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Abstract

Dysregulated DNA replication is both a cause and a consequence of aneuploidy,
yet the dynamics of DNA replication in aneuploid cell populations remains under-
studied. We developed a new method, PERT, for inferring cell-specific DNA
replication states from single-cell whole genome sequencing, and investigated
clone-specific DNA replication dynamics in >50,000 cells obtained from a collec-
tion of aneuploid and clonally heterogeneous cell lines, xenografts and primary
cancer tissues. Clone replication timing (RT) profiles correlated with future copy
number changes in serially passaged cell lines. Cell type was the strongest deter-
minant of RT heterogeneity, while whole genome doubling and mutational process
were associated with accumulation of late S-phase cells and weaker RT associa-
tions. Copy number changes affecting chromosome X had striking impact on RT,
with loss of the inactive X allele shifting replication earlier, and loss of inactive
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Xq resulting in reactivation of Xp. Finally, analysis of time series xenografts illus-
trate how cell cycle distributions approximate clone proliferation, recapitulating
expected relationships between proliferation and fitness in treatment-naive and
chemotherapeutic contexts.

Keywords: DNA replication, genomic instability, single-cell whole genome sequencing

1 Introduction

DNA replication and cell cycle regulation are frequently disrupted as part of a can-
cer’s progression toward uncontrolled proliferation [1–3]. The resulting dysregulation
increases replication stress and genomic instability, generating somatic copy number
alterations (CNAs) and producing intratumoral heterogeneity that drives subsequent
evolution [4, 5]. At a more granular level, the relative timing at which different
regions of the genome replicate during sythesis (S)-phase of the cell cycle, known as
replication timing (RT), is strongly associated with epigenomic features including
3D nuclear organization, chromatin state, and transcription, and cellular phenotype
[6–10]. Structural variation and CNAs have been shown to impact epigenomic and
chromatin state, and may also impact RT [11–14]. Additionally, specific genomic
alterations confer fitness advantages, producing genetically distinct subclones with
unique proliferation rates and thus more rapid progression through the cell cycle.
Single-cell whole genome sequencing (scWGS) is a powerful method for studying
clonal heterogeneity and CNAs, and has the potential to provide greater insight into
DNA replication dynamics in aneuploid populations [15–20]. However, computational
identification of S-phase cells and distinguishing replicating from non-replicating loci
remains challenging due to the difficulty of distinguishing inherited somatic CNAs
from transient DNA replication changes. Disentangling these two signals would
improve the ability to study replication timing and proliferation rate of individual
genetic subclones, leading to better understanding of how DNA replication drives
and is further modulated by genomic instability.

We present a new method, Probabilistic Estimation of single-cell Replication
Timing (PERT), to jointly infer single-cell copy number and replication states from
scWGS data. PERT uses a Bayesian framework that models observed read depth as a
combination of somatic copy number (CN), replication, and sequencing bias, enabling
estimation of DNA replication profiles and cell cycle phase for individual cells. Unlike
previous approaches for estimating single-cell replication timing (scRT) that assume
the same CN profile for all cells in a sample [21–24], PERT is capable of modelling
the clone- and cell-specific CNAs that are a common feature of genomicaly unstable
cancers. Additionally, unlike scWGS cell cycle phase classifiers which rely on training
data and existing RT information [16, 25], PERT provides unbiased estimates of
RT and cell cycle phase which allows for analysis of previously uncharacterized cell
types using any scWGS platform. These unique properties enable PERT to perform
novel analysis such as estimating clone-specific proliferation rates and studying the
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interplay between RT and somatic CNAs during tumor evolution.

We used PERT to study DNA replication dynamics of genomically unstable cell
lines and a collection of high-grade serous ovarian cancer (HGSOC) and triple neg-
ative breast cancer (TNBC) human tumors. First, since early and late RT loci are
known to have different DNA damage and repair rates [26–28], we investigated the
relationship between ancestral RT and the emergence of CNAs. Second, we modeled
the relative impact of cell type, mutational signature, and ploidy on RT and the
distribution of early vs late S-phase cells because these features have been shown
to correlate with replication origin placement, replication stress response, perturbed
epigenetic state, and 3D nuclear organization [7, 11–14, 29–31]. Third, we leveraged
the fact that the inactive chromosome X allele (Xi) replicates very late within S-phase
[22, 32] to identify recurrent patterns of Xi selection in TNBC and HGSOC tumors.
Finally, since enrichment for S-phase cells is a marker for increased proliferation
in histologic or transcriptional data modalities [33–36], we investigated the effect
of chemotherapy and whole genome doubling (WGD) on the relationship between
proliferation and evolutionary fitness at clone resolution.

2 Results

Accurate estimation of single cell replication timing with PERT

The main methodological objective of PERT is to infer transient replication states
and inherited somatic CN states from scWGS data. To do so, PERT implements a
hierarchical Bayesian probabilistic graphical model and uses stochastic variational
inference. Observed read depth (Z) is modelled as dependent on both latent CN
(X) and replication (Y ) states across all genomic loci (N cells x M bins) where the
replication state depends on each cell’s time within S-phase (τ) and each locus’s
average RT (ρ) (Fig. 1a, Extended Data Fig. 1a-e). Additional parameters govern the
likelihood of the observed per-cell read depth (Z) given somatic CN and replication
states (X + Y ). After learning replication states in all cells, PERT then predicts S,
G1/2, and low quality (LQ) phases based on the fraction of replicated loci and the
quality of the cell’s predicted replication state. PERT is implemented using Pyro [37]
and is freely available online with user tutorials. All terms in the graphical model as
well as additional mathematical, inference, and implementation details can be found
in the Methods.

We benchmarked PERT’s accuracy at inferring somatic CN, replication states, and
cell cycle phase through quantitative simulation experiments. PERT outperformed
the Laks et al classifier [16] for cell cycle phase prediction and Kronos [24] for scRT
estimation in all simulated datasets. The performance gap between PERT and Kro-
nos was significant (padj < 10−4) for all parameter combinations and increased as a
function of cell CNA rate, number of clones, and noise λ (Fig. 1b). The agreement
between each cell’s true and inferred fraction of replicated bins was used to classify
cell cycle phase with 93% overall accuracy (97% accuracy excluding LQ cells) (Fig.
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1c). Additional benchmarking information can be found in the Supplementary Notes
1-2. In summary, PERT significantly improves inference of scRT and phase, particu-
larly in cases where CNAs arise with subclonal structure, allowing for exploration of
replication dynamics in heterogeneous aneuploid populations.

Validation of PERT in sorted diploid and aneuploid cell lines

Next we sought to validate whether PERT was sensitive to distinct clone-specific RT
profiles in clonally heterogeneous samples. To do so, we performed in silico mixing
experiments of scWGS data of two unrelated cell lines with ground truth cell cycle
labels from fluorescence-activated cell sorting (FACS) based on DNA content. We com-
bined lymphoblastoid GM18507 cells with diploid genomes (657 G1 cells, 585 S cells,
337 G2 cells, 1 clone) and breast cancer T47D cells with aneuploid genomes (703 G1
cells, 623 S cells, 522 G2 cells, 5 clones) [16] into one merged sample for analysis with
PERT (Extended Data Fig. 2a). PERT found distinct CN profiles for S-phase cells
of each line and its predicted phases were highly concordant with FACS (Fig. 2a,b).
Both GM18507 and T47D samples were enriched for mid-S-phase cells (Extended
Data Fig. 2b). Cell line ‘pseudobulk’ RT profiles showed that 15% (794/5258) of
loci had an absolute RT difference >0.25 between GM18507 and T47D, consistent
with each cell line having a unique RT program (Fig. 2c). RT has been shown to be
influenced by nuclear organization, with genomic loci in inactive chromatin being late
replicating and active chromatin being early replicating [6–8, 22]. Consistent with
this, we found cell line specific correlations between the inferred RT profiles and Hi-C
A/B (active/inactive) compartments of T47D and other lymphoblastoid cell lines
[38] (Fig. 2d), highlighting the biological relevance of the RT differences identified by
PERT. To ensure that the latent RT variable (ρ) did not prevent inference of cell
line RT profiles, we ran PERT independently for each cell line and found that both
cell lines had RT correlations of 0.99 between their merged and split PERT runs
(Fig. 2e, Extended Data Fig. 2c). Similarly, PERT inferred accurate clone-specific RT
profiles for simulated data in which each clone had a unique ENCODE cell line RT
profile [38] (Extended Data Fig. 2d,e). These experiments demonstrate that PERT
can accurately identify clone-specific RT profiles within the same sample.

With this same data, we investigated PERT’s robustness to poor initialization of
preliminary G1/2 vs candidate S-phase cells. Given the high per-cell failure rates of
sequencing and CN calling in scWGS, we were concerned that the inclusion of too
many true G1/2-phase cells during initialization would bias RT and phase estimates.
We thus devised a permutation experiment in which a subset of GM18507 and T47D
FACS G1/2-phase cells were mislabeled as candidate S-phase cells during initialization
to examine whether PERT successfully recovered them as G1/2-phase. We found that
>90% of all mislabeled cells were accurately recovered (predicted G1/2) across all
permutation datasets without compromising identification of S-phase cells and cell
line-specific RT profiles (Fig. 2f,g, Extended Data Fig. 2f). Mislabeled cells which were
predicted to be in S-phase were disproportionately G2 by FACS and 80-95% replicated
with orthogonal per-cell features concordant with late S-phase (Fig. 2f, Extended Data
Fig. 2g). Additionally, we found many cell-specific CNAs in the set of FACS S-phase
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cells predicted to be G1/2-phase (Fig. 2h). We hypothesize that many discrepancies
between FACS and PERT phases were FACS errors, which is known to have S-phase
purities ranging from 73-93% [39], since cells with unique CNAs possess higher or lower
DNA content than other cells in the same phase. Our evidence suggests that prediction
of cell cycle phase using PERT is non-inferior, if not superior, to experimental sorting,
especially in heterogeneous aneuploid populations.

Replication timing predicts future CNAs

Next, we investigated the relationship between CNAs and RT by applying PERT
to previously published scWGS data of mammary epithelial 184-hTERT cell lines
(hereafter referred to as hTERTs) [40]. The hTERT samples were engineered using
CRISPR/Cas9 to ablate TP53, TP53/BRCA1, and TP53/BRCA2, and passaged
∼60 times with intermediate scWGS sampling to capture accrual of aneuploidies
(Fig. 3a). The initial investigation of this dataset revealed clonal expansions of cell
populations with increasing levels of CNAs but excluded analysis of S-phase cells.
Here we analyzed all cells with PERT and found that, unlike the FACS cell lines
which were artificially enriched for mid-S-phase cells, the unsorted hTERTs had more
late than early S-phase cells which agrees with reports that most loci replicate during
early S-phase while very late RT loci take much longer to replicate [41, 42] (Fig. 3b).

We then used PERT results to interrogate whether RT influences CNA acquisi-
tion. We computed a reference RT profile from the ancestral hTERT WT (TP53 and
BRCA1/2 WT) population with no CNAs (SA039 clone A) (Fig. 3c, Extended Data
Fig. 3a-c). Counting gain, loss and unaltered bins in clone pseudobulk CN profiles that
descended from this ancestral WT population, we found that gains preferentially arise
from early RT loci, losses from late RT loci, and CNA breakpoints from late RT loci
(padj < 10−4) (Fig. 3d-f). These results support previous reports of common fragile
sites being enriched in late RT loci [43, 44] and were reproduced when using sample
pseudobulk CN profiles (Extended Data Fig. 3d-f). The association between RT and
emergence of clone- and sample-specific CNAs recapitulates existing evidence these
two phenomena are governed by the same underlying processes.

Global model for replication timing variability between clones

To understand the relative impact of cell type and other covariates on clone-specific
RT, we applied PERT to a wider cohort of scWGS datasets with diverse genomic prop-
erties. The assembled metacohort comprised 6 TNBC tumors, 13 HGSOC tumors, 3
cancer cell lines, and the previously described hTERTs [16, 40, 45]. Samples had been
labelled as homologous recombination deficiency (HRD), fold-back inversion (FBI),
and tandem duplicators (TD) by previous mutation signature analysis, and contained
both whole-genome doubled (WGD) and non-genome doubled (NGD) clones. We
focused our analysis on the 102 unique clones with >20 S-phase cells (Fig. 4a). We
first investigated the time distribution of S-phase cells across signature and ploidy,
finding that both WGD and mutation signatures consistent with replication stress
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exhibit higher fractions of late S-phase cells [29–31] (Fig. 4b,c). Clustering the pair-
wise Pearson correlations between clone RT profiles revealed striking sample and cell
type specificity (Fig. 4d). We then implemented a factor model to jointly learn weights
representing relative covariate importance to clone level RT, and latent profiles repre-
senting covariate-specific RT differences across the genome (Methods). The constant
term representing global RT was estimated to have the highest importance, as expected
given that RT is largely conserved across cell types. Estimated covariate importance
from most to least important was sample, cell type, ploidy, and signature (Fig. 4e).
Ploidy and signature were both an order of magnitude lower in importance than sam-
ple or cell type, suggesting that the higher proportion of late S-phase cells identified
for clones with WGD and replication stress associated signatures did not necessarily
coincide with large RT changes. Finally, we computed the mean RT of each chromo-
some across all cell types, and did the same for ENCODE bulk RT (RepliSeq) data
[38]. We found high agreement in cell type RT on most chromosomes with chromosome
X having the highest variability (Fig. 4f, Extended Data Fig. 4), prompting further
analysis on the relationship between X-inactivation and RT.

Chromosome X replication timing shifts measure the ratio of
active to inactive alleles and reveal selection bias in HGSOC
and TNBC tumors

Given that X-inactivation produces a late replicating inactive allele (Xi) and an early
replicating active allele (Xa) [22, 32], we hypothesized that the greatest RT shifts
would occur from CNAs which disrupted the 1:1 balance of Xa to Xi alleles. To study
the relationship between RT and X-inactivation we ran PERT and SIGNALS [40], a
single-cell allele-specific copy number caller, on the previously described hTERT cell
lines and compared the SIGNALS B-allele frequencies (BAF) to the RT difference
between chrX and all autosomes. ChrX RT and DNA BAF were negatively correlated
at both sample and clone resolution, with delayed RT associated with balanced allelic
copy number (BAF=0.5), and loss of the B-allele (BAF<0.5) shifting RT earlier
(Fig. 5a-c). A decrease in chrX BAF for S-phase cells compared to G1/2-phase cells
provides further evidence that A=Xa and B=Xi in all hTERT samples (Extended
Data Fig 5a-c). These results are concordant with the loss of Xi and retention of Xa
producing a shift towards earlier RT, and highlight PERT’s ability to associate the
SIGNALS A- and B-allele labels with Xa and Xi epigenetic states.

We then assessed the degree of chrX RT allelic imbalance in 19 TNBC and
HGSOC samples. All tumors had earlier chrX RT than the allelically balanced
(BAF=0.5) hTERT samples, with a negative correlation between chrX RT and DNA
BAF, suggesting that many of these tumors had more copies of Xa than Xi (Fig. 5d,e,
Extended Data Fig. 5d). Many of these allelic imbalances were fully clonal events and
arose from both loss of Xi (4/19 clonal full chrX LOH, 4/19 clonal Xq LOH, 2/19
clonal partial LOH, 1/19 subclonal LOH) and gain of Xa (1/19 clonal full chrX, 4/19
subclonal and/or partial) (Additional File 1), suggesting that Xa>Xi imbalances
emerge early in tumor evolution and that both Xa gain and Xi loss are independently
favorable events. For samples with matching scRNA-seq, we compared SIGNALS
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RNA BAF with DNA BAF to investigate the relationship between allelic dose and
allele-specific transcription of each chromosome. While autosomes maintained a 1:1
relationship between RNA and DNA BAF, samples with Xi alleles present had lower
RNA BAF than DNA BAF, indicating lower Xi expression (Extended Data Fig. 5e).
We termed the difference between chrX RNA and DNA BAF as the “transcription
gap” and found that it positively correlated with chrX RT for each sample (Fig. 5f),
confirming that the unexpected expression from the B-allele on X coincided with
earlier X replication.

Next we sought to identify mechanisms that would explain unexpected expression
of the inactive X allele. We identified loss of heterozygosity (LOH, BAF=0) on Xq
but not Xp in 4 of 19 tumors (2 HGSOC, 2 TNBC, Extended Data Fig. 5f). Given
that X-inactivation proceeds in cis through the transcription of XIST on the Xq
arm, we hypothesized that loss of the Xq B-allele enabled re-activation of the Xp
B-allele. Using PERT, we found that the Xp arm of these samples replicated much
earlier than the corresponding locus in the hTERT WT sample (SA039) which had
intact XIST transcription on the B-allele (Fig. 5g). We then compared the DNA and
RNA BAFs at chromosome-arm level resolution for these samples and found that the
Xp arm maintained a 1:1 ratio between gene dosage and transcription, confirming
our hypothesis that these Xp B-alleles were reactivated after loss of the Xq B-alleles
(Fig. 5h). These results demonstrate that loss of Xi, gain of Xa and, in some cases,
reactivation of Xi are evolutionarily favorable events in HGSOC and TNBC tumors
(Fig. 5i).

Clone cell cycle distributions reflect proliferation rate and
cisplatin sensitivity

Intratumoral evolution and clonal expansions are driven by high proliferation rates,
providing a relative fitness advantage to highly proliferative cells in the treatment-
naive setting and greater sensitivity to platinum-based chemotherapies [46]. We thus
leveraged PERT’s ability to estimate the cell cycle phase distributions to examine
on- and off-treatment fitness of individual clones. We confirmed that cell cycle dis-
tributions correctly approximate proliferation rate by observing that high PERT
G1/2-phase fractions correlate with low proliferation and high scRNA G1-phase frac-
tions in three published gastric cancer cell lines with co-registered doubling times, 10X
scWGS, and 10X scRNA measurements [17] (Extended Data Fig. 6, Additional File
2). We then analyzed time-series scWGS generated from serially propagated TNBC
patient derived xenografts (PDXs) with and without cisplatin treatment [45] (Fig. 6a)
to investigate whether PERT can assess proliferative fitness of tumor clones under
therapeutic selective pressure. Previous analysis of these data had revealed an inver-
sion of the clonal fitness landscape upon cisplatin exposure but had not identified any
genotypic or phenotypic features to explain such an inversion. We used the relative
abundance of each clone within each cell cycle phase to compute continuous S-phase
enrichment (SPE) scores for all clone x timepoint combinations (Fig. 6b-e, Extended
Data Fig. 7, Methods). Clone SPE scores were positively correlated with clone expan-
sion between adjacent time points in untreated samples, but negatively correlated
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in treated samples, consistent with increased cell death for S-phase cells and fitness
advantages of slow proliferation in the presence of platinum chemotherapy (Fig. 6f).

To better understand the impact between WGD and proliferation rate in human
tumors, we ran PERT on scWGS data from HGSOC patient OV-081 in the MSK
SPECTRUM cohort [47]. Patient OV-081 presented with a primary tumor in the
left adnexa consisting of mostly NGD tumor cells and a metastasis in the omentum
consisting of mostly WGD tumor cells (Fig. 6g, Extended Data Fig. 8a). The NGD
tumor clones (B-E) were significantly enriched for S-phase cells (positive SPE) while
WGD (A) and normal (F) clones were significantly depleted for S-phase cells (negative
SPE) (Fig. 6h). The discrepancy in clone SPE was validated with scRNA-seq data
showing that 53% of tumor cells are cycling in the NGD left adnexa (22% S-phase,
31% G2/M-phase) but only 33% of tumor cells are cycling in the WGD omentum (16%
S-phase, 17% G2/M-phase, Extended Data Fig. 8b). The relative ordering of SPE
scores between NGD, WGD, and normal clones was preserved within the omentum
alone (Extended Data Fig. 8c), confirming that this is unlikely to be a site-specific
batch effect. This data suggests that WGD cells proliferate slower than NGD cells in
this treatment-naive tumor.

3 Discussion

Here we demonstrate that somatic copy number change and DNA replication states
can be jointly inferred from single cell whole genome sequence data using PERT. We
show PERT’s compatibility with scWGS data produced by both the direct library
preparation (DLP+) and 10X Chromium platforms, in addition to its flexibility to
handle both lower resolution (500kb) and higher resolution (20kb) bin sizes. Although
there is no limit to the size of clones that may be analyzed by PERT, accurate esti-
mation of RT and cell cycle phase requires a sufficient number of S-phase cells within
a sample as PERT learns RT de novo. For this reason, certain samples with < 100
S-phase cells or < 300 total cells were removed from further analysis. Finally, PERT
is unsuitable for scWGS data generated from sorted G1/2 populations [19, 20].

PERT analysis of scWGS data from cell lines, xenografts, and tumor samples
highlighted the complex relationship between somatic CNAs and RT. Analysis of
RT in relation to subsequent CNAs revealed that copy number losses and break-
points preferentially emerge from late RT loci while gains from early RT loci. These
results are in agreement with findings from the PCAWG consortium [28] and could
be explained by mechanisms of over- and under-replication or reflect differential
fitness of gains vs losses in gene-rich early vs gene-poor late RT loci, respectively
[2, 14, 41, 42]. In all samples, we found more late S-phase cells than early S-phase
cells; however, this effect was more pronounced in clones with properties associated
with replication stress such as the tandem duplication mutation signature or whole
genome doubling. This result could be a consequence of how long it takes different
DNA repair mechanisms to repair double strand breaks and stalled replication forks
that arise in cells with increased genomic instability [29–31]. Additionally, this result
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implies a shorter time window between the end of replication (S/G2-phase boundary)
and the start of mitosis (G2/M boundary), increasing the likelihood for missegrega-
tions. We found that RT is highly conserved within cell types across our metacohort
of 102 clones despite highly variable copy number, suggesting that heritable RT may
be helpful for identifying the cell-of-origin in tumors. We also found that CNAs on
chromosome X recurrently produced Xa>Xi allelic imbalances in HGSOC and TNBC
tumors, impacting RT and allele-specific expression, with evidence of Xp-reactivation
via Xq LOH . These findings agree with similar reports of Xi loss, Xa gain, and Xp
reactivation in breast, ovarian, and other female-specific or -enriched cancer types
[48–50]. We observed some form of Xi loss in 8 of 19 HGSOC and TNBC cases and
postulate that delayed Xi replication may increase the likelihood that a cell undergoes
mitosis before replication. Our results implicate a role of chromosome X reactivation
in female reproductive cancers.

Quantification of clone-specific cell cycle distributions allowed us to study the
relative proliferation rate of tumor subclones. In serially propagated, drug-treated
TNBC PDXs, we found that highly proliferative clones expanded at the next time-
point in the untreated context and contracted in the cisplatin-treated context. This
suggests that accurate prediction of subclonal cell cycle phase distributions may be
helpful for identifying senescent or hyperproliferative clones [51–53]. Furthermore,
we believe that using cell cycle distributions to study which clones will respond to
chemotherapy can provide complementary information to other genomic features such
as gain of oncogenes, loss of tumor suppressors, and WGD which can have variable
phenotypic impacts [47, 54, 55]. Finally, we found that in an HGSOC patient, a
metastatic WGD clone had a slower proliferation rate than the NGD clones found
in both primary and metastatic sites. This finding agrees with observations that
the selective advantages of WGD can be conferred through slower but more robust
growth (potentially via evasion of cell cycle checkpoints or immune surveillance) [56],
prompting further study on the phenotypic consequences of WGD.

In summary, PERT offers a statistical framework with which to study copy number
driven evolution and replication dynamics in cancer cells. Combining PERT with
future scWGS generated for larger, more diverse cohorts will allow investigation into
the relationship between DNA replication and genomic instability, providing insights
into each tumor subclone’s etiology, evolutionary fitness, and drug sensitivities.

4 Methods

PERT model

The input for PERT is binned read depth (Z) and called CN states for all scWGS cells.
Input CN states are obtained through single-cell CN callers such as HMMcopy [15, 57]
or 10X CellRanger-DNA [17, 18]. PERT first identifies a set of high-confidence G1/2-
phase cells where the input CN states reflect accurate somatic CN. All remaining cells
have their input CN states dropped as they are initially considered to have unknown
CN states and cell cycle phase. Most S-phase cells should be present in the unknown
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initial set. High-confidence G1/2-phase cells are phylogenetically clustered into clones
based on CN using methods such as sitka [58] or MEDICC2 [59]. Optionally, users
can provide their own sets of clustered high-confidence G1/2-phase and unknown
cells. These sets of cells are passed into a probabilistic model which infers somatic
CN (X) and replication states (Y ) through three distinct learning steps. In Step 1,
PERT learns parameters associated with library-level GC bias (βµ, βσ) and sequencing
overdispersion (λ) by training on high-confidence G1/2 cells (Extended Data Fig. 1c).
Step 1 conditions on CN (X), replication (Y ), and coverage/ploidy scaling terms (µ)
because input CN states are assumed to accurately reflect somatic CN states and all
bins are unreplicated (Y = 0) in high-confidence G1/2 cells. Once βµ, βσ and µ have
been learned in Step 1, we can condition on them in Step 2 (Extended Data Fig. 1d).
Step 2 learns latent parameters representing each cell’s time in S-phase (τn), each
locus’s replication timing (ρm), and global replication stochasticity (α) to compute
the probability that a given bin is replicated (Yn,m = 1) or unreplicated (Yn,m = 0).
Only unknown cells are included in Step 2. Prior belief on each unknown cell’s CN
state is encapsulated using a prior distribution (π) which has concentration parameters
(η) conditioned on the input CN of the most similar high-confidence G1/2 cells. CN
prior concentrations are set for each cell by using the consensus CN profile of the
most similar G1/2 clone or a composite scoring of the most similar G1/2 clone and
cell CN profiles (Extended Data Fig. 1f) A full list of model parameters, domains,
and distributions can be found in Extended Data Fig. 1b. Step 3 is an optional final
step which learns CN and replication states for high-confidence G1/2 cells (Extended
Data Fig. 1e). This step is necessary to determine if any S-phase cells are present in
the initial set of high-confidence G1/2 cells. Step 3 conditions on replication timing
(ρ) and stochasticity (α) values learned in Step 2 to ensure that such properties are
conserved between both sets of cells.

PERT is designed for scWGS data with coverage depths on the order of 0.01-0.1x
and thus 500kb bin sizes are used by default in this manuscript; however, the model
can be run on count data of any bin size as long as sufficient memory and runtime
are allocated. We demonstrate PERT’s ability to run on 10X scWGS data at 20kb
resolution in Additional File 2.

Equations for Step 1

Given that we have accurate CN caller results for high-confidence G1/2 cells, we can
solve for each cell’s coverage/ploidy scaling term µn and condition on it,

µn =

∑M
m=0 Zn,m∑M
m=0Xn,m

. (1)

The latent variables are arranged together in function block f through the following
equations to produce the bin-specific negative binomial event counts δn,m. The GC
bias rate of each individual bin (ωn,m) depends on the GC content of the locus (γm)
and the GC bias coefficients (βn,k) for the cell,

ωn,m = e
∑K

k=0 βn,k∗γk
m . (2)

The expected read count per bin is computed as follows:
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θn,m = Xn,m ∗ ωn,m ∗ µn. (3)

The expected read count per bin is then used in conjunction with the negative binomial
event success probability term (λ) to produce a number of negative binomial event
count for each bin,

δn,m = f(Xn,m, γm, λ, µn, βn,k) =
θn,m ∗ (1− λ)

λ
, (4)

where we place the constraint δn,m ≥ 1 to avoid sampling errors in bins with θn,m ≈ 0.
Finally, the read count at a bin is sampled from an overdispersed negative binomial
distribution Zn,m ∼ NB(δn,m, λ) where the expected read count for Zn,m is θn,m and

the variance is
θn,m

(1−λ) .

Equations for Steps 2-3

Steps 2-3 have equations which differ from Step 1 since it must account for replicated
bins and cannot solve for µn analytically. The probability of each bin being replicated
(ϕn,m) is a function of the cell’s time in S-phase (τn), the locus’s replication timing
(ρm), and the replication stochasticity term (α). Replication stochasticity (α) controls
how closely cells follow the global RT profile by adjusting the temperature of a sigmoid
function. The following equation corresponds to function block g:

ϕn,m = g(α, τn, ρm) =
1

1 + e−α(τn−ρm)
. (5)

Equations corresponding to function block f differ from those in Step 1. The total CN
(χn,m) is double the somatic CN (Xn,m) when a bin is replicated (Yn,m = 1),

χn,m = Xn,m ∗ (1 + Yn,m). (6)

The GC rates (ωn,m) and negative binomial event counts (δn,m) are computed the
same as in Step 1 (Eq 2, Eq 4). However, the expected read count uses total instead
of somatic CN,

θn,m = χn,m ∗ ωn,m ∗ µn. (7)

Since CN is learned in Steps 2-3, the coverage/ploidy scaling term (µn) must also be
learned. We use a normal prior µn ∼ N(µn

µ, µ
n
σ) where the approximate total ploidy

and total read counts are used to estimate the mean hyperparameters (µn
µ). Total

ploidies for each cell are approximated using the CN prior concentrations (η) and
times within S-phase (τ) to account for both somatic and replicated copies of DNA
that are present. We fixed the standard deviation hyperparameters (µn

σ) to always be
10x smaller than the means to ensure that µn ≥ 0 despite use of a normal distribution
(used for computational expediency),

µn
µ =

∑M
m=0 Zn,m

(1 + τn)
∑M

m=0 argmaxp(ηn,m,p)
, (8)

µn
σ =

µn
µ

10
. (9)
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Constructing the CN prior concentrations

There are two ways to construct the CN prior concentrations within PERT. The first
is to use the most similar high-confidence G1/2 clone to define the concentrations for
each unknown cell (clone method). We assign each unknown cell its clone (cn) via
Pearson correlation between the cell read depth profile (Zn) and the clone pseudobulk
read depth profile (Zc),

cn = argmaxc(corr(Zn, Zc)). (10)

Clone pseudobulk CN and read depth profiles represent the median profile across all
high-confidence G1/2 cells in a given clone c. Once we have clone assignments for
each unknown cell, the CN concentration of all possible states P at each genomic bin
(ηn,m,p) is constructed to be w times larger for the state p that matches the clone
pseudobulk CN state (Xcn,m) for that same bin compared to all other states. The
default setting is w = 106:

ηn,m,p =

{
w if p = Xcn,m

1 else.
(11)

The second way to construct the prior is to leverage additional information from the
most similar high-confidence G1/2 cells when constructing ηn,m,p (composite method).
The rationale for the composite method is that there might be rare CNAs within a
clone which only appear in a handful of cells but do not appear in the clone pseudobulk
CN profile Xc. To find the most similar high-confidence G1/2 cells, we compute the
read depth correlation between the unknown cell (Zns

) and the high-confidence G1/2
cells from the best matching clone (Zng

),

ψ = corr(Zns
, Zng

). (12)

The consensus clone CN profile and top J matches for each unknown cell are then used
to construct the CN prior (ηn,m,p). Each row of ψ is sorted to obtain the top J high-
confidence G1/2 matches ng(0), ..., ng(J−1). All entries are initialized to 1 (ηn,m,k = 1)
before adding varying levels of weight (w) to states where the CN matches a G1/2-
phase cell or clone pseudobulk CN profile. The default settings are w = 105 and
J = 5:

ηn,m,p =



+1 everywhere

+w ∗ 2 ∗ J if p = Xcn,m

+w ∗ (J − 0) if p = Xng0,m

+w ∗ (J − 1) if p = Xng1,m

...

+w if p = Xng(J−1),m.

(13)

By default, the composite method is used during Step 2 and the clone method is used
during Step 3; however, the user may select between both methods during Step 2.
Using the clone method during Step 2 should be seen as a ‘vanilla’ version of PERT
which should be used when very few cell-specific CNAs are present. The clone method
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is used for Step 3 since the composite method would produce many self-matching
cells. A comparison of the two methods can be seen when benchmarking PERT on
simulated data (Supplementary Note).

Model initialization and hyperparameters

Splitting cells into initial sets of high-confidence G1/2-phase and unknown cells is
performed by thresholding heuristic per-cell features known to correlate with cell
cycle phase. PERT uses clone-normalized number of input CN breakpoints between
neighboring genomic bins (BKnorm) and clone-normalized median absolute devia-
tion in read depth between neighboring genomic bins (MADNnorm). These features
are referred to as ‘HMMcopy breakpoints’ and ‘MADN RPM’, respectively, in the
main text and figures. Note that breakpoints between chromosome boundaries are not
counted.

BKn =

M−1∑
m=0

{
1 if Xn,m ̸= Xn,m+1

0 else
(14)

BKnormn = BKn − 1

C

C∑
c=0

BKc (15)

MADNn = Med

(
M−1∑
m=0

Zn,m − Zn,m+1

)
(16)

MADNnormn = MADNn − 1

C

C∑
c=0

MADNc (17)

Under default settings, PERT initializes cells with MADNnorm<0 and BKnorm<0 as
high-confidence G1/2-phase with all other cells as unknown phase. Initial cell phases
can also be input by users based on experimental measurements or alternative metrics
such as 10X CellRanger-DNA’s ‘dimapd’ score (used in [17, 23, 24]), the Laks et al
classifiers’ S-phase probability and quality scores [16], or read depth correlation with
a reference RT profile [25].

To improve convergence speed, each cell’s time in S-phase (τn) is initialized using
scRT results from a clone-aware adaptation of Dileep et al [21] which thresholds
the clone-normalized read depth profiles into replicated and unreplicated bins. Each
unknown cell n is assigned to clone c with the highest correlation between cell and
clone pseudobulk read depth profiles (Eq 10). The read depth of each cell is then
normalized by the CN state with highest probability within the CN prior (ηn,m,p),

yn,m =
Zn,m

argmaxp(ηn,m,p)
. (18)

The clone-normalized read depth profiles (yn) are then binarized into replication state
profiles (Yn) using a per-cell threshold (tn ∈ [0, 1]) that minimizes the Manhattan
distance between the real data and its binarized counterpart.
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tn = argmint

∣∣∣yn,m −

{
1 if yn,m ≥ tn

0 else

∣∣∣ (19)

Yn,m =

{
1 if yn,m ≥ tn

0 else
(20)

The fraction of replicated bins per cell from the deterministic replication states Yn,m
are then used to initialize the parameter representing each cell’s time in S-phase (τn)
within PERT’s probabilistic model.

τn =
1

M

M∑
m=0

Yn,m. (21)

Initialization of τn is particularly important because the model might mistake an early
S-phase cell (<20% replicated) for a late S-phase cell (>80% replicated), or vice versa,
as both have relatively ‘flat’ read depth profiles compared to mid-S-phase cells. Thus
τn will rarely traverse mid-S-phase values during inference when its initial and true
values lie far apart. Additional parameter initializations include λ = 0.5 for negative
binomial overdispersion and βσ,k = 10−k for the standard deviation of each GC bias
polynomial coefficient k. Unlike τn, the model is unlikely to get stuck at local minima
with these parameters so they are initialized to the same values globally.

The latent variables βµ, ρ, and α are sampled from prior distributions with fixed
hyperparameters. The mean of all GC bias polynomial coefficients (βµ) are drawn from
the prior N(0, 1). Each locus’s replication timing (ρ) is drawn from the prior Beta(1, 1)
to create a uniform distribution on the domain [0, 1]. The replication stochasticity
parameter (α) is drawn from the prior distribution Γ(shape = 2, rate = 0.2) which has
a mean of shape

rate = 10 and penalizes extreme values on a positive real domain.

PERT phase predictions

We used the PERT model output to predict ‘G1/2’, ‘S’, and ‘low quality’ (LQ) phases
for each cell. G1/2-phase cells were defined by having <5% or >95% replicated bins.
Of the remaining cells with 5-95% replicated bins, those with high read depth auto-
correlation (>0.5), replication state autocorrelation (>0.2), or fraction of homozygous
deletions (X = 0, >0.05) were deemed to be low quality. All other cells were deemed
to be in S-phase. Using 500kb bins, autocorrelation scores were the average of all auto-
correlations ranging from 10 to 50 bin lag size. Thresholds used for splitting S and
LQ phases can be adjusted by users should the default settings produce unexpected
output.

Model construction and inference

PERT is written using Pyro which is a probabilistic programming language written in
Python and supported by PyTorch backend [37]. PERT uses Pyro’s implementation
of Black Box Variational Inference (BBVI) which enables the use of biologically-
informed priors instead of being limited to conjugate priors [60]. Specifically, we use
the AutoDelta function which uses a Taylor approximation around the maximum a
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posteriori (MAP) to approximate the posterior. Optimization is performed using the
Adam optimizer. By default, we set a learning rate of 0.05 and convergence is deter-
mined when the relative change in the evidence lower bound (ELBO) is < 10−6 or the
maximum number of iterations (2000 for step 2, 1000 for steps 1 and 3) is reached.

Simulated datasets

To benchmark PERT’s ability to accurately infer single-cell replication states, somatic
CN states, and cell cycle phase against Kronos and the Laks et al cell cycle classifier, we
simulated datasets with varying clonal structures and cell-specific CNA rates. Somatic
CN states are simulated by first drawing clone CN profiles and then drawing cell-
specific CNAs that deviated from said clone CN profile. All CNAs are drawn at the
chromosome-arm level. 400 S- and 400 G1/2-phase cells are simulated in each dataset.

Once CN states have been simulated, we simulate the read depth using PERT as
a generative model. We condition the model on the provided βµ, βσ, λ, α, ρ, γ, and
X parameters when generating cell read depth profiles. All read depth values (Z)
are in units of reads per million. RepliSeq data for various ENCODE cell lines are
used to set ρ values for each clone [38]. G1/2-phase cells were conditioned to have all
bins as unreplicated Y = 0. S-phase cells had their cell cycle times τ sampled from
a Uniform(0, 1) distribution. A table of all the parameters used in each simulated
dataset can be found in Supplementary Table 1.

We called CN on simulated binned read count data using HMMcopy. Given that
Kronos was designed as an end-to-end pipeline that takes in raw BAM files, we forked
off the Kronos repository and edited their ‘Kronos RT’ module to accept binned
read count and CN states as input. Cells were split into S- and G1/2-phase Kronos
input populations according to their true phase. Code to our forked repository can be
found at https://github.com/adamcweiner/Kronos scRT. Similarly, we removed fea-
tures from the Laks et al cell cycle classifier that used alignment information such as
the percentage of overalapping reads per cell. The Laks classifier was retrained with
said features removed prior to deployment on simulated data (Supplementary Fig. 1).

Experimental methods

Detailed descriptions of the data generation methods are described in Laks et al,
Funnell et al, and Salehi et al [16, 40, 45]. Such descriptions include generation of
the cell cycle FACS datasets, generation of engineered hTERT cell lines, xenografting,
time series passaging, and scWGS with direct library preparation (DLP+) sequencing.

scWGS data processing

Unless otherwise noted, all scWGS data was generated via DLP+. All DLP+
data was passed through https://github.com/shahcompbio/single cell pipeline before
downstream analysis. This pipeline aligned reads to the hg19 reference genome using
BWA-MEM. Each cell was then passed through HMMcopy using default arguments
for single-cell sequencing. HMMcopy’s output provided read count and gc-corrected
integer CN states for each 500kb genomic bin across all cells and loci. Loci with low
mappability (<0.95) and cells with low read count (<500,000 reads) were removed.
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Cells were also filtered for contamination using the FastQ Screen which tags reads as
matching human, mouse, or salmon reference genomes. If >5% of reads in a cell are
tagged as non-human the cell is flagged as contaminated and subsequently removed.

Cells were only passed into phylogenetic trees if they were called as G1/2-phase
and high quality by classifiers described in Laks et al [16]. In certain cases, cells
might be manually excluded from the phylogenetic tree if they pass the cell cycle and
quality filters but have an abnormally high number of HMMcopy breakpoints. All cells
included in the phylogenetic tree are initialized in PERT as the set of high-confidence
G1/2 cells; all cells outside the tree are initialized as unknown cells.

Phylogenetic clustering based on CN profiles

We used the clone IDs from Funnell et al for high-confidence G1/2 cells [40]. These
single-cell phylogenetic trees were generated using sitka [58]. Sitka uses CN breakpoints
(also referred to as changepoints) across the genome as binary input characters to
construct the evolutionary relationships between cells. Sitka was run for 3,000 chains
and a consensus tree was computed for downstream analysis. The consensus tree was
then cut at an optimized height to assign all cells into clones (clusters). For datasets
with no sitka trees provided or select datasets, cells were clustered into clones using K-
means where the number of clones was selected through Akaike information criterion.
We performed a K-means reclustering for the Salehi et al TNBC PDX data [45] as
sitka produced small clusters which inhibited robust tracking of S-phase clone fractions
across multiple timepoints.

Pseudobulk profiles

Many times in the text we describe “pseudobulk” replication timing, copy number, or
read depth profiles within a subset of interest (i.e. cells belonging to the same clone or
sample). To compute pseudobulk profiles, we group all the cells of interest and then
take the median values for all loci in the genome. When computing pseudobulk CN
profiles, we only include the cells of the modal (most common) ploidy state before
computing median values for all loci.

S-phase times

When we refer to the “time” of individual S-phase cells, such a time is calculated as
the fraction of replicated bins per cell. Thus, S-phase times near 1 are in late S-phase
cells and S-phase times near 0 are early S-phase cells.

Comparison of RT profiles to Hi-C A/B compartments

Hi-C compartment data were downloaded from ENCODE for T47D and B-
lymphoblast (GM- prefix) cell lines using the accession codes ENCFF713FCA,
ENCFF220LEI, ENCFF733ZUJ, ENCFF907MWF, ENCFF522SPQ, and ENCFF4-
11JKH [38]. Genomic coordinates were lifted to human reference hg19 for comparison.
Due to varying quality and sequencing platforms of each Hi-C library, we used
Spearman instead of Pearson correlation.
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Bespoke factor model which learns feature importance and RT
profiles directly from clone RT profiles

We built a multivariate regression model which learned importance terms and RT
profiles for each feature directly from the matrix of clone RT profiles. This model has
the following terms and equations:
RTc,m: the observed replication timing of clone c at locus m on the domain of [0,1].
This represents the fraction of replicated bins at locus m across all S-phase cells n in
clone c.
ρk,m: the latent replication timing of feature k at locus m.
Ic,k: indicator mask representing which features k are present for clone c.
βk: importance term for feature k.
σ: standard deviation term when going from expected to observed replication timing;
sampled from a uniform distribution on the domain (0,1).

RTc,m ∼ N(
1

1 + e
∑K

k=0(βk∗Ic,k∗ρk,m)
, σ). (22)

All latent replication timing terms ρk are normalized to have mean of 0 and variance
of 1 and there is only β value per class of features

βk =



βt if k is a cell type feature

βs if k is a signature feature

βp if k is a ploidy feature

βd if k is a sample feature

βg if k is a global feature

(23)

This model is implemented in pyro and fit using BBVI [37, 60]. We use the
AutoNormal function which uses Normal distributions to approximate the posterior.
Optimization is performed using the Adam optimizer with a learning rate of 0.02.
Convergence is determined when the relative change in ELBO is < 10−3 of the total
ELBO change between first and current iteration.

Using SIGNALS to quantify allelic ratios from scDNA- and
scRNA-seq

In brief, SIGNALS uses haplotype blocks genotyped in single cells and implements an
hidden Markov model (HMM) based on a Beta-Binomial likelihood to infer the most
probable haplotype-specific state. SHAPEIT was used to generate the haplotype blocks
for SIGNALS input [61]. A full description of SIGNALS can be found in Funnell et al
[40]. Within each haplotype block for each sample, the major (most common) allele
is labeled as the A-allele with the minor (less common) allele labeled as the B-allele.
The B-allele frequency (BAF) is computed as the fraction of B-allele heterozygouos
single nucleotide polymorphisms (SNPs) out of all heterozygous SNPs present in a
given bin. SIGNALS is run on scDNA data by default but when scRNA data is also
available, the haplotype blocks derived from the scDNA data can be used to extract
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A- and B-allele counts in the scRNA data too (albeit with much fewer counts as there
are fewer SNPs sequenced in scRNA data).

Gastric cancer cell line data

10X Chromium single-cell DNA (10X scWGS) data of gastric cancer cell lines NCI-
N87, HGC-27, and SNU-668 were downloaded from SRA (PRJNA498809). Copy
number calling was performed using the CellRanger-DNA pipeline using default
parameters. Data was aggregated from 20kb to 500kb bins for analysis with PERT.
Each cell line’s doubling time and fraction of G1-phase scRNA cells were extracted
from Andor et al [17].

MSK SPECTRUM data

We obtained matched scRNA and scWGS from HGSOC patient OV-081 from the
MSK SPECTRUM cohort. Samples were collected under Memorial Sloan Kettering
Cancer Center’s institutional IRB protocol 15-200 and 06-107. Single cell suspensions
from surgically excised tissues were generated and flow sorted on CD45 to separate
the immune component as previously described. CD45 negative fractions were then
sequenced using the DLP+ platform as previously described. Detailed generation of
scRNA data can be found in [47].

Clone S-phase enrichment scores

To test whether a clone (c) is significantly enriched or depleted for S-phase cells at
a given timepoint (t), we must compare that clone’s fraction in both S- and G1/2-
phases. We first define the following variables as such:
Ns,c,t: Number of S-phase cells belonging to clone c at time t
Ng,c,t: Number of G1/2-phase cells belonging to clone c at time t
Ns,t: Total number of S-phase cells across all clones at time t
Ng,t: Total number of G1/2-phase cells across all clones at time t
Nt: Total number of cells in a population at time t (all clones, all phases)

We can then define the fractions of S- and G1/2-phase cells assigned to clone c at
time t (fs,c,t, fg,c,t):

fs,c,t =
Ns,c,t

Ns,t
, (24)

fg,c,t =
Ng,c,t

Ng,t
. (25)

Each clone’s continuous S-phase enrichment (SPE) score (ξc,t) is the difference between
the S- and G1/2-phase fractions. Positive values indicate the clone is enriched for
S-phase cells,

ξc,t = fs,c,t − fg,c,t. (26)

Using the fraction of G1/2-cells belonging to clone c, we can compute the expected
total number of cells in clone c and time t across all cell cycle phases,

E(Nc,t) = fg,c,t ∗Nt. (27)
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We produce a p-value for enrichment of S-phase cells using a hypergeometric test
scipy.stats.hypergeom(M=Nt, n=Ns,t, N=E(Nc,t)).sf(Ns,c,t). To produce a p-value
for S-phase depletion we subtract this enrichment p-value from 1. All p-values are
Bonferroni-corrected by dividing by the total number of statistical tests. p-adjusted
thresholds of 10−2 are used for saying a clone is significantly enriched or depleted for
S-phase cells within a given library.

Clone expansion scores

For time-series scWGS experiments, we computed clone expansion scores for each
clone c at time t (Sc,t) by examining the fraction of G1/2-phase cells belonging to
clone c at timepoint t (fg,c,t) and the subsequent timepoint (fg,c,t+1). Positive values
indicate the clone expands by the next timepoint,

Sc,t = fg,c,t+1 − fg,c,t. (28)

Comparing SPE to expansion in treated vs untreated data

To test that treated clones had a significant difference in their relationship between
SPE scores (ξc,t) and expansion scores (Sc,t) in treated (T ) vs untreated (U) data, we
first fit a linear regression curve to the untreated data,

SU
c,t = β̂U

0 + β̂U
0 ∗ ξUc,t. (29)

We then computed the residuals between the treated data and this line of best fit,

SU−T
c,t = (β̂U

0 + β̂U
0 ∗ ξTc,t)− ST

c,t. (30)

We then computed a second linear regression curve to the residuals SU−T
c,t ∼ ξTc,t

and computed the p-value for a hypothesis test whose null hypothesis is that the slope
is zero, using Wald Test with t-distribution of the test statistic. Having a p < 0.05
indicated that the slope of the treated and untreated lines are significantly different.
All clone and time points with < 10 G1/2-phase cells were excluded from such analysis.

Cell cycle analysis of scRNA data

When available, we validated PERT cell cycle distributions using the cell cycle distri-
butions estimated through scRNA sequencing. We determined the cell cycle phase of
each scRNA cell using the Seurat CellCycleScoring() function [62] which uses a set of
S- and G2M-phase markers derived from Tirosh et al [36].

Statistical tests

When boxplots are presented in the figures, hinges represent the 25% and 75% quan-
tiles and whiskers represent the ±1.5x interquartile range. Statistical significance is
tested using independent t-tests from scipy.stats unless otherwise noted. Bonferroni
correction is implemented for all statistical tests to limit false discovery. The number
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of stars is a shorthand for the adjusted p-value of a given statistical test (< 10−4:
****, < 10−3: ***, < 10−2: **, < 0.05: *, ≥ 0.05: ns). Shaded areas surrounding linear
regression lines of best fit represent 95% confidence intervals obtained via boostrapping
(n=1000 boostrap resamples). Unless otherwise noted, linear regressions are annotated
with Pearson correlation coefficients (r) amd the p-value for a hypothesis test whose
null hypothesis is that the slope is zero, using the Wald Test with t-distribution of the
test statistic.
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Code availability

The following code repositories are publicly available and contain tutorials for
installation and use.
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• Package containing PERT model and other tools for scRT analysis: https://github.
com/shahcompbio/scdna replication tools

• DLP+ single-cell whole genome sequencing pipeline: https://github.com/
shahcompbio/single cell pipeline

The following repositories will be made available upon final publication.

• Analysis scripts and figure generation: https://github.com/shahcompbio/scdna
replication paper

• LaTeX files and figures for manuscript generation: https://github.com/
adamcweiner/pert manuscript
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are colored by cell line (left), FACS cell cycle phase (middle), and PERT predicted phase (right) c)
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Fig. 5 Replication timing shifts allow for phasing of chrX inactivation and reveals Xa>Xi
selection in HGSOC and TNBC. a) ChrX B-allele frequency from SIGNALS analysis of scDNA
data vs the relative RT of chrX compared to autosomes in the same sample. All points are unique
hTERT samples which share the same SIGNALS phasing. chrX relative RT values of 0 represent
cases in which chrX replicates at the same time as all autosomes and negative values imply that
chrX replicates later than the autosomes. SIGNALS assigns the major (more prevalent) allele as A
and minor allele as B at each haplotype block. b) chrX B-allele frequency vs relative RT for clones
in hTERT sample SA1054. c) Total copy number and allelic imbalance states in chrX for all G1/2-
phase cells in sample SA1054. Clone IDs are annotated in the left-hand column. d) ChrX relative
RT for all samples, colored by cell type. hTERT and OV2295 samples are cell lines and HGSOC
and TNBC samples are PDXs. Note that OV2295 is a cell line derived from an HGSOC tumor. e)
chrX B-allele frequency vs relative RT for all samples shown in d. SIGNALS phasing was performed
independently for each sample. f) Comparison of the chrX RNA BAF - DNA BAF “transcription
gap” (x-axis) vs relative RT (y-axis) of a given sample. Positive transcription gap means a sample
has more transcription of the B-allele than one would expect from looking at the DNA BAF of said
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locus) but not on the Xp arm. The horizontal line represents Xp relative RT for hTERT WT sample
SA039 which is balanced with the B-allele being inactive on both arms. h) Mean DNA vs RNA
BAF for each chromosome arm for samples with Xq LOH and balanced Xp. All autosomes arms
are colored light grey, chrX arms are colored to illustrate their 1:1 relationship between gene dosage
and transcription. i) Schematic demonstrating how tumors achieve Xa>Xi ratios through Xi loss, Xa
gain, and X-reactivation.

31

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.04.10.536250doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536250
http://creativecommons.org/licenses/by-nd/4.0/


1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

4 5 6 7 8
timepoint

0.0

0.2

0.4

0.6

0.8

1.0

cl
on

e 
fra

ct
io

n

SA1035U: G1/2-phase

4 5 6 7 8
timepoint

0.0

0.2

0.4

0.6

0.8

1.0

SA1035U: S-phase

clone
A
B
C
D
E

0.0 0.2 0.4 0.6 0.8
G1/2-phase clone fraction

0.0

0.2

0.4

0.6

0.8

S
-p

ha
se

 c
lo

ne
 fr

ac
tio

n

SA1035U: S-phase enrichment
colored by clone

S-phase
enriched
non-sig.
depleted

0.0 0.2 0.4 0.6 0.8
G1/2-phase clone fraction

0.0

0.2

0.4

0.6

0.8

SA1035U: S-phase enrichment
colored by timepoint

-0.25 -0.15 -0.05 0.05 0.15 0.25
SPE score

<-S-phase depletion | enrichment->

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C
ha

ng
e 

in
 G

1/
2-

ph
as

e 
cl

on
e 

fra
ct

io
n

<-
co

nt
ra

ct
io

n 
| e

xp
an

si
on

->

p=1.25e-02

TNBC PDX clones on- vs off-cisplatin

untreated
treated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 18 21 X
chromosome

SPECTRUM OV-081: PERT somatic CN states

cl
on

e

19
58

 c
el

ls

ph
as

e

si
te

0.0 0.1 0.2 0.3 0.4 0.5
G1/2-phase clone fraction

0.0

0.1

0.2

0.3

0.4

0.5
S

-p
ha

se
 c

lo
ne

 fr
ac

tio
n

SPECTRUM OV-081: S-phase enrichment

S-phase
enriched
non-sig.
depleted

X1

X4 X5 X6 X7 X8

SA1035

X5 X6 X7 X8 X9

SA535

X10

X2 X3 X4 X5

SA609

X6 X7 X8 X9 X10

U1
U2
T1
T2

untreated (U)
treated (T)
cisplatin

TNBC PDXs

a b c

d ef

clone ID
A
B
C

D
E
F

site
adnexa
omentum

timepoint
X4

X8

0
1
2

3
4
5

6
7
8

9
10
11+

SPE score

A

B

C

DE
F

PERT phase
G1/2
S

g

h

NGD

WGD

normal

Fig. 6 Relationship between clone cell cycle distribution and evolutionary fitness. a)
Schematic of time-series scWGS sampling for untreated and cisplatin-treated TNBC PDXs. b-e) Rep-
resentative SA1035 untreated sample. b-c) Relative fraction of each clone within G1/2- and S-phase
cells. d-e) Comparison of each clone’s fraction in S- vs G1/2-phase populations at each timepoint.
Dashed gray line represents equal prevalence in both phases. Triangles denote clone and timepoint
combinations significantly (padj < 0.01) enriched or depleted for S-phase cells via hypergeometric
test. Distance from the dashed gray line represents each point’s continuous SPE score. f) Relation-
ship between SPE score and clone expansion between timepoints t and t+1 for all TNBC PDX clone
and timepoint combinations with > 10 G1/2-phase cells, split by cisplatin status. Lines represent
linear regression fits with shaded areas representing 95% confidence intervals. g) PERT somatic copy
number states from multi-site scWGS sequencing of HGSOC patient OV-081. Rows are annotated
by their clone ID, PERT predicted cell cycle phase, and site of collection from the primary debulk-
ing surgery. Contaminating normal cells are included as clone F for reference i) Clone fraction in S-
vs G1/2-phase populations for each OV-081 clone. Each clone is annotated by tumor/normal and
WGD/NGD status.
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Fig. ED1 Details of PERT inference. a) PERT takes scWGS binned read count and CN calls
as input and learns somatic copy number, replication states, and cell cycle phase predictions for all
cells. b) Table of all parameters, domains and distributions used in PERT. c-e) Full graphical model
for 3-step learning procedure. c) PERT first learns overdispersion (λ) and GC parameters (βµ, βσ)
from high-confidence G1/2 cells where we condition all bins as unreplicated (Y = 0) and CN states
(X) according to CN caller results. d) PERT conditions the parameters learned in Step 1 to learn
latent replication and somatic CN states in unknown cells. e) Replication timing (ρ) and stochasticity
(α) terms learned in Step 2 are conditioned as Step 3 learns latent replication and somatic CN states
in high-confidence G1/2-phase cells to search for any missing S-phase cells. f) Overview of clone
and composite methods to set copy number prior concentrations (η). Composite method is used by
default. Pearson correlation is used to determine similarity.
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Fig. ED2 Assessing PERT’s robustness to clone-specific RT profiles and poor phase
initialization. a) HMMcopy states for GM18507 and T47D cell lines FACS isolated into G1/2- (left)
and S-phase (right) populations. b) Histogram of inferred fraction of replicated bins for FACS cell
lines where colors represent FACS phase (left), cell line (middle), and clone ID (right). c) Inferred cell
line RT profiles for chromosome 1 when the two cell lines are merged into one sample (top) or split into
separate samples (bottom) before passing into PERT. d) Pairwise Pearson correlation between true
and inferred clone RT profiles in two simulated datasets (P10 and P11) where each clone has a unique
CN profile and unique ENCODE cell line RT profile. Cell lines with the ‘GM’ prefix are derived from
B-lymphocytes, BJ from human foreskin fibroblasts, MCF7 from breast cancer, and HepG2 from liver
cancer. Rows and columns are sorted in the same order. e) True (top) and inferred (middle) clone RT
profiles across chr1 for simulated datasets with clone-specific RT. True and inferred RT of the clone
emulating the ENCODE MCF7 RT is shown at the bottom. f) Pairwise Pearson correlation between
inferred cell line RT profiles across all permuted datasets. Datasets A-C have the lowest permutation
rate (0.01); U-W have the highest permutation rate (0.75). g) Pairwise scatterplots of orthogonal cell
cycle phase features for FACS=G1/2 cells mislabeled as S-phase. Cells are colored by their predicted
PERT phase. MADN RPM: median absolute deviation between neighboring bins of reads per million,
normalized to 0 within each clone (Methods). Laks S prob: S-phase probability according to the Laks
cell cycle classifier. Laks quality: Probability of a cell being high quality according to the Laks cell
quality classifier. HMMcopy breakpoints: the number of adjacent bins per cell that do not share the
same HMMcopy state, normalized to 0 within each clone (Methods).34
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Fig. ED3 PERT identifies RT profiles of ancestral WT clone prior to emergence of
CNAs. a-c) Clone CN and RT profiles for hTERT WT sample SA039. d) CN profiles for all hTERT
clones, normalized by ploidy. Values > 0 are gains, < 0 are losses, and = 0 are unaltered. Distribution
of hTERT WT SA039 clone A RT values split by whether a locus contains a clonal CNA breakpoint
across all hTERT samples. e-f) Distribution of hTERT SA039 clone A (diploid WT) RT values split
by e) sample pseudobulk CNA types and f) the presence of sample pseudobulk CNA breakpoints.
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Fig. ED4 Per-chromosome cell type RT profiles of PERT vs RepliSeq data. Mean RT
across cell types and chromosomes. Error bars represent the 95% confidence intervals over the per-
chromosome mean RT when multiple clones are present. a) Cell types shown in Fig. 3f with colors
corresponding to cell type. b) Full set of PERT and RepliSeq cell types where each cell type is colored
by the method from which the RT profile was obtained. The full set of ENCODE RepliSeq cell types
(in order) are: MCF7, BG02ES, BJ, GM06990, GM12801, GM12812, GM12813, GM12878, HELAS3,
HEPG2, HUVEC, IMR90, K562, SKNSH, NHEK. The full set of PERT cell types match those seen
in panel a.
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Fig. ED5 Chromosome X replication timing shifts reflect X-inactivation and reactiva-
tion status. a-c) B-allele frequencies of S-phase vs G1/2-phase cells (determined via PERT) across
the genome for hTERT samples. A/B haplotype block labels are identical across all hTERT samples.
a) Per-sample comparison of autosomes vs chrX. b) Per-chromosome comparison for sample SA039.
c) Aggregate comparison of autosomes vs chrX for all hTERT samples with XaXi genotype. d) chrX
B-allele frequency vs relative RT for all clones in the metacohort with > 10 S-phase cells. e) Mean
DNA vs RNA BAF per chromosome per sample for breast and ovarian samples in the metacohort.
All chrX points are colored by their sample type. All autosomes arms are colored light grey. The
dashed y=x line illustrates 1:1 relationship between gene dosage and transcription. f) HMMcopy CN
and SIGNALS allelic imbalance states in chrX for the four samples with Xq LOH but not Xp LOH.
Clone IDs are annotated on the left-hand side of each sample.
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Fig. ED6 Relationship between cell cycle fractions and doubling time in gastric cancer
cell lines sequenced with 10X scWGS platform. PERT-derived fraction of G1/2-phase cells in
10X scWGS libraries of each cell line compared to the corresponding a) doubling time (hours) and
b) fraction of G0/1-phase cells in the 10X scRNA libraries. c) Comparison of scRNA G0/1-phase
cells to doubling time. Data was derived from Andor et al 2020 [17].
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Fig. ED7 Clone cell cycle phase enrichment and fitness across all TNBC PDX samples.
i) Relative fraction of each clone within G1/2- and ii) S-phase populations. iii-iv) Comparison of
each clone’s fraction in S- vs G1/2-phase populations at each timepoint. Dashed gray line represents
equal prevalence in both phases. Triangles denote clone and timepoint combinations significantly
(padj < 0.01) enriched or depleted for S-phase cells via hypergeometric test. Distance from the
dashed gray line represents each point’s continuous SPE score. v) Relationship between SPE and
clone expansion between timepoints t and t+ 1 for each clone and timepoint combination with > 10
G1/2-phase cells. Lines represent linear regression fits with shaded areas representing 95% confidence
intervals. Point colors represent the clone ID and the shapes represent the timepoint. a-h) Each row
corresponds to a unique sample.

39

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.04.10.536250doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536250
http://creativecommons.org/licenses/by-nd/4.0/


1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840

G1 46.8%

G2M

31.0%

S

22.2%

Left adnexa (primary)
NGD clones dominant

G1

67.2%

G2M16.8%

S

16.0%

Infracolic omentum (met)
WGD clone dominant

0.0 0.1 0.2 0.3 0.4 0.5 0.6
G1/2-phase clone fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
-p

ha
se

 c
lo

ne
 fr

ac
tio

n

OV-081: S-phase enrichment
colored by clone

clone ID
enriched
depleted
A
B
C
D
E
F

0.0 0.1 0.2 0.3 0.4 0.5 0.6
G1/2-phase clone fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

OV-081: S-phase enrichment
colored by site

site
left adnexa
infracolic omentum

SPECTRUM OV-081

scRNA cell cycle distribution of tumor sitesa b

c

left adnexa

infracolic
omentum

A

B

C

FD

C

F

A

B

C

FD

C

F

WGD

normal

NGD
omentum

NGD
adnexa

WGD

normal

NGD
omentum

NGD
adnexa

Fig. ED8 Whole-genome doubled clone in SPECTRUM patient OV-081 proliferates
slower than the non-genome doubled clones and faster than normal cells. a) Anatomical
sites of two samples collected from SPECTRUM patient OV-081 during primary debulking surgery
prior to any treatment. b) Cell cycle phase distribution of scRNA tumor cells at each biopsy site.
Cell cycle phases were determined by Seurat [62]. c) Clone fraction in S- vs G1/2-phase scWGS
populations for each OV-081 clone within each site. Points are colored by clone on the left and site
on the right. Points with upward pointing triangles are significantly (hypergeometric padj < 0.01)
enriched for S-phase cells relative to other clones in the same site; points with downward pointing
triangles are significantly depleted for S-phase cells. Points are annotated by their ploidy/tumor status
and their site.
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