resolutions across the two technologies (Fig 3b, Supp Fig 5a). 206 

To further quantify this spatial gene expression correspondence, we evaluated the gene expression 207 

magnitudes at matched spatial locations across the aligned tissue sections for the 415 genes with 208 

non-zero expression in both ST datasets. We evaluated these genes for spatial autocorrelation on 209 
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the Visium data to identify 227 spatially patterned genes and 188 non-spatially patterned genes 210 

(Methods). Due to the resolution differences between the two technologies, to ensure appropriate 211 

comparisons, we used the positions of the Visium spots to aggregate MERFISH cells into matched 212 

resolution pseudospots. Likewise, to control for detection efficiency differences between the two 213 

technologies, we performed the same counts-per-million normalization on the Visium spot gene 214 

expression measurements and the aggregated MERFISH pseudospots gene expression 215 

measurements (Fig 3c, Supp Fig 5b). We again evaluated gene expression correspondence at 216 

spatially matched spots using cosine similarity and observed a median cosine similarity of 0.55 217 

across spatially patterned genes (Fig 3d) and a median cosine similarity of 0.06 across non-218 

spatially patterned genes (Supp Fig 6). We note that this gene expression correspondence after 219 

spatial alignment is lower than what was previously observed within technologies most likely due 220 

to variation in detection efficiency across technologies in addition to variation in tissue 221 

preservation rather than poor spatial alignment. While MERFISH detects targeted genes at high 222 

sensitivity, Visium enables untargeted transcriptome-wide profiling though sensitivity for 223 

individual genes may be lower9. Likewise, while the MERFISH dataset was generated with fresh, 224 

frozen tissue, the Visium dataset was generated with FFPE preserved tissue. Still, we anticipate 225 

that while sensitivity to specific genes may vary across technologies and with different tissue 226 

preservation techniques, the underlying cell-types should be consistent.  227 

 228 
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 229 

Figure 3. Application and evaluation of STalign on spatial transcriptomics data from different ST technologies 230 

based on normalized spatial gene expression correspondence. a. Overview of STalign on ST data from different ST 231 

technologies. Single-cell resolution ST is used as the source, with the initial image being produced from the x- and y-232 

coordinates of each cell’s position (top). For the multi-cellular resolution ST technologies, the corresponding single-233 

cell resolution histological image is used as target (middle). STalign aligns the source to target (bottom). The manually 234 

placed landmarks that were utilized to improve alignment for these partially matched tissues are marked. b. 235 

Correspondence of gene expression spatial organization between the Visium target and aligned MERFISH source for 236 

select spatially patterned genes. c. Normalized gene expression in the Visium target compared to the aligned 237 

MERFISH source at matched spots and pseudospots respectively for select spatially patterned genes: Baiap2, Slc17a6 238 

and Gpr151. d. Distribution of cosine similarities between normalized gene expression in the Visium target versus 239 

aligned MERFISH source at matched spots and pseudospots for 227 spatially patterned genes detected by both ST 240 

technologies with select genes marked. 241 

 242 

 243 
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Therefore, we sought to evaluate the performance of our alignment based on cell-type 244 

spatial correspondence. To identify putative cell-types, we performed transcriptional clustering 245 

analysis on the single-cell resolution MERFISH data (Supp Fig 7a) and deconvolution analysis10 246 

on the multi-cellular pixel-resolution Visium data (Fig 4a, Methods). We matched cell-types based 247 

on transcriptional similarity between cell clusters and deconvolved cell-types (Supp Fig 7b). 248 

Indeed, we visually observe high spatial correspondence across matched cell-types (Fig 4a-b). We 249 

evaluated the proportional correspondence of cell-types at aligned spot and pseudospot spatial 250 

locations by cosine similarity and observed a high median cosine similarity of 0.75 across cell-251 

types (Fig 4c-d). As such, STalign achieves high cell-type spatial correspondence across aligned 252 

ST datasets, suggestive of high alignment accuracy. 253 

 254 

 255 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2023. ; https://doi.org/10.1101/2023.04.11.534630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.534630
http://creativecommons.org/licenses/by/4.0/


 

 14 

Figure 4. Evaluation of STalign on ST data from technologies at different resolutions based on cell-type 256 

correspondence. a. Transcriptionally matched cell-types from deconvolution analysis of spot-resolution Visium data 257 

(top) and clustering analysis of spatially aligned single-cell-resolution MERFISH data (bottom). b. Cell type 258 

correspondence between the Visium target and aligned MERFISH source with select cell-types shown. c. 259 

Correspondence of cell-type proportion between the Visium target and aligned MERFISH source at matched spots 260 

and pseudospots respectively for select cell-types. d. Distribution of cosine similarities between cell-type proportions 261 

in the Visium target and aligned MERFISH source at matched spots and pseudospots respectively for all matched cell-262 

types with cell-types marked. 263 

 264 

STalign enables alignment of ST datasets to a 3D common coordinate framework  265 

Tissues are inherently 3-dimensional (3D), and tissue sections are subject to distortions in 3D as 266 

well as 2D. As such, a more precise spatial alignment of 2D tissue sections must accommodate 267 

this 3D distortion. The underlying mathematical framework for STalign is amenable to alignment 268 

in 2D as well as 3D (Online Methods). We thus applied STalign to align ST datasets to a 3D 269 

common coordinate framework (CCF). Specifically, we applied STalign to align 9 ST datasets of 270 

the adult mouse brain assayed by MERFISH to a 50µm resolution 3D adult mouse brain CCF 271 

established by the Allen Brain Atlas11 (Methods, Fig 5a). We note that such a 3D alignment can 272 

accommodate deformations in and out of 2D planes (Fig 5b). In the construction of the Allen Brain 273 

Atlas CCF, brain regions were delineated based on several features like cellular architecture, 274 

differential gene expression, and functional properties via modalities such as histological stains, 275 

in situ hybridization, and connectivity experiments to generate a set of reference brain region 276 

annotations11.  By aligning to this CCF, we can lift over these annotations to each cell (Fig 5c, 277 

Supp Fig 8a), enabling further evaluation of variations of gene expression and cell-type 278 

composition within and across these annotated brain regions.  279 
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 280 

Figure 5. Evaluation of 3D-2D alignment using STalign. a. Transformation of 3D CCF atlas to align to ST data at 281 

z=0. b. Aligned ST data (MERFISH Slice 1 Replicate 1) plotted in 3D Allen Brain Atlas coordinates. c. Lift-over 282 

brain regions from aligning to the Allen Brain Atlas CCF with STalign. d. Brain regions (top) labeled by STalign with 283 

expression of expected genes (middle) and overlay (bottom). e. Spatial location of cell types on MERFISH brain 284 

slices. f. UMAP embedding of different cell types defined by differential gene expression and Leiden clustering. g. 285 

Cell-type composition difference between paired brain regions from two MERFISH replicates. The x axis represents 286 

cell-type composition difference within matched brain structures annotated by STalign across replicates and the y axis 287 

represents cell-type composition difference between STalign-annotated regions and size-matched random brain 288 
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regions. h. Significant difference between distribution of cell-type composition entropy for brain regions labeled by 289 

STalign versus regions expanded by 100 nearest neighbors (center line, median; box limits, upper and lower quartiles; 290 

whiskers, 1.5x interquartile range; all data points shown) 291 

 292 

To assess the performance of our atlas alignment and lift-over annotations, we first 293 

confirmed the enrichment of genes within certain brain regions. Numerous previous studies have 294 

shown that some brain regions can be demarcated based on the expression of particular genes12,13. 295 

We use these characteristic gene expression patterns to evaluate whether the brain regions lifted 296 

over from the Allen Brain Atlas CCF by STalign indeed contain expression of known marker 297 

genes. Consistent with previous studies, we found Grm2 to be visually primarily enriched in the 298 

dentate gyrus brain region14, Sstr2 to be enriched in cerebral cortical layers 5 and 6 brain region15, 299 

and Gpr161 to be enriched in the CA1 brain region16 (Fig 5d), which was consistent across 300 

replicates (Supp Fig 8b). 301 

Next, we took a more agnostic approach to assess the performance of our atlas alignment 302 

and lift-over annotations by evaluating the consistency of cell-type compositional heterogeneity 303 

within brain structures across replicates. To identify cell-types, we perform unified transcriptional 304 

clustering analysis on these 9 ST datasets to identify transcriptionally distinct cell clusters and 305 

annotate them as cell-types based on known differentially expressed marker genes (Methods, Fig 306 

5e-f, Supp Fig 9a). Many brain regions are known to have a characteristic cell type distribution17–307 

19. Consistent with previous studies20, we observed cell-types to be spatially and compositionally 308 

variable across brain regions (Fig5c, Fig 5e). We visually confirmed that this spatial and 309 

compositional variability is consistent across replicates (Supp Fig8a, Supp Fig 9b). To further 310 

quantify this consistency, for each brain region, we evaluated whether its cell-type composition 311 

was more similar between replicates than compared to a randomly demarcated brain region of 312 
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matched size (Methods). For an accurate atlas alignment, we would expect the lift-over brain 313 

region annotations to be more similar in cell-type composition across replicates, particularly for 314 

brain structures with distinct cell-type compositions, as compared to random brain regions of 315 

matched size. Indeed, we found that in 93% of evaluated brain structures (131/141), the cell-type 316 

composition was significantly more similar (Paired t-test p-value = 6.805e-121) between replicates 317 

than compared to a random brain region of matched size. (Fig 5g). For the 7% (10/141) of brain 318 

regions that were less similar across replicates, we found that the number of cells in these brain 319 

regions were significantly fewer (Wilcoxon rank-sum test p-value = 0.002) than other brain regions 320 

(Supp Fig 10a). Notably, 60% of these brain regions had a minimum width of under 50µm, 321 

including both compact and long, thin structures (Supp Fig 10b), highlighting potential limitations 322 

with respect to alignment accuracy of such structures at this given resolution of alignment.  323 

Finally, we also sought to assess the performance of our atlas alignment and lift-over 324 

annotations by evaluating cell-type compositions within and beyond annotated brain region 325 

boundaries (Methods). Specifically, we compare the entropy of each brain region based on the 326 

region’s cell-type composition to entropy if the boundaries of these regions were expanded (Fig 327 

5h). Again, due to the characteristic cell-type distributions within brain regions in which one or a 328 

few cell-types predominate, we would expect accurate lift-over brain region annotations to exhibit 329 

entropies that are comparatively lower than if the boundaries of these regions were expanded, as 330 

more cell-types would be incorporated into the region and entropy would increase. We therefore 331 

expanded the brain structures lifted over by STalign by 100 nearest neighbors (NN), or 332 

approximately 100µm, and evaluated the change in entropy. We performed the same analysis on 333 

randomly demarcated brain regions of matched size, which were expanded by 100 NN to account 334 

for increases in entropy due to an incorporation of more cells. We found that the entropies for the 335 
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original brain region annotations lifted over by STalign were significantly lower (paired t-test p-336 

value=8.6e-18) than for the expanded regions. In contrast, the entropies for random brain regions 337 

were not significantly lower (paired t-test p-value = 0.12) for the expanded regions (Supp Fig 11). 338 

Taken together, these results demonstrate that STalign can align ST datasets to a 3D CCF to 339 

consistently lift over atlas annotations that recapitulate the unique gene expression and cell-type 340 

composition within brain regions. 341 

 342 

STalign applicable to diverse tissues profiled by diverse ST technologies 343 

STalign relies on variation in cell densities that generally form visible structures that can 344 

be used for alignment. As we have shown, alignment across samples and animals is possible for 345 

tissues with highly prototypic structures such as the brain. We further highlight the applicability 346 

of STalign to the diverse ST technologies that can assay this tissue by demonstrating that we can 347 

apply STalign to achieve structural correspondence for coronal slices of the adult mouse brain 348 

assayed by two different single-cell resolution ST technologies, Xenium21 and STARmap PLUS22 349 

(Methods, Fig 6a-c). 350 

For other tissues with substantially more inter-sample and inter-animal variation, 351 

alignment across serial sections is still achievable. For example, for serial sections of the 352 

developing human heart23, we can apply STalign to achieve structural correspondence (Methods, 353 

Fig 6d-f). Likewise, even for cancer tissues, which are highly non-prototypic in structure, there is 354 

still often sufficient structural consistency across serial sections to enable alignment. As such, we 355 

have applied STalign to align single-cell resolution ST datasets arising from partially matched 356 

serial sections of the same breast cancer sample assayed by Xenium (Methods, Fig 6g-i). Likewise, 357 

we have applied STalign to align a single-cell ST dataset assayed by Xenium to a corresponding 358 
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H&E image of the same tissue section (Methods, Fig 6j-l). We visually observe a high degree of 359 

spatial correspondence and overlap of structural features after alignment, highlighting STalign’s 360 

applicability to diverse tissues.  361 

 362 

 363 

Figure 6. Application of STalign to ST data of diverse tissues. a. Two coronal slices of the adult mouse brain assayed 364 

by two different single-cell resolution ST technologies, Xenium and STARmap PLUS b. Overlay of cellular positions 365 

before alignment. c. Overlay of cellular positions after alignment with STalign. d. Two single-cell resolution datasets 366 
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from serial sections of the developing human heart. e. Overlay of cellular positions before alignment. f. Overlay of 367 

cellular positions after alignment with STalign. g. Two single-cell resolution ST datasets from partially matched, serial 368 

breast cancer sections visualized as x- and y-coordinates of cellular positions. h. Overlay of cellular positions before 369 

alignment. i. Overlay of cellular positions after alignment with STalign. j. A single-cell resolution ST dataset with a 370 

corresponding H&E image from the same tissue section. k. Overlay of cellular positions and H&E image based on 371 

affine transformation by minimizing distances between manually placed landmarks, shown as points in red and 372 

turquoise. l. Overlay of cellular positions and H&E image after alignment with STalign. 373 

 374 

 375 

Discussion 376 

Alignment of ST datasets is a prerequisite step to enable comparisons across samples, subjects, 377 

and technologies. Alignment can also enable pooling of measurements across biological replicates 378 

to construct consensus ST profiles1 as well as enable 3D reconstruction by serial registration24. 379 

Here, we presented STalign, which builds on advancements in LDDMM, to perform alignment of 380 

ST datasets in a pairwise manner within ST technologies, across ST technologies, as well as to a 381 

3D common coordinate system. We have shown that STalign achieves high accuracy based on the 382 

spatial proximity of manually identified shared landmarks as well as gene expression and cell-type 383 

correspondence at matched spatial locations after alignment. We note that based on these metrics, 384 

STalign outperforms affine transformations alone, highlighting the utility of local, non-linear 385 

transformations in alignment. STalign can further accommodate partially matched tissue sections, 386 

where one tissue section may be a fraction of another. We further apply STalign to align ST 387 

datasets to a 3D CCF to enable automated lift-over of CCF annotations such as brain regions in a 388 

scalable manner. We confirm that lift-over brain region annotations identify cells that express 389 

expected genes for a variety of brain regions. We also show that brain region annotations lifted 390 
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over by STalign exhibit consistent cell-type compositions across replicates and within boundaries 391 

compared to random brain regions matched in size.  392 

We anticipate that future applications of STalign to ST data particularly across ST 393 

technologies will enable cross-technology comparisons as well as cross-technology integration 394 

through spatial alignment. In particular, aligning ST data for similar tissues across different ST 395 

technology platforms may allow us to better interrogate platform-specific differences and 396 

strengths. Given that different ST technologies currently generally prioritize either resolution or 397 

genome-wide capabilities, we may wish to apply different ST technologies on serial sections to 398 

leverage their unique strengths to characterize matched spatial location. With atlasing efforts like 399 

The Human BioMolecular Atlas Program and others producing 3D CCFs25, application of STalign 400 

to align ST data to such CCFs to enable automated lift over of atlas structural annotations will 401 

facilitate standardization and unification of biological insights regarding annotated structures. 402 

Likewise, STalign complements gene-expression-based approaches for sample alignment26 by 403 

focusing on the real space rather than a higher-order transcriptomic manifold. We further anticipate 404 

future applications of STalign to ST data from structurally matched tissues in case-control settings 405 

will enhance the throughput for yielding meaningful comparisons regarding gene expression and 406 

cell-type distributions in space as evidenced by recent applications of ST technologies to 407 

characterize spatially-resolved age-related27 and injury-related28 gene expression variation.  408 

As ST technologies continue to evolve, we anticipate STalign will continue to be applicable 409 

due to our use of rasterization to convert the positions of single cells into an image with specified 410 

resolution. The runtime of each iteration of the STalign alignment algorithm scales with respect to 411 

the number of pixels in this image. For most evaluated datasets, we find that STalign is generally 412 

able to converge onto an optimal alignment within a few minutes to a few hours, depending on the 413 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2023. ; https://doi.org/10.1101/2023.04.11.534630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.534630
http://creativecommons.org/licenses/by/4.0/


 

 22 

number of pixels, the number of iterations, and other system variables (Methods, Supp Table 2). 414 

Whereas other alignment algorithms generally scale in memory and runtime with the number of 415 

spatially resolved measurements (spots or cells)1,2, which will likely make them computationally 416 

untenable as ST technologies evolve to increase the number of spatially resolved measurements 417 

that can be assayed. Overall, we anticipate that the ability for users to choose the rasterization 418 

resolution, and therefore the number of pixels in the rasterized image, will allow STalign to 419 

maintain its utility for larger datasets.  420 

Still, among the limitations of STalign with respect to ST data, it is currently applicable to 421 

only ST datasets with single-cell resolution or those accompanied with a registered single-cell 422 

resolution histology image from same assayed tissue section, which may not be available to all 423 

non-single-cell resolution ST technologies. STalign further relies on the representative nature of 424 

cell segmentations in ST data to reflect underlying tissue structures. As such, limitations in cell 425 

segmentations that render the derived cell density to be no longer representative of the profiled 426 

tissue structure could present challenges for alignment with STalign.     427 

Further, as STalign is based on an LDDMM transformation model for alignment, it inherits 428 

the same limitations. As LDDMM relies on optimization using gradient descent, the resulting 429 

alignment solution may converge on local minima. Strategies to guide the optimization away from 430 

potential local minima may be applied in the future. Likewise, the more different the source and 431 

targets for alignment, particularly for partially matching sections, the more important the 432 

initialization will be for this optimization. As we have shown, landmark points may be used to 433 

guide the initialization of an orientation and scaling for alignment. In addition, LDDMM enforces 434 

an inverse consistency constraint such that every observation in the target must have some 435 

correspondence in the source in a manner that cannot accommodate holes or other topological 436 
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differences in the tissue through the deformation only7. As such, when performing alignments, we 437 

advise choosing the more complete tissue section as the source because our Gaussian mixture 438 

modeling for accommodating partially matched tissues and other artifacts applies to the target 439 

image intensity only.  440 

Still, alignment accuracy at the resolution of single cells is limited by the fact that there is 441 

generally no one-to-one correspondence between cells across samples, particular for complex 442 

tissues. As such, accuracy can typically only be expected to be achieved up to a “mesoscopic scale” 443 

at which it is reasonable to define cell density29. As we have shown, this presents challenges 444 

particularly in aligning thin structures. While STalign currently uses an isotropic (Gaussian) kernel 445 

to estimate cell densities, future work considering non-isotropic kernels may improve accuracy for 446 

these thin structures. However, generally, our choice of kernel will inherently bias our alignment 447 

towards accuracy at a certain structural scale. Likewise, although we focused here on aligning 448 

based on cell densities, STalign and the underlying LDDMM framework can also be applied to 449 

align using cellular features such as gene expression magnitude, reduced dimensional 450 

representations of gene expression such as via principal components, or cell-type annotations, 451 

which may improve the accuracy of alignment for regions with homogenous cell density but 452 

heterogeneous gene expression and cell-type composition. However, integration of such features 453 

in the alignment process necessitates orthogonal means of performance evaluation beyond the 454 

correspondences in gene expression magnitude and cell-type proportions that we have used here. 455 

By aligning based on cell densities, we do not require shared gene expression quantifications or 456 

unified cell-type annotations, potentially enhancing flexibility and providing opportunities for 457 

integrating across other data modalities for which spatially resolved single cell resolution 458 

information is available such as other spatial omics data in the future. 459 
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Overall, we anticipate that moving forward STalign will help provide a unified 460 

mathematical framework for ST data alignment to enable integration and downstream analyses 461 

requiring spatial alignment to reveal new insights regarding transcriptomic differences between 462 

different tissue structures and across various physiological axes.  463 

 464 
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Methods 569 

 570 

Datasets  571 

Nine MERFISH datasets consisting of 734,696 cells and 483 total genes, across 9 brain slices (3 572 

replicates of 3 coronal sections from matched locations with respect to bregma) were obtained 573 

from the Vizgen website for MERFISH Mouse Brain Receptor Map data release 574 

(https://info.vizgen.com/mouse-brain-map).  575 

 576 

A Visium dataset of an FFPE preserved adult mouse brain were obtained from the 10X Datasets 577 

website for Spatial Gene Expression Dataset by Space Ranger 1.3.0 578 

(https://www.10xgenomics.com/resources/datasets/adult-mouse-brain-ffpe-1-standard-1-3-0)  579 

 580 

A Xenium dataset (In Situ Replicate 1) of a fresh frozen mouse brain coronal section was obtained 581 

from the 10X Datasets website for Mouse Brain Dataset Explorer 582 

(https://www.10xgenomics.com/products/xenium-in-situ/mouse-brain-dataset-explorer)  583 

 584 

STARMAP Plus data (well11_spatial.csv)  of coronal slices of the adult mouse brain was 585 

downloaded from the Broad Single Cell Portal 586 

(https://singlecell.broadinstitute.org/single_cell/study/SCP1830/spatial-atlas-of-molecular-587 

[…]pes-and-aav-accessibility-across-the-whole-mouse-brain) 588 

 589 

Developing heart data for samples CN73_E1 and CN73_E2 were downloaded from the Human 590 

Developmental Cell Atlas https://hdca-sweden.scilifelab.se/a-study-on-human-heart-591 
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development/ via ST_heart_all_detected_nuclei.RData 592 

from https://github.com/MickanAsp/Developmental_heart 593 

 594 

Two Xenium datasets (In Situ Replicate 1 and In Situ Replicate 2) of a single breast cancer FFPE 595 

tissue block were obtained from the 10X Datasets website for High resolution mapping of the 596 

breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of 597 

FFPE tissue (https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-598 

breast)  599 

 600 

The 50µm resolution 3D adult mouse brain CCF was obtained from the Allen Brain Atlas website 601 

(https://download.alleninstitute.org/informatics-archive/current-602 

release/mouse_ccf/annotation/ccf_2017/annotation_50.nrrd). 603 

 604 

Application of STalign 605 

To align MERFISH datasets, we applied STalign in a pairwise manner across replicates for 606 

sections from matched locations with respect to bregma, rasterized at a 50µm resolution, and 607 

iterated over 1000 epochs, with the following changes to default parameters (sigmaM: 0.2). 608 

 609 

To align a MERFISH dataset to a Visium dataset, we applied STalign with MERFISH Slice 2 610 

Replicate 3, rasterized at a 50µm resolution, as the source and the high resolution Visium 611 

hematoxylin and eosin (H&E) staining image as the target. We utilized the landmark points 612 

stored in Merfish_S2_R3_points.npy and tissue_hires_image_points.npy as inputs pointsI and 613 

pointsJ. We iterated for 200 epochs with the following changes to default parameters (sigmaP: 614 
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0.2, sigmaM: 0.18, sigmaB: 0.18, sigmaA: 0.18, diffeo_start: 100, epL: 5e-11, epT: 5e-4, 615 

epV:5e1). 616 

 617 

To align MERFISH to the Allen CCF, we applied STalign using the 3D reconstructed Nissl image 618 

from the Allen CCF atlas as a source, and each of our 9 MERFISH images as a target.  619 

 620 

To align Xenium and STARmap datasets of mouse brain coronal sections, we applied STalign 621 

with Xenium In Situ Replicate 1, rasterized at 30 µm resolution, as the source and STARmap 622 

well 11, rasterized at 30 µm resolution, as the target. Prior to rasterization, STARmap cell 623 

centroid positions were scaled by 1/5 such that the overlay of unaligned sections showed both 624 

Xenium and STARmap cells positions at a similar scale. We iterated for 1000 epochs with the 625 

following changes to default parameters (sigmaM:1.5, sigmaB:1.0, sigmaA:1.5, epV: 100, muB: 626 

black). 627 

 628 

To align serial developing heart sections, we applied STalign with sample CN73_E1 as the 629 

source and CN73_E2 as the target, both rasterized at 100 µm resolution. We iterated for 1000 630 

epochs with the following changes to default parameters (diffeo_start:100, a: 250, sigmaB:0.1, 631 

epV: 1000, muB: black). 632 

 633 

 634 

To align Xenium datasets, we applied STalign with Xenium Breast Cancer Replicate 1 as the 635 

source and with Xenium Breast Cancer Replicate 2 as the target, rasterized at 30µm resolution. 636 

We placed a set of 3 manually chosen landmark points to compute an initial affine transformation. 637 
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We iterated for 200 epochs with the following changes to default parameters (sigmaM:1.5, 638 

sigmaB:1.0, sigmaA:1.5, epV: 100).  639 

 640 

To align Xenium to H&E, we applied STalign with Xenium Breast Cancer Replicate 1, rasterized 641 

at 30µm resolution, as the source and the corresponding H&E image from the same tissue as the 642 

target. We placed a set of 3 manually chosen landmark points to compute an initial affine 643 

transformation. We iterated for 2000 epochs with the following changes to default parameters 644 

(sigmaM:0.15, sigmaB:0.10, sigmaA:0.11, epV: 10, muB: black, muA: white) where muB and 645 

muA initializes the mixture model for the background and artifact components as corresponding 646 

to black and white colors respectively in the target image.  647 

 648 

 649 

Expression based performance evaluation for STalign-based alignment of single-cell resolution 650 

ST datasets within technologies 651 

To evaluate the performance of STalign on aligning datasets from the same technologies based on 652 

expression correspondence, we focused on the alignment of Slice 2 Replicate 3 and Slice 2 653 

Replicate 2 from the MERFISH datasets, with the former as the source and the latter as the target.  654 

A grid was created to partition all cells into 200µm square pixels. For each 200µm pixel, the gene 655 

expression of cells in the pixel was summed for the aligned source and for the target to get gene 656 

expression at 200µm resolution.  657 

 658 

MERINGUE (v1.0) was applied to calculate Moran’s I on the 200µm resolution summed gene 659 

expression of the target. Genes with an adjusted p-value < 0.05 were identified as significantly 660 
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spatially patterned genes and genes with an adjusted p-value >= 0.05 were identified as non-661 

significantly spatially patterned genes. 662 

 663 

For each gene, the cosine similarity was calculated between the 200µm resolution summed gene 664 

expression counts in the aligned source and the 200µm resolution summed gene expression counts 665 

in the target across pixels. A Wilcoxon rank sum test was used to compare the distributions of 666 

cosine similarities for spatially patterned and non-significantly spatially patterned genes. 667 

 668 

Comparison to supervised affine alignment of single-cell resolution ST datasets within 669 

technologies 670 

In addition to alignment by STalign, we performed supervised affine alignment of Slice 2 Replicate 671 

3 and Slice 2 Replicate 2 from the MERFISH datasets, with the former as the source and the latter 672 

as the target. We manually placed 13 landmarks in the source and target that could be reproducibly 673 

identified (Supp Fig 1, Supp Table 1) using our script point_annotator.py. We solved for the affine 674 

transformation that minimized the error between these landmarks using least squares and applied 675 

the affine transformation to the cell positions of the source. With the supervised affine aligned 676 

source and target, we repeated the expression-based performance evaluation described in section 677 

“Expression based performance evaluation for STalign-based alignment of single-cell resolution 678 

ST datasets within technologies.”  679 

 680 

Evaluation alignment across technologies 681 

 682 

Expression based performance 683 
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Given that the MERFISH tissue section is larger than the Visium, we considered the aligned region 684 

to be limited to the MERFISH tissue that had a matching probability > 0.85 based on the posterior 685 

probability of pixels belonging to the matched class in the Gaussian mixture modeling, with the 686 

0.85 threshold being manually chosen based on visual inspection. We restricted the set of cells in 687 

the MERFISH dataset to only those in this aligned region for downstream evaluation. 688 

 689 

To aggregate the cells in the aligned MERFISH dataset into pseudospots that match with the 690 

Visium spots, we calculated the distances between the positions of the MERFISH cells and the 691 

positions of the Visium spot centroids. Cells were classified as within the pseudospot that 692 

corresponds to the Visium spot if the distance of the cell to the Visium centroid was less than the 693 

Visium spot radius. The Visium spot radius information was obtained by multiplying the 694 

‘spot_diameter_fullres’ by the “tissue_hires_scalef” in the Visium scalefactors_json.json file and 695 

dividing by 2. For each pseudospot, the gene expression of all cells within the pseudospot was 696 

summed. 697 

 698 

For gene expression correspondence analysis, we restricted to the 415 genes that had at least one 699 

copy in both the MERFISH and Visium datasets and that were detected in more than one spot in 700 

the Visium dataset. 701 

 702 

MERINGUE (v1.0) was applied to calculate Moran’s I on the Visium counts-per-million (CPM) 703 

normalized counts. Genes with an adjusted p-value < 0.05 were identified as significantly spatially 704 

patterned genes and genes with an adjusted p-value >= 0.05 were identified as non-significantly 705 

spatially patterned genes. 706 
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 707 

CPM normalization and log10 transformation with a pseudocount of 1 were applied on the gene 708 

expression of the MERFISH pseudospots and Visium spots. For each gene, the cosine similarity 709 

was calculated between the normalized and log-transformed gene expression magnitudes across 710 

matched MERFISH pseudospots and Visium spots.  711 

 712 

Cell-type correspondence performance 713 

To identify cell-types in the Visium data, we applied STdeconvolve on a corpus of 838 genes after 714 

filtering out lowly expressed genes (<100 copies), genes present in < 5% of spots and genes present 715 

in > 95% of spots and restricting to significantly over-dispersed with alpha =1e-16 to obtain a 716 

corpus < 1000 genes, resulting in 16 deconvolved cell-types.  717 

 718 

To identify cell-types in the aligned MERFISH data, PCA was performed on the CPM normalized 719 

cell by gene matrix. Louvain clustering was performed on a neighborhood graph of cells using the 720 

top 30 PCs and 90 nearest neighbors to identify 16 transcriptionally distinct clusters of cells.  721 

To match deconvolved cell-types and single-cell clusters, we used the deconvolved cell-type-722 

specific transcriptomic profiles from STdeconvolve and averaged the transcriptional profiles per 723 

cluster from single-cell clustering. We restricted to the 257 shared genes, CPM normalized, and 724 

correlated the resulting normalized transcriptional profiles using Spearman correlation. We 725 

considered a Visium deconvolved cell-type and MERFISH single-cell cluster as a match if they 726 

had transcriptional similarity > 0.5.  727 

 728 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2023. ; https://doi.org/10.1101/2023.04.11.534630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.11.534630
http://creativecommons.org/licenses/by/4.0/


 

 36 

For each matched cell-type, we evaluated spatial compositional correspondence using cosine 729 

similarity of the cell-types proportional representation across matched MERFISH pseudospots and 730 

Visium spots.  731 

 732 

Evaluation of 2D to 3D CCF alignment 733 

 734 

Unified transcriptional clustering analysis and cell-type annotation 735 

All MERFISH datasets were combined. Transcriptional clustering analysis and cell type 736 

annotation was performed using the SCANPY package30 [version 1.9.1]. Data were normalized to 737 

counts per million (scanpy: normalize_total) and log transformed (scanpy: log1p). PCA (scanpy: 738 

pca) was computed on the cell by gene matrix. A neighborhood graph of cells using the top 10 PCs 739 

and 10 nearest neighbors was created (scanpy: neighbors), and Leiden clustering was performed 740 

on this graph (scanpy: leiden) to identify 29 clusters. Differentially expressed genes were extracted 741 

from each cluster (scanpy: rank_genes_groups), and cell-types were annotated based on marker 742 

genes in each cluster.  743 

 744 

Annotated brain region composition analysis 745 

To generate randomly demarcated brain regions, a random number generator (random.randint) 746 

defined the x, y coordinate of the center of the random region, and the random region was 747 

composed of the N closest points to the center, where N is the number of cells in the brain region. 748 

A slice/replicate with random regions was constructed for all slice/replicates with STalign 749 

annotated regions, and the number of cells (N) were the same for STalign and randomly 750 

demarcated regions. 751 
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 752 

To compare cell-type compositions, each region was represented by a cell-type vector, which was 753 

composed by the proportion of each cell type in the region (29x1 vector). We calculate the 754 

Euclidean distance between cell type vectors of the same region across replicates in Slice 2 using 755 

the regions annotated by STalign. The Euclidean distance was also found across replicates in Slice 756 

2 using randomly demarcated brain regions and STalign brain regions. The Euclidean distances of 757 

both groups were compared using a paired t-test. 431 data points for each group were used, 758 

comparing replicate 1 to replicate 2, replicate 2 to replicate 3, and replicate 3 to replicate 1.  759 

 760 

To evaluate annotated brain region boundaries, brain regions were expanded using k-nearest 761 

neighbors (k=100) using the ‘ball tree’ algorithm for each region and each replicate in Slice 2 762 

(sklearn.neighbors.NearestNeighbors). The procedure was conducted for STalign annotated brain 763 

regions and randomly demarcated brain regions. Shannon’s entropy was evaluated for STalign 764 

annotated and randomly demarcated brain regions that were expanded by 100 nearest neighbors. 765 

Paired t-tests were used to compute p-values between original and expanded brain regions for 766 

STalign and random groups. Effect size was computed as a difference in the means of the 767 

compared distributions. PP plots were used to visualize normality, and we used a Gaussian fit with 768 

R>0.8 and a variance ratio less than 4 to confirm normality and equal variances. 431 data points 769 

for each group were used. 770 

 771 

To evaluate regions that had a greater Euclidean distance between two STalign regions compared 772 

to random versus STalign regions, we calculated the number of cells and Shannon’s entropy of 773 

each region and tested for significance using a Wilcoxon Rank Sum test due to the small sample 774 
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size. Shannon’s entropy was calculated using the formula ∑𝑝(𝑥) ∗ logE𝑝(𝑥)F where p(x) is the 775 

probability of picking cell-type x from the given brain region (scipy.special.entr). 776 

 777 

 778 

Implementation and software availability 779 

STalign is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign  780 

and as supplementary software with additional documentation and tutorials available at 781 

https://jef.works/STalign. 782 

 783 

The implementation of STalign uses the following parameters and default values.  784 

Symbol  Explanation Default 
dx Width of rasterization kernel  30 μm 
σM  Weight on image matching functional  1.0 
σR  Weight on regularization matching functional  5.00E+05 
σP  Weight on landmark matching functional  2.00E+01 

σA  
Variance of artifact component for Gaussian 
Mixture Modeling 5 

σB  
Variance of background component for 
Gaussian Mixture Modeling 2 

a  Smoothness scale of diffeomorphism  500.0 μm 
p  Power of Laplacian for regularization  2 
niter  Number of iterations of gradient descent  5000 
diffeo_start  Iteration to start optimizing vt for coarse-to-fine  0 
nt  Number of timesteps for integration of vt  3 
epL  Gradient descent step size: linear part of A  2.00E-08 
epT  Gradient descent step size: translation part of A  2.00E-01 
epv  Gradient descent step size: vt  2.00E+03 
pointsI Landmark points for source image None 
pointsJ Landmark points for target image None 
muB Mean intensity/color of background pixels None 
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muA Mean intensity/color of artifact pixels None 
L Initial guess for linear transform None 
T Initial guess for translation None 

A 
Initial guess for affine matrix.  Either L and T 
can be specified, or A, but not both None 

 785 

The PyTorch framework was used for automatic gradient calculations. Based on the PyTorch 786 

backend, STalign supports parallelization across multiple cores or on GPUs. Derivatives 787 

(covectors) are converted to gradient vectors5,31 for natural gradient descent32.  788 

 789 

For improved robustness, Stalign allows users to input pairs of corresponding points in the source 790 

and target images. These points can be used to initialize the affine transformation 𝐴 through least 791 

squares to steer our gradient based solution toward an appropriate local minimum in this 792 

challenging nonconvex optimization problem as well as be added to the objective function to drive 793 

the optimization problem itself. Landmark based optimization in the LDDMM framework has been 794 

studied extensively33. A script point_annotator.py is provided to assist with interactive placement 795 

of these points.  796 

 797 

Runtime Estimate  798 

Runtime for the Stalign.LDDMM function was estimated for CPU settings using a MacBook Pro 799 

with an 2.4 GHz 8-Core Intel Core i9 processor and 32 GB 2400 MHz DDR4 memory, and for 800 

GPU settings using an Intel Xeon W-3365 2.7GHz Thirty-Two Core 48MB 270W processor with 801 

8 x DDR4-3200 16GB ECC Reg memory and a NVIDIA RTX A5000 24GB PCI-E video card.  802 

  803 
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Supplementary Tables 804 

Supplemental Table 1. Description of manually placed landmark locations on ST datasets of the 805 

mouse brain. (.xlsx) 806 

 807 

 808 

Jupyter notebook  STalign.LDDMM niter  GPU runtime CPU runtime 
merfish-visium-
alignment-with-
point-
annotator.ipynb  

200 
 

GPU times: user 5min 
6s, sys: 22.8 s, total: 
5min 29s 
 
Wall time: 5min 3s 

CPU times: user 
35min 57s, sys: 2min 
43s, total: 38min 41s 
 
Wall time: 9min 50s 

merfish-merfish-
alignment.ipynb  

10000 
 

GPU times: 32min 
43s, sys: 10.9s, total: 
32min 54s 
 
Wall time: 22min 47s 

CPU times: user 2h 
39min 42s, sys: 31min 
2s, total: 3h 10min 
45s 
 
Wall time: 1h 27min 
7s 

xenium-xenium-
alignment.ipynb  

200 
 

 CPU times: user 43.2 
s, sys: 5.2 s, total: 48.4 
s 
 
Wall time: 41.1 s 

xenium-heimage-
alignment.ipynb  

2000 
 

 CPU times: user 3min 
22s, sys: 24.2 s, total: 
3min 47s 
 
Wall time: 3min 16s 

xenium-starmap-
alignment.ipynb  

4000 
 

 CPU times: user 
13min 36s, sys: 1min 
52s, total: 15min 28s 
 
Wall time: 14min 

merfish-allen3Datlas-
alignment.ipynb  

2000 
 

 CPU times: user 3h 
24min 29s, sys: 21min 
43s, total: 3h 46min 
13s 
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Wall time: 1h 27min 
45s 

starmap-
allen3Datlas-
alignment.ipynb  

800 
 

 CPU times: user 2h 
36min 26s, sys: 1h 
16min 5s, total: 3h 
52min 32s 
 
Wall time: 13min 27s 

heart-
alignment.ipynb 

1000 
 

 CPU times: user 
33min 13s, sys: 1min 
56s, total: 35min 10s 
 
Wall time: 3min 53s 

 809 

Supplementary Table 2. Runtime estimates for the STalign.LDDMM and the 810 

STalign.LDDMM_3D_to_slice functions for different ST data alignments.  811 

  812 
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Supplementary Figures 813 

 814 

Supplemental Figure 1. Manually placed landmark locations on ST datasets for one 815 

representative biological replicate spanning 3 different locations with respect to bregma. 816 

  817 
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 818 

Supplemental Figure 2. Additional examples of MERFISH to MERFISH alignment for 819 

spatially patterned genes. a. Correspondence of gene expression spatial organization between the 820 

target and aligned source for select spatially patterned genes. b. Transcript counts in the target 821 

compared to the aligned source at matched pixels for select genes with cosine similarities between 822 

transcript counts in target versus aligned source marked. 823 

 824 
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 825 

Supplemental Figure 3. Additional examples of MERFISH to MERFISH alignment for non-826 

spatially patterned genes. a. Correspondence of gene expression spatial organization between the 827 

target and aligned source for select non-spatially patterned genes (inset displays cells at higher 828 

magnification). b. Transcript counts in the target compared to the aligned source at matched pixels 829 

for select genes with cosine similarities between transcript counts in target versus aligned source 830 

marked.  831 
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 832 

Supplemental Figure 4. Evaluation of STalign against supervised affine alignment. a. Spatial 833 

agreement of target and source that has been aligned based on a simple affine transformation based 834 

on manually placed landmarks. b. Correspondence of gene expression spatial organization 835 

between the target and supervised affine aligned source for select spatially patterned genes. c. 836 

Transcript counts in the target compared to the supervised affine aligned source at matched pixels 837 

for select genes: Cckar, Htr5b, Gabbr2 and Ackr2. d. Cosine similarities between transcript counts 838 

in target versus aligned source for STalign compared to affine alignment for 457 spatially patterned 839 
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genes. (mean difference = 0.09) Genes featured in Supplemental Figure 4b-c, Figure 2a-c, and 840 

Supplemental Figure 2 are highlighted.  e. Cosine similarities between transcript counts in target 841 

versus aligned source for STalign compared to affine alignment for 192 non-spatially patterned 842 

genes. (mean difference = 0.02) Genes featured in Figure 2d-f and Supplemental Figure 3 are 843 

highlighted.   844 

 845 

Supplemental Figure 5. Additional examples of MERFISH to Visium alignment for spatially 846 

patterned genes. a. Correspondence of gene expression spatial organization between the target 847 

and aligned source for select spatially patterned genes. b. Normalized gene expression in the 848 

Visium target compared to the aligned MERFISH source at matched spots and pseudospots for 849 
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select genes with cosine similarities between transcript counts in target versus aligned source 850 

marked.  851 

 852 

 853 

Supplemental Figure 6. Examples of MERFISH to Visium alignment for spatially non-854 

patterned genes. a. Correspondence of gene expression spatial organization between the target 855 

and aligned source for select non-spatially patterned genes. b. Normalized gene expression in the 856 

Visium target compared to the aligned MERFISH source at matched spots and pseudospots for 857 

select non spatially patterned genes. c. Distribution of cosine similarities between normalized gene 858 

expression in the Visium target versus aligned MERFISH source at matched spots and pseudospots 859 

for 188 non-spatially patterned genes detected by both ST technologies with select genes marked. 860 

 861 
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 862 

 863 

Supplemental Figure 7. Cell-type correspondence between clustering of MERFISH data and 864 

deconvolution of Visium data. a. UMAP embedding of MERFISH cells colored by cluster. b. 865 

Heatmap of transcriptional correlation between the average expression for MERFISH clusters and 866 

deconvolved expression for Visium cell-types from STdeconvolve.  867 

  868 
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 869 

Supplemental Figure 8. STalign-annotated brain regions. a. Brain regions annotated by 870 

STalign, represented by different colors, for three biological replicates of three brain slices. b. 871 

Examples of genes (blue) expressed in brain regions (red) obtained through 3D alignment of 872 

MERFISH slices using STalign. Based on gene expression, brain region annotations show 873 

consistency and accuracy across replicates of brain slices. 874 
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 875 

Supplemental Figure 9. Cell types in MERFISH dataset. a. Heat map of differentially expressed 876 

genes in cell types defined by Leiden clustering for all cells across 9 MERFISH datasets. b. Cell 877 

types defined by differential gene expression and Leiden clustering, represented by different 878 

colors, for three biological replicates of three brain slices. 879 

 880 
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 882 

Supplemental Figure 10. Analyzing brain regions with lower cell-type compositional similarity 883 

between replicates compared to size-matched random regions. a. Distribution of number of cells 884 

in brain regions for which Euclidean-distance (ED) was greater (left) or smaller (right) between 885 

replicates compared to matched randomly demarcated brain regions (center line, median; box 886 

limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers) b. 887 

Representative MERFISH dataset (Slice 2 Replicate 3) of brain regions in the ‘Greater normal-888 

normal ED’ suggestive of lower cell-type compositional similarity between replicates compared 889 

to size-matched random regions from (a) which were under 50µm in at least one dimension. 890 

 891 
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 893 

Supplemental Figure 11. Entropy for size-matched and expanded random brain regions. Non-894 

significant (ns) difference between distribution of cell-type composition entropy for randomly 895 

demarcated brain regions that were matched in size for STalign-annotated brain regions (left) 896 

versus regions expanded by 100 nearest neighbors (~100µm) (center line, median; box limits, 897 

upper and lower quartiles; whiskers, 1.5x interquartile range; all data points shown) 898 
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1 Methods

1.1 Cell density data model

For single-cell resolution spatially resolved transcriptomics data, we model the point sets of detected cells in
the framework of varifold measures [1]. While the theory extends to more complex spaces of features, here
we focus on image varifolds [2] by utilizing the locations of cells only, termed the marginal space measure
(after marginalizing out features other than spatial location) as defined in [3].

Briefly, these space measures are weighted sums of Dirac δ distributions ρ
.
=

∑Nq

i wρ
i δxρ

i
, where xρ

i ∈ RD

stores the spatial coordinate of the ith out of Nq cells, and wρ
i ∈ R stores its weight. In this work, cell

positional data is two dimensional, so D = 2, and with some abuse of notation we sometimes write (x, y)
instead of x.

We aim to evaluate the similarity between two single-cell resolution spatially resolved transcriptomics
datasets, which we call a source and a target. Note other commonly used terms for source are: template,
atlas, or moving image, while another commonly used terms for target is: fixed image. To compute distances
between datasets, we embed their corresponding space measures ρS and ρT respectively in the dual of a
Reproducing Kernel Hilbert Space V ∗ and use the standard operator norm (see for example [4]). For some
choice of kernel function k, the norm squared is

1
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∥ρS − ρT ∥2V ∗ =

NρS∑
iS ,jS

wρS

iS
wρS

jS
k(xρS

iS
, xρS

jS
)

− 2

NρS∑
iS

NρT∑
jT

wρS

iS
wρT

jT
k(xρS

iS
, xρT

jT
)

+

NρT∑
iT ,jT

wρT

iT
wρT

jT
k(xρT

iT
, xρT

jT
) . (1)

Here we chose k as a Gaussian with k(xi, xj) = exp
(
− 1

2 |xi − xj |2/2σ2
)
, where | · | denotes the standard

Euclidean norm, and σ is a user specified kernel width parameter.
The variables wρS

iS
, wρS

jS
, and xρS

iS
, xρS

jS
corresponds to the weights and spatial coordinates of the ith and

jth cells in the source, while wρT

iT
, wρT

jT
, xρT

iT
, xρT

jT
correspond to the weights and spatial coordinates of the

cells in the target. For simplicity, in the main paper we write (xρS , yρS ) and (xρT , yρT ) for source and target
points respectively.

In STalign, we initialize weights to 1, though applying nonlinear deformations will modify these weights
as discussed below in section 1.4.

1.2 Rasterization

Since computation of this norm is of quadratic complexity in the number of points, we turn to a more efficient
representation for computing optimal transformations through rasterization. We can reduce the complexity
of our calculations significantly by approximating our space measures through sampling a density signal on
a regular grid (known as rasterization), rather than keeping a list of points and weights.

By defining k
1
2 such that k

1
2 ∗ k

1
2 = k (where ∗ refers to convolution ), the above expression for norm

squared (1) can be written as

∥ρS − ρT ∥2V ∗ =

∫ ∣∣∣∣∣∣
NρS∑
iS=1

wρS

iS
k

1
2 (x− xρS

iS
)−

NρT∑
iT=1

wρT

iT
k

1
2 (x− xρT

iT
)

∣∣∣∣∣∣
2

dx

= ∥IS − IT ∥22 . (2)

Note that when k is a radially symmetric Gaussian, k
1
2 is also a radially symmetric Gaussian but with half

the variance. Here we have defined the smooth density function

I(x)
.
= [k

1
2 ∗ ρ](x) =

Nρ∑
i=1

wρ
i k(x− xρ

i ) , (3)

and ∥ · ∥2 is the L2 norm on functions.

Due to the smoothness introduced by k
1
2 , these functions can be accurately discretized by sampling them

on a uniform pixel grid at a resolution rate defined by the user and comparable in size to σ.
Without rasterization, evaluating the function I at a given point would involve a sum over every xi, an

order N complexity operation. After rasterization the function I can be evaluated at any point in order 1
complexity using bilinear interpolation. This allows the norm to be evaluated by summing over a pixel grid
in order P complexity (where P is the number of pixels), rather than a double sum over the points xi in
order N2 complexity.

For example, MERFISH Slice 2 Replicate 3 has 85958 cells, and the rasterized dataset has 336× 256 =
86, 016 pixels. The Naive approach would involve 7,388,777,764 terms in the sum (pairs of cells), whereas in
the rasterization approach there are only 86,016 terms in the sum (pixels). This is an approximately 86,000
times increase in efficiency which occurs for each iteration of optimization, ignoring the negligible time cost
of rasterization itself, which occurs only once at the start of registration.

2
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In this section we showed how a rasterized image I can be produced from a list of cell location, in a
manner compatible with the theory of varifolds. However, our registration algorithm can be performed with
any standard rasterized image type. For example, in the main manuscript we show examples where IT is
a red-green-blue image corresponding to a brightfield microscopy image of H&E stained tissue. How such
images of different contrast profiles are handled is described in section 1.5.

1.3 Diffeomorphic transformation model

We estimate alignments between two rasterized datasets by applying a transformation ϕ : RD → RD. ϕ(x)
.
=

Aφ1(x), the composition of two transformations: a diffeomorphism (a smooth differentiable transformation
with a smooth differentiable inverse) φ1 : RD → RD generated in the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [5], and an affine transformation A (i.e. a 3x3 matrix in homogeneous
coordinates whose upper left 2x2 block is a linear transform and upper right 2x1 block is a translation vector).
In this notation Aφ1(x) denotes matrix multiplication of the matrix A and the vector φ1 in homogeneous
coordinates.

In the LDDMM framework a diffeomormphism is generated by integrating a time varying velocity field
vt over time t ∈ [0, 1], by solving the ordinary differential equation

d

dt
φt = vt(φt) (4)

with initial condition φ0 = id. For identifying alignments, we optimize over vt rather than φ1 directly, and to
emphasize this dependence we use the superscript φv in the main text. Similarly, we use ϕA,v to emphasize
the dependence of ϕ on both A and vt. As long as vt a smooth function of space, φv

1 is guaranteed to be
diffeomorphic. We enforce this through regularization as described below in section 1.5.

While this section described how we parameterize our transformations, next we need to describe how
they act to deform our datasets, in order to use them in an optimization problem.

1.4 Action of transformations on datasets

The action of a transformation ϕ on a space measure dataset ρ moves the spatial coordinate of each cell,
and adjusts the weight of each cell based on the transformation’s Jacobian determinant.

ϕ•ρ = ϕ •

 Nρ∑
i=1

wρ
i δxρ

i

 (5)

=

Nρ∑
i=1

wρ
i |dϕ(x

ρ
i )|δϕ(xρ

i )
(6)

where dϕ(x) denotes the matrix of partial derivatives of the map ϕ at the point x, and | · | represents the
determinant of a matrix.

We note that the standard image action [ϕ · I](x) = I(ϕ−1(x)) has been well studied theoretically (as
a left group action), computationally (in terms of its efficient implementation through interpolation), and
application-wise (in terms of its use in a variety of image registration platforms e.g. [5]). This image action
for continuous image functions is not appropriate for space datasets and therefore the image action does not
match the measure action defined in (5). However, in the dense tissue limit, the continuous image action is
consistent with the measure action of (5) as proven in [3]. Since the applications shown here provide a dense
approximation, this aforementioned consistency motivates us to leverage the continuous image action for its

3
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Online Methods Figure 1: Rasterization followed by deformation with the image action (left), versus naively
deforming the positions of cells followed by rasterization (right). Note the intensity changes that occur in
regions of high deformation.

computational advantages. We write the image action as follows:

[ϕ · I](x) = [ϕ · (k 1
2 ∗ ρ)](x) (7)

= I(ϕ−1(x)) (8)

=

Nρ∑
i=1

wρ
i k

1
2 (ϕ−1(x)− xρ

i ) (9)

≃
Nρ∑
i=1

wρ
i |dϕ(x

ρ
i )|k

1
2 (x− ϕ(xρ

i )) (10)

= [k
1
2 ∗ (ϕ • ρ)](x) (11)

The approximate equality is accurate in our examples when k
1
2 is narrow relative to the smoothness of vt

and wide relative to the spacing between cells. The approximate equality would be exact if k
1
2 were a Dirac

delta function. If cells are too far apart, a larger value of σ could be chosen. For a particularly sparse set of
cells, a different method that does not include rasterization would be more appropriate, for example measure
matching [6].

With this formulation, deformations can be applied to smooth density images I using interpolation in
order P (number of pixels) complexity. Online Methods Figure 1 illustrates the importance of the Jacobian
factor. Without including this factor, transforming a density image alters its brightness, which is typically
undesirable: a bigger organ tends to have more cells with the same cell density, rather than the same number
of cells with a lower density.

1.5 Image registration

We compute a spatial alignment between two ST datasets by minimizing the sum of two objective functions:
a regularization term R, and a matching term Mθ,

E(A, v) = R(v) +Mθ(ϕ
A,v · IS , IT ) (12)

which we define below. Note that the computation of I is described in section 1.2, the parameterization of
ϕA,v is described in 1.3, and the action ϕA,v · IS is described in the section 1.4. Recall that ϕ depends on
both the velocity field v and the affine transform A.

4
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Following the LDDMM framework, we regularize our diffeomorphism via

R(v) =
1

2σ2
R

∫ 1

0

∫
RD

|(id− a2∆)pvt(x)|2dxdt (13)

where id is an identity matrix, σ2
R is a user tunable parameter that adjusts balance between matching accuracy

and regularization, where large values correspond to less regularization and higher matching accuracy, and
small values correspond to more regularization and lower matching accuracy. ∆ is the Laplacian, a is a
constant with units of length that controls spatial smoothness, and p = 2 is a power that must be large
enough to guarantee that results are diffeomorphisms [7]. Note that small values of a may be overfitting of
noise whereas large values of a may lead to low accuracy. In practice, we chose a value of a based on the
spatial smoothness of deformations that we believe to be realistic. We then consider several values of σ2

R

(starting with a value provided by one of our online examples), and chose the one that achieves a reasonable
balance between regularization and accuracy.

Our matching takes the form of [8]

Mθ(ϕ
A,v · IS , IT ) = 1

2σ2
M

∫
RD

|fθ([ϕA,v · IS ](x))− IT (x)|2WM (x)dx . (14)

where σ2
M is a user tunable parameter that describes the amount of noise in our imaging data (see description

of Gaussian Mixture modeling below).
Note that IT need not correspond to a smooth density image as defined in section 1.2. For example, we

include the case where it is a red green blue image corresponding to an H&E stain.
The function fθ is a transformation of image contrast with unknown parameters θ. We use a polynomial

for fθ, in which case the minimizing parameters θ can be found exactly by solving a weighted least squares
problem. The purpose of this transformation is to model differences in contrast between images from the
same modality due to calibration issues; and contrast/color differences between different modalities. In this
work we found that first order polynomials were sufficient for accurate image registration. In other work
in neuroimaging we have used 3rd order polynomials, which have enough degrees of freedom to map the
intensity of gray matter, white matter, and background to arbitrary intensities [8]. Because there are many
more pixels than degrees of freedom, it is unlikely that these polynomials will overfit the observed data IT .
However, depending on the initialization of transformation parameters this is possible: if tissue in I and IT

do not overlap at all, parameters θ may be estimated to zero out imaging information and transform I into
a constant function that looks like background only.

The term W is a positive weight that represents the probability that a given pixel in the target image
can be matched accurately to one in the source image. For example, if tissue is missing in the target image
but not the source image, pixels in the region of missing tissue would get a small weight. Similarly, if the
target image included a signal not present in the source (e.g. a bright fluorescence signal).

To optimize E, we alternate between updatingWM with Gaussian mixture modeling, and jointly updating
(θ, ϕA,v) with gradient based methods, using expectation maximization algorithm as discussed in [8]. Briefly,
we use 3 classes in our Gaussian mixture model (pixels to be matched, background, and artifact). Each is
modeled as a Gaussian random variable with an unknown mean (optionally the mean can be assumed known
and specified as an input parameter), a known variance (specified as an input parameter), and an unknown
prior probability. While the means for background and artifact are constant values, the mean for pixels to
be matched is equal to fθ([ϕ

A,v · IS ](x)) and is a function of space. Parameters are estimated by standard
Gaussian mixture modeling techniques, and WM (x) is computed as the posterior probability that the pixel
at x belongs to the “pixels to be matched” class. If g(x, µ, σ2) is a multivariate normal with mean µ and
covariance σ2 times identity, and πi are prior probabilities for each class (i ∈(matching, background, and
artifact)), then

WM (x)=
πMg(IT (x), fθ([ϕ

A,v · IS ](x)), σ2
M )

πMg(IT (x), fθ([ϕA,v · IS ](x)), σ2
M ) + πBg(IT (x), µB , σ2

B) + πAg(IT (x), µA, σ2
A)

(15)

In the above expression, note that the denominator shows a mixture of three Gaussians, and the numerator
shows the first class in the mixture. In our code we also define WB and WA, which are posterior probabilities

5
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that a pixel belongs to the background or artifact classes. They are defined with same denominator as
WM , but with numerators corresponding to the mixture component for their class. Recall that updating ϕ
corresponds to updating the affine transformation matrix A, and the velocity field vt which generates the
deformation φ1 from (4).

After solving for the optimal transformation parameters A and vt, a transformation and its inverse
are constructed by solving (4) sampled on a regular grid, using Semi-Lagrangian techniques [9]. With
ϕ(x) = Aφv

1(x) and ϕ−1,A,v(x) = φ−1,v
1 (A−1x) computed, cell locations xρS

iS
in the source image can be

mapped into the target by calculating ϕ(xρS

iS
) through linear interpolation. Similarly, a point xρT

iT
in the

target image can be mapped to the atlas by calculating ϕ−1(xρT

iT
) through linear interpolation.

For improved robustness, our software allows users to input pairs of corresponding points in the source and
target images. These points can be used either to initialize the affine transformation A through least squares
(steering our gradient based solution toward an appropriate local minima in this challenging nonconvex
optimization problem); or can be used to drive the optimization problem itself by modifying to our objective
function to be E(A, v) = R(v) +Mθ(ϕ

A,v · IS , IT ) + P (ϕA,v(XS), XT ) such that

P (ϕA,v(XS), XT ) =
1

2σ2
P

N∑
i=1

|ϕA,v(XS
i )−XT

i |2 (16)

where XS
i and XT

i are the ith point of N corresponding points in the source and target respectively and σ2
P is

a user tunable parameter that adjusts balance between matching corresponding landmark points, matching
images, and regularization, where large values correspond to less accuracy matching points and small values
correspond to more accuracy matching points. Landmark based optimization in the LDDMM framework
has been studied extensively (see for example [10]).

1.6 3D to 2D alignment

In addition to aligning spatially resolved transcriptomics datasets in which the cell positional information is
2D, we registered the 3D reconstructed Allen common coordinate framework (CCF) atlas (source) to each
of the 9 MERFISH datasets (target). The image transformation is similar to the alignment discussed in the
section 1.5 with a few exceptions:

It is important to note that all transformations are performed on the source 3D atlas. Since the 50 µm
Nissl-stained Allen Brain Atlas CCF v3 was used as the source image, rasterization is not applied to the
atlas. The affine transformation A for the 3D-2D alignment is a 4×4 3D matrix in homogeneous coordinates.
The space of dense 3D images in the orbit of the atlas, are defined via diffeomorphisms

ϕ : (x1, x2, x3) ∈ R3 → ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) ∈ R3 (17)

The diffeomorphism ϕ ∈ D acts on the atlas to generate the orbit of imagery I,

I ∈ I, I = ϕ · Iatlas . (18)

The velocity field vt is still defined by (4), but vt ∈ R3 .
The image IS in the matching term M represents the transformed source atlas evaluated at z = 0, to

enable comparison in the same dimension between the source and the target images.
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