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Abstract1

Sensitivity analysis is often used to help understand and manage ecological systems, by assessing how2

a constant change in vital rates or other model parameters might affect the management outcome. This3

allows the manager to identify the most favorable course of action. However, realistic changes are often4

localized in time—for example, a short period of culling leads to a temporary increase in the mortality5

rate over the period. Hence, knowing when to act may be just as important as knowing what to act upon.6

In this article, we introduce the method of time-dependent sensitivity analysis (TDSA) that simultane-7

ously addresses both questions. We illustrate TDSA using three case studies: transient dynamics in static8

disease transmission networks, disease dynamics in a reservoir species with seasonal life-history events,9

and endogenously-driven population cycles in herbivorous invertebrate forest pests. We demonstrate10

how TDSA often provides useful biological insights, which are understandable on hindsight but would11

not have been easily discovered without the help of TDSA. However, as a caution, we also show how12

TDSA can produce results that mainly reflect uncertain modeling choices and are therefore potentially13

misleading. We provide guidelines to help users maximize the utility of TDSA while avoiding pitfalls.14

Introduction15

It is not an overstatement to say that no model is ever fully understood if it does not include a16

sensitivity analysis. (Caswell, 2019, p. 4)17

Sensitivity analysis is used to help us understand the past, to predict and manage the future, and to18

identify the key processes in complex systems with multiple feedbacks. The many varieties of sensitivity19

analysis differ in their mechanics, but all involve making some changes to a model and observing how20

its projections change. To help us understand the past, a retrospective sensitivity analysis asks how21

observed past variation in each parameter contributed to relevant features of observed past system22

dynamics. Life Table Response Experiment analysis in population ecology (e.g., Caswell, 1989, 1996;23

Hernández et al., 2022; Oli et al., 2001; Oro and Doak, 2020) is perhaps the most familiar example, decom-24

posing the variation (across time or space) in the dominant eigenvalue of a population projection matrix25

into contributions from variation in each matrix element or demographic parameter. To help us predict26
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and manage the future, prospective sensitivity analyses ask how changes corresponding to potential27

policy changes or management interventions affect projected outcomes, seeking to find targets of oppor-28

tunity where relatively small (and hopefully inexpensive) interventions have a large impact on outcomes29

of interest (e.g., Caswell, 2000; Morris and Doak, 2002). Sensitivity analysis of complex models (e.g.,30

Saltelli et al., 2008) helps us identify which parameters need to be estimated accurately (and which do31

not) to reliably project properties of interest, and which processes or assumptions are most tightly linked32

to which features of model projections. It is rare to find a paper that includes a mechanistic model of a33

biological system but does not include at least one figure showing how solution trajectories, or steady-34

state model properties, change as some parameters are varied—a sensitivity analysis, or the start of one.35

Prospective analyses typically involve time-invariant perturbations (e.g., elasticity analysis of matrix36

projection models (Caswell, 2001)). But in many cases, when to act may be just as important as how37

to act. The importance of “when” was impressed on us by our studies of bee parasites transmitted38

at flowers in eastern U.S. old-field communities (Graystock et al. (2020); Fig. 1(A)). An infected bee39

defecating on a flower may deposit parasites that can infect other bees visiting the flower subsequently40

(Burnham et al. (2021); Figueroa et al. (2019); Graystock et al. (2020)). This allows between-species41

transmission of multi-host parasites, including possible spillover from managed or non-native bees42

to wild native bees (Arbetman et al., 2013; Fürst et al., 2014; Graystock et al., 2016, 2013; Manley et al.,43

2019). Early in the season, our data suggest that the trypanosome parasite C. bombi is most prevalent in44

Ceratina and possibly other bee genera, some of which visit flowers that are also visited by bumble bees45

(Bombus), including rare species of conservation concern (Cameron et al., 2011). Later in the season,46

the parasite is most prevalent in common species of Bombus such as B. impatiens, some of whom again47

share floral resources with other native bee species of conservation concern (Bartomeus et al., 2013).48

As a consequence, an intervention to protect species of concern—for example, by reducing spillover49

from common Bombus species—is likely to be far more effective at some times than others.50

Seasonal turnover in species, likely implying time-varying interaction strengths and therefore51

time-varying sensitivities, is a common feature of natural and managed systems (e.g., freshwater52

plankton: Sommer et al. (2012); mycorrhizal fungi: Dumbrell et al. (2011); plant-pollinator communities:53

CaraDonna and Waser (2020); pests in agroecosystems: Nelson et al. (2013)). Hence, timing is important54
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Figure 1: Examples of systems with strong temporal dynamics, where the timing of management interventions
might be important. (A) Numbers of bees infected with Crithidia bombi captured at an old-field site in Lansing,
NY, sampled in 2017. Data replotted from Graystock et al. (2020), Supplementary Fig. 2d. (B) Oscillations in the
abundance of pine looper moth Bupalus piniarius in three forests in the UK. Data are log10(1+x)-transformed an-
nual estimates of spatially averaged pupal abundance by the UK Forestry Commission, from Kendall et al. (2005).

if humans seek to manage these systems optimally. For example, multivoltine agricultural insect pests55

may overwinter as inactive eggs or pupae, and then have several semi-discrete generations during the56

growing season with large changes in the abundance of crop-damaging life stages (e.g., Nelson et al.,57

2013). On longer time scales, forest insect pests are notorious for having occasional eruptions causing58

extensive damage, followed by a population crash (e.g. Berryman (1986, Ch. 4), Turchin et al. (2003),59

Kendall et al. (2005), Myers and Cory (2013)). Dynamics of this sort are illustrated in Fig. 1(B). In such60

cases, is it better to nip in the bud a growing generation of a multivoltine species or a growing pest61

outbreak, or to wait until the next peak when an intervention might claim more victims among the62

pests for the same cost?63

Time-dependent sensitivity analysis (TDSA) to address such questions can be done in principle64

by brute-force computation: simulate the impacts of brief changes to each parameter, and to each state65

variable, at a fine grid of time points. That may or may not be feasible, depending on model complexity66

and on how much computing power and time are available. Our goal in this paper is to explain and67

illustrate a very general and straightforward method for efficiently performing TDSA, called adjoint68

sensitivity analysis (ASA).69

ASA is not new (see for example Cacuci et al. (2003, 1980); Cao et al. (2002, 2003); Errico (1997)), but70

its biological applications have been very restricted. In some areas of computational science including71
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meteorology, oceanography and earth systems modeling, it is often used in data assimilation, as a72

numerical method for efficiently computing the derivatives of a likelihood function or other measure73

of model-data fit, with respect to time-invariant changes in model parameters (e.g., Fröhlich et al., 2017;74

Lyu et al., 2018; Moore, 2011). But otherwise, it has seen little use in the ecological or epidemiological75

literature—we did not unearth even one example in our literature search. Here, we apply it to a very76

different type of question: how and when should we perturb a system to have maximum impact on77

a biologically-motivated objective function? For instance, we might want to minimize the spread of78

a disease to a species of concern, or to minimize the damage to a crop plant by an invertebrate pest.79

Besides the obvious management relevance, we show later that such questions are also interesting80

theoretically because the answers may provide insights into the dynamics of the system. In addition,81

we make connections between this approach and optimal control theory (Bressan and Piccoli, 2007;82

Lenhart and Workman, 2007), which are largely missing from existing literature.83

The structure of this paper is as follows. First, we present the mathematical formalism used to84

perform TDSA, both for deterministic continuous-time and discrete-time models. We then illustrate85

TDSA using three case studies. The first is a continuous-time disease transmission in hypothetical multi-86

species networks. These are meant to showcase how TDSA can reveal changes in sensitivities resulting87

from system dynamics, even when all parameters and dynamic equations are time-invariant. The88

second and third case studies are empirical examples meant to demonstrate the variety of empirically-89

fitted models where TDSA can be used to guide the management of real systems. The second is an90

integral projection model with seasonal dynamics that describes disease maintenance in a reservoir91

species, while the third involves two discrete-time models of invertebrate pest species that exhibit92

population cycles, one single-patch and the other spatially explicit. We also use specific instances in93

the second and third examples to illustrate some potential pitfalls when performing TDSA, and we94

suggest best practices that can help the practitioner avoid these pitfalls; this is especially important if95

the results are meant to inform management actions. An R (R Core Team, 2021) package implementing96

the methods presented here is in development, and will be described in detail elsewhere.97
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Calculating time-dependent sensitivities98

The steps involved in TDSA are remarkably similar for continuous- and discrete-time models. We there-99

fore give a detailed explanation for continuous time, followed by a brief explanation for discrete time.100

Continuous-time models101

We consider models that can be written as a time-dependent, finite-dimensional system of ordinary102

differential equations (ODE)103

dxi(t)
dt

=gi

(⃗
x(t),⃗θ(t),t

)
, x⃗(0)= x⃗0 (1)104

where x⃗(t)=(x1(t),x2(t),···,xd(t))T is the d-dimensional state vector, and θ⃗(t) is a vector of (possibly105

time-dependent) parameters. (Note that this excludes models that involve integro-differential or106

delay differential equations, but numerical methods for solving such models, e.g. the linear chain107

trick (MacDonald, 1978), often involve approximating them by a larger ODE system where Eqn. (1)108

does apply.) For notational simplicity, we will usually drop the argument θ⃗(t). We assume that the109

management goal can be represented by a reward function J,110

J=
T∫

0

f (⃗x(t),t)dt+Ψ(⃗x(T)) (2)111

that is to be maximized. T is called the time horizon and demarcates the period of interest, f represents112

rewards that accumulate over this time period (hence the integral), while Ψ represents a terminal payoff113

at the end of the period.114

As a simple example, consider an organism in a sink habitat, where the per-capita loss rate µ115

(mortality and emigration combined) exceeds the per-capita unregulated birth rate b, so the population116

is only maintained through immigration at a rate σ. However, due to ongoing habitat restoration117

efforts, µ begins to decrease over time, so the population should eventually become self-sustaining (see118
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Fig. 2(A)). The dynamics is given by119

dx(t)
dt

=bx(t)(1−ax(t))−µ(t)x(t)+σ︸ ︷︷ ︸
g(x(t),t)

, (3)120

where x(t) is the population size at time t, and a the coefficient for reproductive competition. At the121

same time, the organism provides an important ecosystem service, so over a management period from122

t=0 to T, one can define the reward function123

J=
∫ T

0
wx(t)︸ ︷︷ ︸
f (x(t),t)

dt+vx(T)︸ ︷︷ ︸
Ψ(x(T))

, (4)124

where the first term represents the total value of the service over the period (so w is the per-capita125

rate of contribution), and the second term is a terminal payoff that ascribes value to having a large126

population at the end of the period (so v is the value per individual). See Online Supplement Sec. S1127

for parameter values.128

TDSA addresses the question of how the value of the reward J changes in response to a small,129

sudden perturbation of a state variable at some time t, after which the state is then allowed to continue130

along its dynamic trajectory starting from the modified value. Returning to our example, we may want131

to translocate individuals to the habitat to speed up the recovery of the population and increase the132

reward J. A one-off translocation would cause a small, sudden increase in the population size as shown133

in Fig. 2(B). Formally, we define the sensitivity to state variable xi at time t as λi(t)≡ lim
∆xi→0

∆J
∆xi

, where ∆J134

is the change in J resulting from a sudden perturbation xi(t)→xi(t)+∆xi. Hence the change in reward135

∆J is approximately λi(t)∆xi when the perturbation ∆xi is small. The sensitivities will depend on the136

time of perturbation t, and so can tell us when certain management actions, such as a translocation,137

would have the most effect on J.138

Sensitivities can be calculated directly from their definition (perturb a state variable, recalculate the139

state trajectory, and determine the change in J), but it is computationally much more efficient to use140

the adjoint method. The state sensitivities λi(t) themselves satisfy an ODE system called the adjoint141
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Figure 2: Illustration of time-dependent sensitivity analysis. (A) We consider an organism in a sink habitat
that is being improved through restoration efforts, so the per-capita loss rate µ(t) will eventually fall below
the per-capita unregulated birth date b. (B) The population trajectory x(t) is shown in black, and we assume
the reward function J is the grey area under the trajectory, plus a terminal payoff (not shown). Now consider
a one-off translocation effort to speed up the population recovery at time t. This corresponds to a perturbation
x(t)→x(t)+∆x, and leads to a change ∆J in the reward. ∆J can depend on the translocation time t; for example,
it is larger at t2 than at t1 or t3. (C) Not surprisingly, the state sensitivity λ(t) is also higher at time t2. Hence,
translocation is most effective right around when µ(t)= b, so the population has just become self-sustaining.
(D) Time-dependent parameter sensitivities can be calculated from the state sensitivities. A brief spike in the
immigration rate parameter σ at time t produces a state perturbation at time t, and the resulting change in J can
be inferred from λ(t). Generalizing this to arbitrary parameter perturbations is straightforward, see Eqn. (A9).
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equations,142

dλi(t)
dt

=−
∂H
(⃗

x(t),⃗λ(t),t
)

∂xi
, λi(T)=

∂Ψ(⃗x(T))
∂xi

, (5)143

where144

H
(⃗

x(t),⃗λ(t),t
)
≡ f (⃗x(t),t)+

d

∑
j=1

λj(t)gj(⃗x(t),t) (6)145

is called the Hamiltonian; see Appendix A for the derivation. For the purpose of this article H can146

be regarded as a construct that simplifies the expression in Eqn. (5), but an in-depth explanation can147

be found in Dixit (1990), Chapter 10. Because the terminal conditions λi(T) are known, the adjoint148

equations are solved backward in time from t = T to t = 0, giving the sensitivity values at all times149

0≤ t≤T. In the context of this method, the state sensitivities are called adjoint variables, and there150

is one adjoint variable λi for each state variable xi.151

For our example, from Eqns. (3) and (4), we can write down the Hamiltonian152

H(x(t),λ(t),t)= wx(t)︸ ︷︷ ︸
f (x(t),t)

+λ(t)[bx(t)(1−ax(t))−µ(t)x(t)+σ]︸ ︷︷ ︸
g(x(t),t)

, (7)153

Differentiating H(x(t),λ(t),t) and Ψ(x(T)) (from Eqn. (4)) in x, we obtain the adjoint equation and154

terminal condition155

dλ(t)
dt

=−w−λ(t)[b−2abx(t)−µ(t)], λ(T)=v. (8)156

Once we have solved Eqn. (3) for the state trajectory x(t) (black curve in Fig. 2(B)), the right side of the157

adjoint equation is fully specified (except for λ(t)). We can then solve the adjoint equation backward158

in time to obtain λ(t) at all t (Fig. 2(C)). We see that translocation is most effective roughly when µ(t)159

has decreased below b so the population has become self-sustaining, an intuitive result. Translocate160

too early, and few translocated individuals will survive long due to the still-high µ(t). Translocate too161

late and the population has already recovered back to its carrying capacity, so even though translo-162

cated individuals survive longer due to the low µ(t), they will also suppress the per-capita birth rate163

b(1−ax(t)) below µ(t).164

We came upon the idea of using the adjoint method for time-dependent sensitivity calculations165

through optimal control theory (OCT). Conceptually, OCT also involves a system/reward combination166
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like Eqns. (1–2), except that the functions g and f now depend on an additional variable u(t) that167

quantifies external manipulation (control) of the system, so g describes the manipulated dynamics168

while f incorporates the cost of implementing the control. Adjoint variables first show up when we169

apply Pontryagin’s maximum principle (Pontryagin et al., 1962) to find the optimal control strategy170

u∗(t) that maximises J. More importantly, it is known that the adjoint variable λi(t) can be interpreted171

as a “shadow price” (Lenhart and Workman (2007), Section 2.2), the additional profit associated with172

an increment of xi at time t. For an unmanipulated system, this is equivalent to the time-dependent173

sensitivity that we have defined earlier, hence providing the connection with TDSA.174

Adjoint variables also provide a way to compute time-dependent parameter sensitivities (Cao et al.,175

2002). Consider a brief change in the value of the parameter θi at time t, by which we mean a rapid176

change followed by rapid return to its original value (i.e., a spike or dip). This causes a brief change in177

d⃗x(t)
dt via Eqn. (1), which in turn leads to a sudden perturbation of x⃗(t). For example, a brief spike in the178

immigration rate is equivalent to a brief small translocation causing a sudden increase in the population179

size (see Fig. 2(D)). Hence, the sensitivities to a brief parameter perturbation can be inferred from the180

state sensitivities. Sensitivities to an arbitrary temporal pattern of perturbation can be calculated using181

Eqn. (A9), by treating the temporal pattern as a series of brief perturbations chained together (see182

Appendix B).183

Time-dependent sensitivities are easy to compute numerically for the low-dimensional models we184

consider here. We first solve the state equations Eqn. (1) forward in time from 0 to T (using the deSolve185

package (Soetaert et al., 2010) in R (R Core Team, 2021)), saving values at a fine grid of times tk=kT/n,186

where k=0,1,···,n with n≫1. We then solve the adjoint equations Eqn. (5) backwards in time from187

T to 0 using approximate state variable trajectories obtained by linearly interpolating the values at188

times tk. We confirmed that this method works with simulations in which state variables were slightly189

perturbed by hand at various times. The effects of these perturbations on the value of J (integrals190

evaluated numerically by the trapezoid rule) always matched the predicted effect based on the state191

sensitivities λi(t). Numerical methods for large-scale models are available (Cao et al., 2002, 2003).192

Sensitivities allow us to compare between state variables the effects of perturbations by the same ab-193

solute amount. However, sometimes perturbations by the same proportional amount might be the more194
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appropriate comparison, for example if the state variables differ vastly in scale, or if the potential man-195

agement actions (e.g., spraying of pesticides) perturb a state variable (e.g., insect density) by an amount196

proportional to its value. The time-dependent demi-elasticity1 of state variable xi is defined as lim
∆xi→0

xi∆J
∆xi

=197

xiλi. One can also calculate the elasticity, lim
∆xi→0

xi∆J
J∆xi

=xiλi/J, but these can be misleading if the reward198

function J represents deviations from a baseline value. For example, if the goal is to maximize plant yield199

by minimizing damage from herbivory, it is convenient to define the reward function J as −1 times the200

damage due to herbivory. In that case, because J differs from plant yield by a constant, the sensitivities201

and demi-elasticities of J would be the same as those of plant yield, but the elasticities would be different.202

Discrete-time models203

TDSA of discrete-time models is also motivated by its counterpart in optimal control (Lenhart and204

Workman (2007), Chapter 23). We consider a model that can be written as a system of forward recursions205

xi(t+1)=gi(⃗x(t),t), x⃗(0)= x⃗0, (9)206

where t=0,1,2,...,T denotes the time step, and x⃗(t) the state vector at time t, with ith component xi(t).207

We consider a reward function of the form208

J=
T−1

∑
t=0

f (⃗x(t),t)+Ψ(⃗x(T)). (10)209

The contribution from the final time step has been separated from the rest, because it will be used210

later to determine the terminal conditions when solving the adjoint equations backward in time. We211

introduce an adjoint vector λ⃗(t) with the same number of components as the state vector x⃗(t); the212

ith component λi(t) gives the sensitivity of J to perturbations of the state variable xi(t) at time t. The213

adjoint vector satisfies the adjoint equations and terminal conditions214

λi(t)=
∂H
(⃗

x(t),⃗λ(t),t
)

∂xi
for t=0,1,...,T−1, λi(T)=

∂Ψ(⃗x(T))
∂xi

. (11)215

1We chose demi-elasticity, because the more obvious choice of semi-elasticity is often used in economics to represent the
fractional change in objective given an absolute change in the perturbed variable, exactly the opposite of demi-elasticity.
“Demi” is also a useful mnemonic for “denominator”. One author’s suggestion of sensi-lasticity went unheeded.
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where the Hamiltonian H is defined as216

H
(⃗

x(t),⃗λ(t),t
)
≡ f (⃗x(t),t)+

d

∑
j=1

λj(t+1)gj(⃗x(t),t) for t=0,1,...,T−1, (12)217

(Unlike Eqn. (5), here there is no minus sign in front of the derivatives of H.) Eqn. (11) is a system of218

backward recurrence equations, which we can solve backward in time to obtain the sensitivity λi(t)219

at any time t.220

Applications and their Implications221

Having explained how to calculate time-dependent sensitivities, we now embark on a series of appli-222

cations to illustrate the potential payoffs from applying TDSA, and to point out some potential pitfalls.223

Our first case studies, in section Example 1: Exogenous disease spillover in multi-species sink networks,224

are theoretical examples designed to illustrate how state and parameter sensitivities can be strongly225

time-varying even if model equations and parameters are constant. Our second case study (section226

Example 2: Leopard frogs as reservoirs of the amphibian chytrid fungus) is an empirically-fitted model with227

periodic dynamics driven by seasonality, and shows how TDSA can identify the key period in the228

annual cycle—the timing of which may be surprising at first sight, but becomes intuitively clear in229

hindsight. This example also demonstrates how discretization allows us to apply TDSA to models with230

continuous independent variables such as Integral Projection Models (IPM). Our third case study (sec-231

tion Example 3: Population cycles in the pine looper and the larch budmoth) are empirically-fitted autonomous232

models with endogenously-driven oscillatory dynamics, and highlight some of the practical challenges233

in applying the results from TDSA to management actions. In both the second and third examples, we234

also demonstrate the importance of making an effort to interpret TDSA results rather than taking them235

at face value, to avoid drawing spurious conclusions that reflect aspects of the mathematical models236

but do not correspond to real biological phenomena.237
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Example 1: Exogenous disease spillover in multi-species sink networks238

Overview239

Our first examples developed from our work on disease spillover (Ng et al., in press). We consider240

a multi-species sink community that cannot maintain a disease by itself; the disease only persists241

via spillover from an exogenous source. Disease transmission within the community is represented242

by a static unipartite network, meaning that the intra- and inter-species transmission coefficients are243

assumed to be constant parameters. The exogenous spillover rate is also assumed to be constant. The244

time-dependent phenomena of interest are the transient dynamics of disease spread within an active245

season; this is relevant if the disease is seasonal, in that it dies out in the sink community between one246

active season and the next (via an unmodeled process), but is re-introduced at the start of each active247

season via exogenous spillover.248

We consider two hypothetical network designs. Although partially motivated by disease transmis-249

sion in plant-pollinator communities (e.g. trait-matching networks from Truitt et al. (2019)), these net-250

works are not meant to represent any specific empirical system. Rather, they were designed to illustrate251

how TDSA can highlight qualitative features in the dynamics induced by network structure. In each252

case, the objective is to reduce the negative disease impact on a species of concern in the sink community.253

Mathematical model254

We consider a community of m host species, where individuals can either be susceptible or infected.255

The state variables Sj(t) and Ij(t) represent the number of susceptible and infected individuals in256

species j, while Nj(t)≡Sj(t)+ Ij(t) represents the species population. The dynamic equations are257

dSj

dt
=BjNj(1−ajNj)−Sj

(
σj+

m

∑
k=1

bj,kIk

)
−µjSj+γjIj,

dIj

dt
=Sj

(
σj+

m

∑
k=1

bj,kIk

)
−(µj+vj+γj)Ij.

(13)258
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For species j, Bj is the unregulated per-capita birth rate. We assume infection does not affect fecundity.259

We also assume only intra-specific competition for limiting resources necessary for reproduction260

(e.g., breeding sites), represented by the competition coefficient aj; the carrying capacity in a disease-free261

population is then given by Kj=(1−µj/Bj)/aj. µj is the mortality rate of a susceptible individual, vj the262

additional mortality rate arising from infection, and γj the recovery rate. Within-community transmis-263

sion is parametrized by bj,k representing the transmission rate from a species-k infective to a species-j264

susceptible, while exogenous spillover is parametrized by σj representing the per-capita spillover265

infection rate in species j. We assume no vertical transmission, so all individuals are born uninfected.266

Parameters were chosen so that the basic reproduction number R0 of the disease (Diekmann et al., 2013)267

is less than one, so that disease is only maintained in the sink community by the exogenous spillover.268

Objective function269

To create scenarios in which transient dynamics are important, we make the following assumptions. All270

species are active each year between t=0 and T (the active season). All active individuals die at the end271

of the season, while a new generation of active individuals emerge disease-free at the start of next season.272

The population size at the end of one season influences the population size at the start of the next season.273

In both hypothetical networks, we assume there is a species of concern (j= jC) that provides an274

important ecosystem service (e.g., being an efficient natural pollinator of a crop plant), but whose275

population is negatively impacted by the disease, due to a combination of the species being vulnerable276

(BjC only slightly greater than µjC) and a high disease-induced mortality rate (νjC ≫µjC). The goal of277

TDSA is to identify control measures that reduce infection in this species, to reduce the impact on the278

ecosystem service. The reward function J represents the economic value of the service, and is given by279

J=
T∫

0

[
WSjC

SjC(t)+WIjC
IjC(t)

]
dt+

[
VSjC

SjC(T)+VIjC
IjC(T)

]
. (14)280

The integral represents the value of the service over the current season, assuming the service is equally281

valuable throughout (so WSjC
and WIjC

are constants), and scales linearly with the number of individuals.282

The terminal payoff terms represent the value of maintaining a large population at the end of the season,283
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since this will affect the population size at the start of the next season. Since both susceptible and infected284

individuals are equally fecund and produce healthy offspring, VSjC
=VIjC

. For notational simplicity,285

we also introduce coefficients WSj , WIj , VSj and VIj for other species (j ̸= jC) but they are all zero.286

Adjoint equations287

From Eqns. (5–6), the adjoint variables satisfy288

dλSj

dt
=−∂H

∂Sj
=−WSj︸ ︷︷ ︸

service by
suscept. host

+ λSj Bj(2ajNj−1)︸ ︷︷ ︸
suscept. host affects

net birth rate

+

(
σj+

m

∑
k=1

bj,kIk

)
(λSj−λIj)︸ ︷︷ ︸

suscept. host becomes
infected

+ µjλSj︸ ︷︷ ︸
suscept. host

dies

,

dλIj

dt
=−∂H

∂Ij
=−WIj︸ ︷︷ ︸

service by
infected host

+ λSj Bj(2ajNj−1)︸ ︷︷ ︸
infected host affects

net birth rate

+
m

∑
k=1

Skbk,j(λSk−λIk)︸ ︷︷ ︸
infected host generates

new infections

+ (µj+vj)λIj︸ ︷︷ ︸
infected host

dies

+ γj(λIj−λSj)︸ ︷︷ ︸
infected host

recovers

,

(15)289

with terminal conditions290

λSj(T)=VSj , λIj(T)=VIj . (16)291

To interpret each term in Eq. (15), recall that λSj(t) is the shadow price of a susceptible host of292

species j at time t. If dλSj/dt is negative, λSj(t) will increase when t decreases. Hence negative terms293

in dλSj/dt tend to increase the reward from adding a susceptible host at an earlier time. For example,294

focusing on the species of concern (j= jC), the first term −WSjC
is negative since the earlier we add295

the host, the more service the host can provide before the season ends at time T. Conversely, the last296

term µjλSj is positive, since the earlier we add a susceptible host, the more likely it dies before time297

T, hence limiting the amount of service provided (which would otherwise have grown linearly as T−t298

when t decreases), as well as reducing its likelihood of contributing to the terminal payoff VSjC
. The299

third term depends on the sign of λSj−λIj , since the earlier we introduce a susceptible host, the more300

likely it becomes infected before time T, thus changing its shadow price to that of an infected host.301

Similar interpretations can be made for the other terms in dλSj/dt and dλIj/dt.302

We assume that all species other than the species of concern are not at risk (Bj≫µj for j ̸= jC), so one303

possible control measure is to cull these species to slow down the spread of infection. Because culling304
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is often performed indiscriminately regardless of infection status, it is useful to examine the sensitivity305

of the reward J to random removal of individuals from species j ̸= jC. This is given by −λNj , where λNj is306

the adjoint variable for the total population size. Although λNj can be formally derived by working with307

Nj and pj≡ Ij/Nj (the infection prevalence) instead of Sj and Ij as the state variables, one can show that308

λNj =
Sj

Nj
λSj+

Ij

Nj
λIj , (17)309

a rather intuitive expression. In Online Supplement Sec. S3, we derive a general expression for the310

change of adjoint variables under a change of state variables.311

For simplicity, we assume that only one species j= jE receives exogenous infection. This makes312

it easier to interpret how sensitivities reflect network structure. Parameter values (stated in Online313

Supplement Sec. S4) were chosen to illustrate interesting features in time-dependent sensitivities which314

may be less obvious at other parameter values.315

Network 1: Nearest-neighbor network316

As our first hypothetical network, we consider a community of m=5 species with only nearest-neighbor317

interactions as shown in Fig. 3A. (See Fig. S1(A) for the matrix representation of this network.) This can318

be thought of as an extreme example of a trait-matching network (Truitt et al., 2019), where each species319

only interacts with other species that are adjacent along a one-dimensional trait space. Exogenous320

spillover occurs in species 1 (jE =1) while species 5 is the species of concern (jC =5), so the disease321

will have to be progressively relayed from species 1 to 5 via the intermediate species. Indeed, we see322

in Fig. 3(C) that the highest rate of infection per capita (maximum dIj
dt /Nj, indicated by the dots) occurs323

at a later time for a species further down the network. Despite low disease prevalence in species 5, the324

fact that it is vulnerable (due to a low excess of births over natural mortality) means that the population325

decrease across a season can be rather substantial, and the cumulative decrease over multiple years326

quite large, as shown in Fig. S1(B), hence creating the need for control measures.327

The sensitivity of each intermediate species should exhibit a peak in time. For example, culling328

species 4 is ineffective at the start of the season because its population size would have mostly recovered329

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 3 5

Legend

Receives exogenous infection

Species of concern

2 4

Network 1

(A)

1

2

3

4

5

Legend

Network module

Network 2

(B)

0 1 2 3 4 5

Infection dynamics

Time within season (in units of lifespan)

Fr
ac

tio
n 

of
 p

op
ul

at
io

n 
in

fe
ct

ed
 (l

og
 s

ca
le

)

0.
00

1
0.

01
0.

1
1

Max. per−capita
infection rate

1

2

3
4

5

(C)

0 1 2 3 4 5

Infection dynamics

Time within season (in units of lifespan)

Fr
ac

tio
n 

of
 p

op
ul

at
io

n 
in

fe
ct

ed
 (l

og
 s

ca
le

)

0.
00

1
0.

01
0.

1
1

Max. per−capita
infection rate

1

2

3

4
5

(D)

0 1 2 3 4 50.
00

0.
02

0.
04

0.
06

0.
08

Time−dep. sensitivity

Time within season (in units of lifespan)

Se
ns

itiv
ity

 to
 in

di
sc

rim
in

at
e 

cu
llin

g 
(−

λ N
)

Species 5 excluded

1

2
3

4

(E)

0 1 2 3 4 50.
00

0.
04

0.
08

0.
12

Time−dep. sensitivity

Time within season (in units of lifespan)

Se
ns

iti
vi

ty
 to

 in
di

sc
rim

in
at

e 
cu

llin
g 

(−
λ N

)

Species 3 excluded1

2

4

5

(F)

Figure 3: Time-dependent sensitivities to state perturbations from Example 1. Each column corresponds to one
network configuration. Disease spread is subcritical (R0<1), so the disease is maintained by exogenous spillover.
(A) and (B): Infection pathways; line thickness roughly scales with the size of the transmission coefficients bj,k.
(C) and (D): Disease prevalence in each species. Each dot indicates when the per-capita rate of infection is the
highest (note the vertical log scale). Despite the low infection prevalence in the species of concern, the population
decline from disease-induced mortality can be substantial (see Figs. S1(B) and S2(B)). (E) and (F): Sensitivity
of the reward function to indiscriminate culling (removal of random individuals regardless of infection status)
of each species, excluding the species of concern. 18
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before disease prevalence starts to increase. Culling becomes much more effective when the chain of in-330

fection reaches species 4, because removing susceptibles has an immediate impact on density-dependent331

transmission, and also because indiscriminate culling removes more infected individuals. Culling332

species 4 becomes ineffective again late in the season, because there is little time for species 5 to benefit333

from the reduced infection rate before the season ends (see Fig. S3). Because the time of peak sensitivity334

varies with species, the optimal species to target should vary over the active season. Fig. 3(E) shows that335

this is indeed the case: the most important species changes progressively from species 1→2→3→4.336

The progression in the most important species from 1→2→3→4 also depends on the fact that337

the peak sensitivities are of comparable height; otherwise a species may remain unimportant even at338

its peak sensitivity if the peak is low. Why does this occur? An infected individual in a species further339

down the chain of infection is more likely to cause infection in species 5 than one further up the chain340

(hence the large differences in −λIj shown in Fig. S1(D)). However, the per-capita rate of infection341

is also lower for a species further down the chain. These opposing effects lead to comparable peak342

heights in −λSj as shown in Fig. S1(C). Also, the indiscriminate culling sensitivity −λNj is a weighted343

sum of −λSj and −λIj , and the lower prevalence down the chain means a lower weight for −λIj , which344

again opposes the higher value of −λIj .345

Network 2: Modular network with disease spillback346

In this network, we consider m= 5 species grouped into two modules as shown in Fig. 3(C). Mod-347

ules might also arise from trait-matching, where each module is associated with specialization on a348

particular resource type, and indirect interactions via the shared resource type lead to within-module349

disease transmission. Exogenous spillover again occurs in species 1 in the first module (jE=1), while350

species 3 in the second module is the species of concern (jC=3). However, we also choose species 3351

to interact weakly with the first module (for example, it may be less specialized), and hence bridge352

disease transmission between the two modules.353

Unlike Network 1, here other species are not needed to relay the disease from species 1 to 3, and in354

fact species 3 is the one relaying to the rest of the second module. Therefore, one would expect species 1355

to remain the most important species (highest sensitivity) throughout the season. However, suppose that356

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


species 5 in the second module is a highly social species with strong within-species transmission (indi-357

cated by the thicker self-loop in Fig. 3(B)). This allows species 5 to reach high disease prevalence. “Spill-358

back” from species 5 to species 3 may then become more important than the transmission from species 1.359

In Fig. 3(F), we see that indeed species 5 becomes the most important later in the season. However,360

this relies on R0 being sufficiently close to 1 (Fig. S4(A)), so that multi-step within-module transmission361

can occur. We also find that at a higher exogenous spillover rate σ1, the most important species may362

switch back to species 1 towards the end of the season (Fig. S4(B)). This is because the higher spillover363

rate leads to a large decline in the population of species 3, which affects multi-step within-module trans-364

mission (recall that transmission is density-dependent in our model) and hence reduces the importance365

of species 5. To confirm this explanation, we replaced disease-induced mortality by recovery in species 3366

(so that there is negligible population decline) and found that this switch no longer occurred (Fig. S4(C)).367

Time-dependent parameter sensitivities368

As explained earlier, time-dependent parameter sensitivities can be obtained from the adjoint variables369

using Eqn. (A9). We demonstrate this using Network 1, the nearest-neighbor network. First, we370

consider what happens if we increase the mortalities µj briefly between t0 and t1 (e.g. via culling). This371

perturbation can be written as µj →µj+ϵΘ(t), where Θ(t) is a normalised indicator function equal372

to 1
t1−t0

if t∈ [t0,t1], and 0 otherwise, and ϵ is a small parameter representing perturbation size. Using373

Eqn. (A9), the time-dependent parameter sensitivity for µj is given by the integral374

dJ
dϵ

=
1

t1−t0

∫ t1

t0

(
−λSj(t)Sj(t)−λIj(t)Ij(t)

)
. (18)375

In Fig. 4(A) we show the sensitivities for different choices of the start time t0, assuming a window376

length t1−t0=0.2. Since the integrand is proportion to −λNj and the integration window is relatively377

short, not surprisingly, the results are qualitatively similar to −λNj as shown in Fig. 3(G).378

Next, we consider a decrease in the forward transmission rates bj+1,j along the network, again over379

a short time window; this may arise from measures taken to briefly reduce contact between species380
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Figure 4: Time-dependent parameter sensitivities for the nearest-neighbor network (Example 1, Network
1). We consider brief perturbations of 0.2 time units to (A) the mortality rates µj, (B) the forward transmission
rates bj+1,j, and (C) the exogenous spillover rate σ1 to Species 1. Each panel shows the sensitivity of the reward
to the perturbation as we vary the start time of a short perturbation window.
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in the network. For the perturbation bj+1,j→bj+1,j−ϵΘ(t), the sensitivity is given by381

dJ
dϵ

=− 1
t1−t0

∫ t1

t0

(
−λSj+1(t)Sj+1(t)Ij(t)+λIj+1(t)Sj+1(t)Ij(t)

)
, (19)382

and the results at varying start times t0 are shown in Fig. 4(B). We see that targeting transmission links383

further down the chain is more effective at later times.384

Finally, it might be possible to directly target the source of exogenous spillover, so we consider385

what happens if we briefly decrease the exogenous spillover rate σ1. Fig. 4(C) shows the sensitivities386

at varying start times t0. Unlike µ1 and b2,1, here the sensitivity is maximized at the start of the active387

season. To understand why, since disease prevalence in all species is zero at the start of each active388

season, culling Species 1 or reducing transmission from Species 1 to 2 become more effective after a389

slight delay as the disease re-establishes in Species 1, but this buildup of infection is irrelevant for σ1.390

Example 2: Leopard frogs as reservoirs of the amphibian chytrid fungus391

In this second example, we demonstrate how TDSA can be applied to an integral projection model392

(IPM Ellner et al., 2016) with seasonal dynamics, by discretizing the continuous structure in the IPM393

into discrete bins. Wilber et al. (2022) proposed a series of models invoking different factors to explain394

the seasonal dynamics of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two species of395

North American leopard frogs, Rana pipiens and Rana sphenocephala. The models incorporate seasonal396

movements between aquatic and non-aquatic habitats, seasonal breeding, temperature-dependent397

pathogen load dynamics on infected frogs, and temperature-dependent zoospore survival in the water.398

Wilber et al. (2022) focused on reduced compartment models derived from the full model using399

moment closure approximations, in order to allow model fitting by Markov Chain Monte Carlo. But400

here we choose to work with the full model, because TDSA on the full model is not computationally401

burdensome even with fine discretization of the continuous population structure.402

The IPM proceeds in steps of one week, with state variables L(t), S(t), I(x,t), and Z(t), representing403

larvae (tadpoles), susceptible adults, infected adults with log-transformed pathogen load x, and404

zoospores. Each year, all adults are in a shared aquatic habitat during the breeding season; otherwise,405
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they are nonaquatic. Half the adults are female, and each female produces r′ tadpoles at the midpoint406

of the breeding season. Each tadpole has a probability sL of surviving each week, and a probability mL407

of undergoing metamorphosis. However, recruitment is density-dependent, so only a fraction e−KN(t) of408

these metamorphosed tadpoles successfully become adults, where N(t)≡S(t)+
∫ ∞
−∞I(x,t)dx is the total409

number of adults. Susceptible and infected adults have survival probabilities s0 and s0sI respectively.410

When aquatic, susceptible frogs become infected with a probability 1 − e−βZ(t) that increases411

monotonically with Z(t). Newly-infected frogs have log load x drawn from a distribution G0(x), with412

a mean a(T(t)) that decreases linearly with the temperature T(t). For an already-infected frog with413

log load x, the new log load x′ at the next timestep is drawn from a distribution G(x′|x), with a mean414

a(T(t))+bx. Infected adults also have a probability ℓ(x) of recovery that decreases monotonically with x.415

When aquatic, infected frogs shed an amount of zoospores each week proportional to their linear load ex,416

with proportionality constant λ. Zoospores survive each week with a probability sZ(T(t)) that decreases417

monotonically with the temperature T(t). T(t) varies sinusoidally across the year, being the lowest at418

the start/end of the year and the highest mid-year. Finally, zoospores are also being added at a constant419

rate ω from exogenous sources not represented in the model. Altogether, we obtain the equations420

L(t+1)=r′
N(t)

2
R(t)+L(t)sL(1−mL),

S(t+1)=L(t)sLmLe−KN(t)+S(t)s0e−βZ(t)W(t)+s0sI

∫ ∞

−∞
ℓ(x)I(x,t)dx,

I(x′,t+1)=S(t)s0

(
1−e−βZ(t)W(t)

)
G0(x′)+s0sI

∫ ∞

−∞
(1−ℓ(x))G(x′|x)I(x,t)dx,

Z(t+1)=λW(t)
∫ ∞

−∞
ex I(x,t)dx+sZ(t)Z(t)+ω,

(20)421

where both W(t) and R(t) are periodic indicator functions that can take values {0,1}; W(t)=1 when422

the adults are aquatic, while R(t)=1 at the midpoint of the breeding season (where new tadpoles are423

produced). More details can be found in Online Supplement Sec. S5.1.424

Fig. 5 shows the steady-state dynamics of the Bd-bullfrog system. At the start of the breeding425

season, adults that still carry infection from the previous year return to water and shed zoospores,426

leading to a rapid increase in Z, which in turn causes a rapid rise in the number of infected adults and427

depletion of susceptibles. The midseason production and metamorphosis of larvae leads to a small428
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Figure 5: Steady-state model dynamics of the Bd-bullfrog system. Details of the model are described in Sec. Ex-
ample 2: Leopard frogs as reservoirs of the amphibian chytrid fungus. The blue shaded regions show the period of each
year when the bullfrogs are aquatic and exposed to potential infection, and the vertical dashed lines show when
new bullfrog larvae are produced. I(t) in the bottom-left panel is the total number of infected frogs,

∫ ∞
−∞I(x,t)dx.

jump in the number of susceptible and infected adults. Towards the end of the breeding season, higher429

temperature decreases the log Bd load on infected frogs (see Fig. S5), which in turn decreases shedding.430

This, together with the lower zoospore survival at higher temperatures, causes Z to decrease.431
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Now consider a scenario where other vulnerable amphibian species of concern, also susceptible432

to Bd, share the same aquatic habitat with the bullfrogs. Therefore, we want to minimize the exposure433

of these species to zoospores during their breeding seasons. A possible objective function is given by434

J=−
T−1

∑
t=0

V(t)Z(t)−V(T)Z(T), (21)435

where V(t) is a periodic indicator function; V(t)= 1 when the vulnerable species are aquatic. The436

negative sign is so that maximizing the objective function minimizes exposure to Bd. Because we want to437

protect the vulnerable species as long as possible, ideally we would like the time horizon T to be infinite.438

In practice, since the effects of any small perturbation are expected to die off over time, and since439

each year starts off in the same state (assuming any transients have died off), the seasonal sensitivity440

patterns in the first few years become nearly identical and independent of T as long as T is sufficiently441

large (see Online Supplement Fig. S7); hence they approximate the seasonal patterns when T→∞.442

We now discretize the IPM into m log-load bins of width h each. Details of the discretized model443
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are presented in Online Supplement Sec. S5.2. We apply Eqns. (11–12) to obtain the adjoint equations444

λL(t)=λL(t+1)·sL(1−mL)︸ ︷︷ ︸
larvae survive without

metamorphosis

+λS(t+1)·sLmLe−KS(t)−K∑m
i=1 Ii(t)︸ ︷︷ ︸

larvae survive, metamorphose, and are
recruited as susceptible adults

,

λS(t)=λL(t+1)· r′R(t)
2︸ ︷︷ ︸

susceptible adults
produce larvae

−λS(t+1)·KL(t)sLmLe−KS(t)−K∑m
i=1 Ii(t)︸ ︷︷ ︸

susceptible adults reduce recruitment
via density dependence

+λS(t+1)·s0e−βZ(t)W(t)︸ ︷︷ ︸
susceptible adults survive

and remain uninfected

+
m

∑
i=1

λI,i(t+1)·s0

(
1−e−βZ(t)W(t)

)
(G0)i︸ ︷︷ ︸

susceptible adults survive and become infected

,

λI,i(t)=λL(t+1)· r′R(t)
2︸ ︷︷ ︸

infected adults
produce larvae

−λS(t+1)·KL(t)sLmLe−KS(t)−K∑m
i=1 Ii(t)︸ ︷︷ ︸

infected adults reduce recruitment
via density dependence

+ λS(t+1)·s0sIℓi︸ ︷︷ ︸
infected adults survive

and recover

+s0sI

m

∑
j=1

λI,j(t+1)·Gji(1−ℓi)︸ ︷︷ ︸
infected adults survive and change

log load without recovery

+λZ(t+1)·λW(t)exi︸ ︷︷ ︸
infected adults shed

zoospores

,

λZ(t)= −V(t)︸ ︷︷ ︸
vul. sp. exposed

to zoospores

+

[
m

∑
i=1

λI,i(t+1)·(G0)i−λS(t+1)

]
·S(t)s0e−βZ(t)W(t)βW(t)︸ ︷︷ ︸

zoospores infect surviving susceptible adults

+λZ(t+1)·sZ(t)︸ ︷︷ ︸
zoospores survive

,

(22)445

and terminal conditions446

λL(T)=λS(T)=λI,i(T)=0 for all i, λZ(T)=−V(T). (23)447

The adjoint variable λI,i(t) represents the effect of perturbing Ii(t), the number of infected adults in448

bin i (with log load xi) at time t; see Fig. S6. However, it is probably more realistic to consider the effect449

of, say, removing an infected individual sampled at random. Therefore, we introduce the sensitivity450

λI, defined as a weighted average of λI,i(t) with weight proportional to Ii(t):451

λI(t)=
∑m

i=1λI,i(t)Ii(t)
∑m

i=1Ii(t)
. (24)452

Fig. 6 shows the sensitivities when the vulnerable species have the same breeding season as the453

bullfrogs, so V(t)=W(t). For easier visualization, we have plotted the negative of the sensitivities, so454
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a positive plotted value means that increasing the state variable increases the exposure of vulnerable455

species to zoospores. Also, we have only shown the first year out of a time horizon of ten years; the456

patterns are similar in the first few years, so we can think of the patterns as being periodic.457

It is often said that “all models are wrong but some are useful” (Box, 1979). TDSA is a rigorous458

mathematical procedure applied to a user-specified model, but it cannot automatically distinguish459

between the wrong and the useful parts of a model. Hence, a practitioner should make an effort to460

interpret the important qualitative features in the sensitivities, and not just accept the results without461

question. Features that depend only on broad, qualitative model assumptions conceptualize the known462

biology of the system are more likely to be realistic and useful, while others may depend on (possibly463

questionable) model details often chosen for mathematical simplicity. For example, the sharp dips in464

−λS(t) and −λI(t) at t= trepro.+1 are probably questionable. They result from density dependence in465

recruitment assuming that all new larvae appear simultaneously at t= trepro.+1, and that some larvae466

can metamorphose in the next time step without delay. Because these detailed assumptions were likely467

chosen for simplicity rather than realism, the consequent features are unlikely to be realistic, and hence468

should not be taken literally when making management decisions.469

As an example of a more realistic feature, we observe that −λI(t) is lowest around the middle of470

breeding season, even compared to when the adults are non-aquatic. This only relies on the broad prop-471

erty (also present in the data; see Fig. 2 in Wilber et al. (2022)) that an infected adult introduced early472

in the season contributes many times more zoospores to the water than one introduced mid-season,473

directly because of its higher load (from the temperature-dependent load dynamics), and also indirectly474

because of the greater availability of susceptible adults that it can infect (since susceptibles become de-475

pleted mid-season). Hence, even though an infected adult introduced mid-season can immediately shed476

zoospores, an infected adult introduced after the breeding season is more likely to reach the start of the477

next breeding season alive and infected, simply by being closer to next season. The increased probability478

to contribute at the start of next season is more than enough to make up for not contributing immediately.479

This feature relies on less specific assumptions and is hence more likely to be realistic, although the mod-480

eler will still need to decide based on available knowledge. Note that the sensitivities need not reflect481

the relative efficiency of management action—for example, non-aquatic frogs may be harder to locate.482
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Although we have only presented the sensitivities in Fig. 6, a manager should consider whether483

sensitivities or demi-elasticities better reflect the costs and benefits of management actions. Demi-484

elasticities are more useful for actions whose direct effects on the state variables (e.g. population size)485

scale with the size of the state variables; for example, field capture of diseased frogs will probably yield486

more frogs per unit of time effort at higher frog densities. For state variables that exhibit temporal487

variations spanning many orders of magnitude, the demi-elasticities may show qualitative features488

that are completely different from the sensitivities, so while the sensitivities are still technically correct,489

their practical relevance may be limited. As an extreme example, we observe that the larval sensitivity490

−λL(t) peaks in winter before the breeding season. This is because the model assumes that the larvae491

parameters sL and mL remain constant throughout the year, so a hypothetical tadpole introduced in492

winter has a good chance of metamorphosing into a susceptible adult around the start of breeding493

season, hence maximizing its contribution to zoospores through infection and shedding. On the other494

hand, this result is rather jarring since one is unlikely to find tadpoles in winter. By looking at the495

demi-elasticity, we take larval density into account and avoid this feature entirely.496

Finally, whenever we discretize an IPM, it is good practice to check that the number of bins is large497

enough to approximate the continuum limit, by repeating the calculations with varying number of bins498

(see Online Supplement Fig. S8). We also recommend calculating the sensitivities directly by simulating499

explicit perturbations, to check that the adjoint equations were derived and implemented correctly500

(see Online Supplement Fig. S9). While directly calculating the sensitivities for all state variables at501

all time points may be computationally prohibitive (which is why the adjoint method is useful in the502

first place), one can still perform checks at a few time points of interest.503

Example 3: Population cycles in the pine looper and the larch budmoth504

As our final examples we consider two models, both involving moth species that exhibit population505

cycles and cause forest defoliation in years of high abundance. The first model is a single-patch model506

of the pine looper, and the second is a spatially-explicit, multi-patch model of the larch budmoth. Both507

are discrete-time models with steps of one year. We present the pine looper model in detail in this508

section, and leave the details of the larch budmoth to Online Supplement Sec. S6.1 and S6.2.509
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Figure 6: Time-dependent sensitivities of the Bd-bullfrog system. See the main text for the scenario and objective
function. We assume that the vulnerable amphibian species of concern share aquatic habitats with bullfrogs
during the same time period (the blue shaded region). Here, we only show the sensitivities in the 1st year (out of
a time horizon of 10 years). Since the patterns in the few years are nearly identical, we can consider these patterns
as periodic (i.e. the last week wraps around to the first week), and representative of an infinite-horizon scenario.
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Pine looper510

The pine looper moth, Bupalus piniarius, exhibits large population cycles in parts of Europe, and can511

defoliate pine forests and plantations during outbreaks. While numerous explanations have been pro-512

posed for these cycles, Kendall et al. (2005) found that the maternal effects hypothesis had the strongest513

empirical support. The maternal effects model, a discrete-time model with steps of one year, is given by514

N(t+1)=rN(t)X(t)e−sN(t)X(t)+uX(t),

X(t+1)=xmin+e−βN(t)X(t).
(25)515

Here, N(t) is the density of pupae at year t, and X(t) a measure of their average individual quality.516

A constant proportion of pupae is assumed to survive to adulthood, so N(t) is a proxy for the adult517

abundance in that year. X(t) influences the per-capita fecundity, so the total number of offspring518

produced is proportional to N(t)X(t) in the first equation. As a maternal effect, X(t) also influences519

the probability of the offspring surviving from egg to adulthood the next year via the factor euX(t) in520

the first equation. Meanwhile, competition between the offspring reduces the probability of surviving521

to adulthood and also their average individual quality via the factors e−sN(t)X(t) and e−βN(t)X(t) in the522

first and second equations respectively. Kendall et al. (2005) fitted the model to data from three forest523

sites in Scotland: Roseisle, Tentsmuir and Culbin (Fig. 1B); see Table S1 for parameter values. As shown524

in Fig. 7(A), this model leads to oscillations in pupae density. In years of low pupae density, reduced525

competition between their offspring leads to an increase in offspring individual quality. The consequent526

increase in per-capita fecundity and egg-to-adult survival probability then leads to a population boom.527

The increased competition between offspring in the boom years then greatly reduces the individual528

quality and causes the population to crash, completing the oscillation. We note that the phase space529

trajectories are periodic in Roseisle (one complete cycle comprises two consecutive oscillations), and530

appear to be quasiperiodic in Tentsmuir and Culbin; see Fig. S10.531

We now apply TDSA to the maternal effects model. To do so, we need to define the reward function.532

If we assume that tree damage is proportional to moth density, then a natural definition of the reward533

function will be −∑T
t=1 N(t), where T is the time horizon (note the overall minus sign). However,534
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the quasiperiodic steady-state solutions for Tentsmuir and Culbin means that the effects of a state535

perturbation may persist indefinitely without damping out, as shown in Fig. S11. This is because when536

the system returns to the quasiperiodic solution after a small perturbation, it may be phase-shifted537

relative to the unperturbed trajectory, so the difference between the original and perturbed trajectories538

never damps to zero. This means that the change in reward function may depend on the choice of539

time horizon T. To avoid this, we choose a time-discounted reward function given by540

J=−
T−1

∑
t=1

W(t)N(t)−W(T)N(T), W(t)=e−t/τ. (26)541

The exponentially-decaying discount W(t) prioritizes rewards at earlier times and reduces the depen-542

dence on T, as shown in Fig. S12. We choose T=200 years and τ=50 years. From Eqns. (11–12) we543

obtain the adjoint equations544

λN(t)=λN(t+1)r
[
X(t)−sN(t)X(t)2]e−sN(t)X(t)+uX(t)−λX(t+1)βX(t)e−βN(t)X(t)−W(t),

λX(t)=λN(t+1)r
[
N(t)−sN(t)2X(t)+uN(t)X(t)

]
e−sN(t)X(t)+uX(t)−λX(t+1)βN(t)e−βN(t)X(t),

(27)545

with terminal conditions546

λN(T)=−W(T), λX(T)=0. (28)547

Fig. 7(B) shows −λN(t), the sensitivity of the reward to moth removal (i.e. culling) at Roseisle548

for the first 20 years of the time horizon. The sensitivity is positive (i.e. culling is beneficial) near the549

peak pupae density. However, the maximum sensitivity is not exactly at the peak density, but rather550

alternates between one year before or after the peak. This alternating offset may be an artifact of the551

detailed model assumptions and parameter values, but even if real, it still highlights the practical552

challenge of intervening when sensitivity is highest, because we would need to know which phase553

of the alternation the system is at, despite measurement uncertainties. On the other hand, if culling554

is achieved through pesticide spraying, then the demi-elasticity, defined as −N(t)λN(t), may be more555

relevant than the sensitivity if more moths are killed from the same pesticide application when moths556

are more abundant. In Fig. 7(C), we see that culling is consistently most effective at the peak moth557

density. This is also mostly true for the Tentsmuir and Culbin sites (Fig. S13).558
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Figure 7: Dynamics and TDSA of the pine looper model. (A) Oscillatory dynamics in the pine looper, based
on parameters estimated for Roseisle forest, Scotland. The blue line indicates pupae density, and the faint red
line the average individual quality. (B), (C) The sensitivity and demi-elasticity to culling of pine looper, defined
as −λN(t) and −N(t)λN(t) respectively. The reward function here is related to minimizing herbivory damage
by the pine looper, see Eqn. (26). The pupae densities are plotted again in faint blue lines to facilitate comparison.
(D), (E) Phase plane diagrams when 20% of the moths were culled in Roseisle at t=4 (a positive demi-elasticity
peak) and at t=6 (a negative demi-elasticity valley). The black and red trajectories indicate the unperturbed and
perturbed trajectories. The blue square highlights the start of the perturbed trajectory. (F) Similar to (D), except
for the site Tentsmuir at t= 7 (a positive demi-elasticity peak). In (D-F), the differences between the vertical
positions of the red and black dots are relevant to the change in reward function.
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To understand the values of the demi-elasticities, we consider two scenarios, the first a 20% cull559

in Roseisle at t=4 (a positive demi-elasticity peak), and the second a 20% cull at t=6 (a negative demi-560

elasticity valley). By comparing the unperturbed and perturbed trajectories in Fig. 7(D), we see that the561

increase in reward from a cull at t=4 comes from the immediate reduction in moth density that year;562

effects in subsequent years are relatively small. (The latter observation is consistent with the observation563

in Appendix E of Kendall et al. (2005), that pesticide spraying had surprisingly little effect on the564

dynamics, probably because the outbreaks would have collapsed on their own.) In contrast, the decrease565

in reward from a cull at t=6 occurs “downstream”: the cull is followed by a large increase in moth566

density (compared to the unperturbed trajectory) three years later (Fig. 7(E)). For Tentsmuir and Culbin,567

where the steady-state trajectories are quasiperiodic, immediate and downstream effects can both be568

large. For example, as shown in Fig. 7(F), the increase in reward from a 20% cull at t=7 (a positive569

demi-elasticity peak) in Tentsmuir involves not just the immediate reduction in moth density that year,570

but also the net effect of subsequent years of decrease and increase relative to the unperturbed trajectory.571

In such situations a robust mechanistic explanation of the downstream changes following a perturbation572

may not always be possible. To assess whether results are biologically meaningful, a manager should573

also consider performing TDSA on variants of the model that can still fit the data relatively well, for574

example using different functional forms for the biological responses. If the demi-elasticities of these575

variants remain qualitatively similar, a manager can be more confident about using them to guide576

management actions, based on the idea that “truth is the intersection of independent lies” (Levins, 1966).577

Larch budmoth578

The larch budmoth, Zeiraphera diniana, also exhibits large population cycles in parts of Europe. It is579

believed that both parasitism by wasps and the decrease in tree needle quality after heavy budmoth580

herbivory play a role in driving the population cycles (Turchin et al., 2003). In addition, outbreaks of581

budmoths have been found to propagate spatially as recurrent traveling waves across much of Europe582

(Bjørnstad et al., 2002). To explain these recurrent propagating outbreaks, Johnson et al. (2004, 2006)583

proposed a tri-trophic (budmoth-plant-parasitoid), spatially-explicit multi-patch model with budmoth584

and parasitoid dispersal between patches. We performed TDSA on this model, assuming a reward585
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function given by the total plant quality summed across all patches, and across years with exponential586

time-discount. Details of the model and the adjoint equations can be found in Online Supplement587

Secs. S6.1 and S6.2. Just as in Johnson et al. (2006), to capture the essential features of the observed588

recurrent traveling waves, we consider an idealized scenario where suitable budmoth patches are589

embedded in a larger landscape, with higher patch density towards the center. As shown in Fig. 8(A),590

the model was indeed able to capture the phenomenon of recurrent traveling waves. Animated maps591

of the state variables and time-dependent sensitivities can be found in the Online Supplement.592

One possible measure to reduce moth populations and improve plant quality is biological control593

by introducing more parasitoids into a patch; the relevant sensitivity is given by λ⃗P(t). Fig. 8(B) shows594

the snapshot of λ⃗P(t) at t=15. We observe a sudden transition from positive to negative values as we595

move radially away from the central region. In other words, adding parasitoids to some of the outer596

patches actually reduces the overall reward.597

Rather than attempt a detailed explanation of these results from TDSA, we will instead focus on598

some qualitative implications of the results. First, because of the large and sometimes abrupt spatial vari-599

ability in patch-specific sensitivities, biocontrol through parasitoid addition will be more effective when600

implemented regionally, rather than at the single patch level. Viewing the entire region, it is clear there601

are large gains from parasitoid addition in a substantial central area, and interventions should be con-602

centrated there. But at the single patch level, management actions may be very difficult to infer. We iden-603

tified two adjacent patches that have opposite signs in their sensitivities, indicated by the intersections604

between the thin dotted lines in Fig. 8(B) (blue—Patch A; red—Patch B). We examined the dynamics of605

the local state variables, and did not notice any qualitative differences. For example, the budmoth densi-606

ties peak at the same years as shown in Fig. 8(C); Patch B did not lag behind Patch A. Yet, as confirmed607

in Fig. 8(D), adding parasitoids to Patch A can be beneficial in some years, whereas the reverse is true608

for Patch B. We verified using explicit perturbations that these adjoint sensitivities were indeed correct609

(Fig. S14). The mechanism behind the negative sensitivities in Patch B is also not obvious. As shown in610

Fig. S15, adding parasitoids at t=15 increased plant quality over the next few years in both patches, but611

only in Patch B did it lead to a larger cumulative decrease in plant quality over the following decades.612

Because neither the location nor the local dynamics clearly distinguish Patch A from Patch B, how613
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would a manager know in practice whether to add or (if possible) remove parasitoids? Because the614

location of the transition between positive and negative sensitivities is likely to depend on model details615

and on parameter values, a manager operating at the single-patch level could find it very challenging616

to know what local actions are helpful in the long run for the region as a whole.617

Inexplicable findings, such as the large differences between Patch A and Patch B, should evoke618

efforts to determine whether the results are robust, or instead reflect questionable model details. Given619

the (sadly typical) sparsity of data used to develop and parametrize the budmoth models, it is likely620

that different choices of functional forms for herbivory, parasitism, competition, and dispersal would fit621

the data more or less equally well. Would these other models lead to a drastic change in the position622

of the transition, or cause it to disappear altogether? Even in such a high-dimensional, complex system,623

TDSA makes it straightforward to get numerical values for the sensitivity of desired outcomes to any624

state or parameter perturbation; but whether or not to trust those values is an issue that any manager625

needs to consider. As mentioned in the pine looper example, performing TDSA on multiple variants626

of the mathematical model is one possible way to assess the robustness of the results.627

Discussion628

In this paper, we introduced time-dependent sensitivity analysis (TDSA) as a method for assessing the629

sensitivity of a system’s dynamics to perturbations in state variables or parameters at any time. Our630

examples have demonstrated how TDSA can be applied to a wide range of models and applications,631

where sensitivities vary substantially over time due to environmental variation (e.g., seasonality) and/or632

transient dynamics. Often, TDSA provides useful insights about the dynamics of the system, some633

of which would not have been easily discovered without its help. At the same time, Examples 2 and 3634

also show why it is important to make an effort to interpret the results and not accept them uncritically,635

so as to avoid being misled by qualitative features that are really artifacts of specific mathematical636

assumptions in the input model. Table 1 summarizes our recommended “best practices” to help the637

TDSA practitioner navigate some of the potential pitfalls.638

TDSA can be viewed as a stripped-down version of optimal control theory, which brings both639

advantages and disadvantages. The disadvantage is that it provides less information, because it is640
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Figure 8: Dynamics and TDSA of the spatially-explicit larch budmoth model. Each colored pixel corresponds to
a suitable habitat patch embedded in a larger landscape. Animated maps of the state variables and sensitivities can
be found in the Online Supplement. (A) Snapshots of the budmoth density, showing radial traveling waves. These
propagating outbreaks occur every 7–8 years. (B) Snapshot of λP, the sensitivity to the addition of parasitoids,
at Year 15. We observe a sharp transition from positive to negative values as we move away from the central
region. To examine this transition more closely, we selected two adjacent patches, indicated by the intersections
of the thin dotted lines (blue–Patch A; red–Patch B). The dynamics of the two patches turn out to be very similar.
For example, the budmoth densities peak on the same years as shown in (C). Yet, they show completely different
patterns of λP in (D): adding parasitoids to Patch A can be beneficial in the right years, but the reverse is true for
Patch B. (For reference, the vertical dashed lines indicate the years of peak budmoth densities at the two patches.
Also, we have only shown 40 years out of a time horizon of 200 years.) As explained in the main text, this makes
it extremely challenging to infer the correct patch-level management actions from the sensitivities alone.
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only guaranteed to be accurate for small perturbations. The main advantage is that it requires fewer641

assumptions and therefore imposes fewer constraints on the modeler. As in optimal control, TDSA642

requires formalizing the management goal in the form of the objective function—it forces one to be643

explicit about exactly what constitutes a desirable outcome. However, an optimal control model must644

also include a model for the costs of any actions taken. Moreover, cost functions are often chosen645

in practice so as to satisfy methodological constraints, such as adding a small quadratic term just to646

satisfy mathematical convexity conditions that imply the existence of an optimal control. As shown647

in Online Supplement Sec. S2, time-dependent sensitivities can also be made to reflect both costs and648

benefits, but here only the linearized costs matter. Finally, time-dependent sensitivity analysis is also649

computationally much simpler and faster, requiring only straightforward numerical solution of the state650

and adjoint equations, rather than iterative solution of those plus the first-order optimality condition.651

The method of adjoint sensitivity analysis (ASA) which we used is not the only way of doing652

TDSA. An alternative, more direct method is forward sensitivity analysis (FSA) (e.g., Cacuci et al., 2003),653

which uses the variational equations of the state dynamics to calculate how a small change to each654

parameter affects state trajectories and the reward function. However, FSA requires a new solution655

of the variational equations for each parameter and each time of perturbation, so whenever one is656

interested in the effect of perturbations at many different time points, ASA will be far more efficient.657

As we have demonstrated, for management purposes, it is sometimes more meaningful to convert658

sensitivities to demi-elasticities. For example, a high-sensitivity species may be very rare, making659

management actions targeting the species impractical. As shown in the pine looper example, demi-660

elasticities also better reflect the costs and benefits of management actions such as pesticide application,661

where the number of pests directly killed scales with the pest density. In addition, we recommend662

performing checks to confirm that TDSA has been correctly implemented, e.g. by comparing the adjoint663

variables to sensitivities calculated from explicit perturbations at a number of time points. Although664

we have performed the comparisons for all time points in Figs. S9 and S14, this is not necessary and665

may not even be computationally feasible for high-dimensional models (the very motivation behind666

the use of the adjoint formalism).667

Although TDSA is mathematically rigorous, we advise against blind acceptance of its results,668
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especially if they are to inform management actions. The results from TDSA ultimately depend on the669

choice of mathematical model used to describe the dynamical system. Hence, the practitioner should670

make an effort to interpret key features in the sensitivity, and decide whether they only rely on the671

biology broadly conceptualized by the model, or on specific mathematical assumptions of the model672

chosen for simplicity. We saw both types of features in the chytrid fungus example, and we explained673

why only the former should be used for assessing management decisions. If a mechanistic explanation674

is not possible, like in the pine looper example, the practitioner should consider performing TDSA675

for multiple variants of the model to assess the robustness of the results. In addition, the dynamics676

of the system matters. If quasiperiodic, the effects of a perturbation may persist without damping677

(e.g. Fig. S11(c) for the site Tentsmuir in the pine looper example); this will need to be considered when678

defining the reward function so that the sensitivities at early times do not depend too much on the679

time horizon. If model dynamics are chaotic, results from TDSA may be difficult to interpret (although680

this would also be true for other forms of sensitivity analysis).681

We have shown how TDSA can be applied to a wide variety of deterministic models, including682

models with continuous independent variables through discretisation. Although we did not demon-683

strate this using an example, TDSA should also work for models with distributed time delays, e.g. by684

using the (generalized) “linear chain trick” (Hurtado and Richards, 2020; Hurtado and Kirosingh, 2019)685

to convert them into differential equation models, or by formulating the models as integro-differential686

equations with age classes (which can then be discretized). On the other hand, extending TDSA to687

stochastic systems is potentially challenging because the impacts of a perturbation will vary between688

different random realizations of the dynamics.689

We live in a time-varying world, where knowing when to act is often just as important as knowing690

how to act. TDSA simultaneously addresses both questions, and offers a systematic way of probing the691

dynamics of a model, thereby enhancing our understanding of the biological system and facilitating692

decisions on how to achieve management goals. By presenting a balanced view that highlights both693

the strengths of TDSA as well the potential pitfalls, we hope that TDSA can become a useful addition694

to the toolkit of the modelers and natural resource managers.695
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Table 1: Recommended best practices when performing TDSA.

1. Understand the dynamical properties of the model, and choose a reward
function that best reflects the objective—which can represent a management
goal, or a feature of model predictions that you are trying to understand better
by tracing its sensitivity to state or parameter perturbations. A time-discounted
reward should be considered if perturbations do not damp out over time (see
next point) so that the sensitivities are insensitive to the choice of time horizon.

2. Verify that the adjoint equations and numerical solutions have been correctly
derived and implemented, by comparing the adjoint variables with the
sensitivities calculated from the effect of making small perturbations to each
state variable at a few time points. Also, plot the changes in the trajectories
after those perturbations to see whether the effects of the perturbations grow
over time, stay constant, or damp out.

3. In management settings, think about whether sensitivities (same-size pertur-
bations) or demi-elasticities (perturbations that scale with the state variables)
better reflect the cost-benefit tradeoffs of potential actions, especially if the state
variables being perturbed vary over several orders of magnitude.

4. Try to interpret the main qualitative features in the time-dependent sensitivities,
and decide whether they are biologically meaningful or instead artifacts of
questionable model assumptions — don’t just accept results “because the math
says so”.

5. If a mechanistic interpretation of sensitivities cannot be easily obtained, perform
TDSA on variants of the models (e.g. different functional forms) to assess the
robustness of the main results under different mathematical assumptions.
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McFrederick, and S. McArt. 2020. Dominant bee species and floral abundance drive parasite760

temporal dynamics in plant-pollinator communities. Nature Ecology & Evolution 4:1358 – 1367.761

Graystock, P., K. Yates, B. Darvill, D. Goulson, and W. O. H. Hughes. 2013. Emerging dangers: Deadly762

effects of an emergent parasite in a new pollinator host. Journal of Invertebrate Pathology 114:114–119.763

Hernández, C. M., S. P. Ellner, P. B. Adler, G. Hooker, and R. E. Snyder. 2022. An exact version of764

Life Table Response Experiment analysis, and the r package exactLTRE. Methods in Ecology and765

Evolution in review .766

Hurtado, P., and C. Richards. 2020. A procedure for deriving new ODE models: Using the generalized767

linear chain trick to incorporate phase-type distributed delay and dwell time assumptions.768

Mathematics in Applied Sciences and Engineering 1:412 – 424.769

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hurtado, P. J., and A. S. Kirosingh. 2019. Generalizations of the ‘linear chain trick’: Incorporating more770

flexible dwell time distributions into mean field ODE models. Journal of Mathematical Biology771

79:1831 – 1883.772

Johnson, D. M., O. N. Bjørnstad, and A. M. Liebhold. 2004. Landscape geometry and travelling waves773

in the larch budmoth. Ecology Letters 7:967–974.774

———. 2006. Landscape mosaic induces traveling waves of insect outbreaks. Oecologia 148:51–60.775

Kamien, M. I., and N. L. Schwartz. 1991. Dynamic Optimization, vol. 31 of Advanced Textbooks in776

Economics. Elsevier Science B. V.777

Kendall, B. E., S. P. Ellner, E. McCauley, S. N. Wood, C. J. Briggs, W. W. Murdoch, and P. Turchin. 2005.778

Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. Ecological779

Monographs 75:259–276.780

Lenhart, S., and J. T. Workman. 2007. Optimal control applied to biological models. Chapman and781

Hall/CRC.782

Levins, R. 1966. The strategy of model building in population biology. American Scientist 54:421–431.783

Lyu, G., A. Koehl, I. Matei, and D. Stammer. 2018. Adjoint-based climate model tuning: Application784

to the planet simulator. Journal of Advances in Modeling Earth Systems 10:207–222.785

MacDonald, N. 1978. Time Lags in Biological Models, vol. 27 of Lecture Notes in Biomathematics.786

Springer-Verlag Berlin Heidelberg.787

Manley, R., B. Temperton, T. Doyle, D. Gates, S. Hedges, M. Boots, and L. Wilfert. 2019.788

Knock-on community impacts of a novel vector: spillover of emerging DWV-B from789

Varroa-infested honeybees to wild bumblebees. Ecology Letters 22:1306–1315. eprint:790

https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.13323.791

Moore, A. M. 2011. Adjoint data assimilation methods. Pages 351–379 in Schiller, A and Brassington,792

GB, ed. Operational Oceanography in the 21st Century. Springer, Dordrecht.793

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Morris, W. F., and D. F. Doak. 2002. Quantitative Conservation Biology: Theory and Practice of794

Population Viability Analysis. Sinauer Associates, Sunderland, Mass.795

Myers, J. H., and J. S. Cory. 2013. Population cycles in forest Lepidoptera revisited. Annual Review796

of Ecology, Evolution and Systematics 44:565–592.797

Nelson, W. A., O. N. Bjørnstad, and T. Yamanaka. 2013. Recurrent insect outbreaks caused by798

temperature-driven changes in system stability. Science 341:796–799.799

Ng, W. H., C. R. Myers, S. McArt, and S. P. Ellner. in press. Predicting and controlling spillover in800

multi-species disease transmission networks: Steady-state analysis. American Naturalist .801

Oli, M. K., N. A. Slade, and F. S. Dobson. 2001. Effect of density reduction on Uinta ground squirrels:802

analysis of Life Table Response Experiments. Ecology 82:1921–1929.803

Oro, D., and D. F. Doak. 2020. Breeding transients in capture–recapture modeling and their804

consequences for local population dynamics. Scientific Reports 10:15815.805

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelize, and E. F. Mishchenko. 1962. The Mathematical806

Theory of Optimal Processes. Wiley.807

R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for808

Statistical Computing, Vienna, Austria.809

Saltelli, A., D. Gatelli, F. Campolongo, J. Cariboni, M. Ratto, M. Saisana, S. Tarantola, and T. Andres.810

2008. Global Sensitivity Analysis: the Primer. John Wiley & Sons, New York.811

Soetaert, K., T. Petzoldt, and R. W. Setzer. 2010. Solving differential equations in R: Package deSolve.812

Journal of Statistical Software 33:1–25.813

Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen,814

M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk, and M. Winder. 2012. Beyond the plankton815

ecology group (peg) model: Mechanisms driving plankton succession. Annual Review of Ecology,816

Evolution, and Systematics 43:429–448.817

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Truitt, L. L., S. H. McArt, A. H. Vaughn, and S. P. Ellner. 2019. Trait-based modeling of multi-host818

pathogen transmission: Plant-pollinator networks. American Naturalist 193:E149–E167.819

Turchin, P., S. N. Wood, S. P. Ellner, B. E. Kendall, W. W. Murdoch, A. Fischlin, J. Casas, E. McCauley,820

and C. J. Briggs. 2003. Dynamical effects of plant quality and parasitism on population cycles of821

larch budmoth. Ecology 84:1207–1214.822

Wilber, M. Q., M. E. B. Ohmer, K. A. Altman, L. A. Brannelly, B. C. LaBumbard, E. H. L. Sage, N. B.823
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Appendix A: Derivation of the adjoint equations and terminal conditions828

In this section, we present a modified version of the proof from Kamien and Schwartz (1991), Part II,829

Section 4, that the time-dependent sensitivity satisfies the adjoint equations and terminal conditions830

given in Eqn. (5). When we perturb the state vector at time t, only the contribution to the reward J831

downstream from the perturbation will be affected. Hence we introduce the value function832

V(⃗xt,t)≡
∫ T

t
f (⃗x(t′),t′)dt′+Ψ(⃗x(T)),

dxi(t′)
dt′

=gi(⃗x(t′),t′), x⃗(t)= x⃗t, (A1)833

which gives the total contribution to J from time t to T, when the state vector is equal to x⃗t at time834

t. For the original unperturbed trajectory, which we will denote as x⃗∗(·) to avoid confusion, x⃗t= x⃗∗(t),835

but we will also consider other values of x⃗t, in which case the subsequent trajectory x⃗(·) will not be836

x⃗∗(·). (Think of the argument x⃗t as specifying the “initial conditions” at time t.) The value function837

is useful because if we perturb the original state vector to x⃗t at time t, the change in reward is then838

given by the difference ∆J=V
(⃗
xt,t
)
−V(⃗x∗(t),t).839

We now re-write the value function in a different form. First, we introduce a function λ⃗(·) that is840

as of now arbitrary. From the definition in Eqn. (A1),841

V
(⃗
xt,t
)
=
∫ T

t

{
f (⃗x(t′),t′)+∑

j
λj(t′)

(
gj(⃗x(t′),t′)−

dxj(t′)
dt′

)
︸ ︷︷ ︸

“adding a zero”

}
dt′+Ψ(⃗x(T))

=
∫ T

t

{
f (⃗x(t′),t′)+∑

j
λj(t′)gj(⃗x(t′),t′)+∑

j

dλj(t′)
dt′

xj(t′)

}
dt′+∑

j
λj(t)

xt
j︷︸︸︷

xj(t)−∑
j

λj(T)xj(T)︸ ︷︷ ︸
from integration by parts

+Ψ(⃗x(T)).

(A2)842

The change in reward can then be written as843

∆J=
∫ T

t

{[
f (⃗x(t′),t′)− f (⃗x∗(t′),t′)

]
+∑

j
λj(t′)

[
gj(⃗x(t′),t′)−gj(⃗x∗(t′),t′)

]
+∑

j

dλj(t′)
dt′

[xj(t′)−x∗j (t
′)]

}
dt′

+∑
j

λj(t)[xt
j−x∗j (t)]−∑

j
λj(T)[xj(T)−x∗j (T)]+[Ψ(⃗x(T))−Ψ(⃗x∗(T))].

(A3)844
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Now say we only perturb the ith state variable by an amount ϵ at time t, so xt
j−x∗j (t)=ϵ if j= i845

and 0 otherwise. From Taylor approximation, Eqn. (A3) becomes846

∆J=
∫ T

t
∑

k

[
∂ f (⃗x(t′),t′)

∂xk
+∑

j
λj(t′)

∂gj(⃗x(t′),t′)
∂xk

+
dλk(t′)

dt′

]
[xk(t′)−x∗k(t

′)]dt′

+∑
j

λj(t)[xt
j−x∗j (t)]︸ ︷︷ ︸

λi(t)ϵ

+∑
k

[
∂Ψ(⃗x(T))

∂xk
−λk(T)

]
[xk(T)−x∗k(T)]+O(ϵ2).

(A4)847

Notice that if we now choose the arbitrary function λ⃗ to satisfy the adjoint system Eqn. (5), the terms848

in large square brackets vanish, leaving849

∆J=λi(t)ϵ+O(ϵ2) =⇒ λi(t)= lim
ϵ→0

∆J
ϵ

, (A5)850

so λi(t) is just the sensitivity to the above state perturbation. In other words, if a function λ⃗ satisfies851

the adjoint system, then it can be interpreted as a time-dependent sensitivity. Since the sensitivity is852

single-valued, this means that the converse must be true, that the sensitivity must satisfy the adjoint853

system. This completes the proof.854

Appendix B: Time-dependent parameter sensitivity855

In this section, we derive Eqn. (A9), a formula that can be used to calculate time-dependent parameter856

sensitivities from the adjoint variables. Consider a parameter perturbation of the form θ⃗→ θ⃗+ϵ⃗h, where857

h⃗ is a vector-valued function of time that indicates the relative size of perturbation in each parameter (so858

it will only have one non-zero component if we only perturb a single parameter), as well as the temporal859

pattern of the perturbation (so it will only be nonzero over a short time interval if we only perform860

a brief perturbation). ϵ is a small parameter that represents the size of perturbation. From Eqn. (1), the861

resulting changes in the state variables x⃗→ x⃗+δ⃗x satisfy the following (linearized) dynamic equation:862

dδxj

dt
=∑

k

∂gj

∂xk
δxk+∑

k

∂gj

∂θk
ϵhk, (A6)863
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and δ⃗x in turn changes the reward function, Eq. (2), by864

∆J=
∫ T

0
∑

k

∂ f
∂xk

δxkdt+∑
k

∂Ψ(⃗x(T))
∂xk

δxk(T). (A7)865

Plugging Eqns. (5–6) and (A6) into the above expression of ∆J, we get866

∆J=−
∫ T

0
∑

k

[
dλk

dt
+∑

l
λl

∂gl

∂xk

]
︸ ︷︷ ︸

from Eqns. (5–6)

δxkdt+∑
k

λk(T)δxk(T)

=−
��������∑

k
λk(T)δxk(T)+∑

k
λk(0)

0︷ ︸︸ ︷
δxk(0)+

∫ T

0
∑

k
λk

dδxk

dt
dt︸ ︷︷ ︸

from integration by parts

−
∫ T

0
∑

k
∑

l
λl

∂gl

∂xk
δxkdt+

��������∑
k

λk(T)δxk(T)

=
∫ T

0
∑

k
λk

[
�
�
�
��∑

l

∂gk

∂xl
δxl+∑

l

∂gk

∂θl
ϵhl

]
︸ ︷︷ ︸

from Eqn. (A6)

dt−
����������∫ T

0
∑

k
∑

l
λl

∂gl

∂xk
δxkdt

=
∫ T

0
∑

k
λk∑

l

∂gk

∂θl
ϵhldt.

(A8)867

Note that in the second step, δxk(0)=0 since a finite parameter perturbation starting at t=0 should868

not cause a finite change in the state variables at t=0. The sensitivity (a Gateaux derivative, in the869

language of functional analysis) is therefore given by870

dJ
dϵ

=∑
j

∫ T

0
λj(t)

∂gj

(⃗
x(t),⃗θ(t),t

)
∂⃗θ

·⃗h(t)

dt. (A9)871

where
∂gj(⃗x(t),⃗θ(t),t)

∂⃗θ
is the vector

(
∂gj
∂θ1

, ∂gj
∂θ2

,···
)T

.872

Since the normalization of h⃗ affects the value of the sensitivity, if we are trying to compare perturba-873

tions associated with different management options, it is preferable that we normalize h⃗ for each option874

in a way that permits a fair comparison. For example, if ϵ⃗h is a brief perturbation centered at time t∗875

only in the kth component of θ⃗, and we normalize hk such that
∫ T

0 hk(t)dt=1, then Eqn. (A9) reduces to876

dJ
dϵ

≃∑
j

λj(t∗)
∂gj

(⃗
x(t∗),⃗θ(t∗),t∗

)
∂θk

. (A10)877
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Eqn. (A10) also provides some insights into the interpretation of the more general expression,878

Eqn. (A9). Comparing the two equations, we see that the integral in Eqn. (A9) can be thought of as879

“chopping” up a more general ϵ⃗h into a series of brief perturbations centered at different times, and880

then summing over the sensitivities to these brief perturbations.881
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Online Supplement

Ng et al, A time for every purpose: using time-dependent sensitivity analy-882

sis to help manage and understand dynamic ecological systems, The American883

Naturalist.884

S1 Parameter values for the introductory model885

In this section, we provide the parameter values of the introductory model Eqns. (3) and (4) used886

to illustrate the adjoint method. As a reminder, the model describes a population in a sink habitat887

that is currently maintained through immigration, but the habitat is being restored so eventually the888

population will become self-sustaining. We use the abbreviation PU for the arbitrary population unit,889

and VU for the arbitrary value unit.890

• Unregulated per-capita birth rate: We choose b=1/year.891

• Per-capita loss rate: We want µ(t) to decrease as a sigmoid, so we choose892

µ(t)=µ0+(µ1−µ0)/(1+e(t−t0)/τ), (S1)893

where µ0 = 1.5/year and µ1 = 0.5/year are the pre- and post-restoration per-capita loss rates,894

t0 = 10 years the time at the inflection point of the sigmoid, and τ = 2 years a timescale that895

characterises the steepness of the sigmoid.896

• Coefficient for intraspecific competition: We choose a=0.1/PU897

• Immigration rate: We choose σ=0.2 PU/year.898

• Per-capita rate of contribution to ecosystem service: We choose w=1 VU/year/PU.899

• Per-capital terminal payoff: In this example, any perturbation will eventually decay downstream,900

so it is possible to eliminate the effects of a finite time horizon if we choose v such that it is equal901

to the ecosystem service contribution had the time horizon been extended indefinitely beyond T.902

To estimate this, we linearise Eqn. (3) about the post-restoration carrying capacity K, and find that903

any perturbation will decay exponentially at a rate µ1−b(1−2aK) and hence contribute a reward904

of w/[µ1−b(1−2aK)]. Based on this reward, we choose v=1.74 VU/PU.905

• Initial conditions: We want x(0) to be the steady-state population pre-restoration. Solving the906

equation bx(0)(1−ax(0))−µ0x(0)+σ=0 gives us x(0)=0.37 PU.907
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S2 Incorporating perturbation costs into time-dependent sensitivities908

Just like in optimal control theory, we now consider a manipulated system909

dx(t)
dt

=g(⃗x(t),u(t),t), x⃗(0)= x⃗0, (S2)910

where u(t) quantifies the external manipulation. We also define911

K≡
∫ T

0
c(⃗x(t),u(t),t)dt, (S3)912

the total cost of the manipulation, analogous to the total reward function J. If there is no manipulation,913

there is no manipulation cost, so we require that c(⃗x,0,t)=0 for any x⃗ and t. At the same time, we914

assume that the integrand f (⃗x(t),t) of the total reward J does not depend directly on u(t).915

We are interested in the effects of a small, brief manipulation at time t∗ on the net value J−K. More916

specifically, we consider u=ϵh, where h is a narrow window function centered at time t∗, normalized917

such that
∫ T

0 h(t)dt = 1. Since J is only indirectly affected by the manipulation through the effects918

on x⃗(t), if we interpret u as yet another parameter with an unperturbed value of 0, we can apply919

Eqn. (A10) from Appendix B, so920

∆J≃ϵ∑
j

λj(t∗)
∂gj(⃗x(t∗),u(t∗),t∗)

∂u

∣∣∣∣
u(t∗)=0

(S4)921

Meanwhile, since c(⃗x,0,t)=0 for any x⃗ and t, this is also true for its partial derivative in x⃗, so to order922

O(ϵ), ∆K only comes from the direct dependence of c on u. More specifically,923

∆K=
∫ T

0

∂c(⃗x(t),u(t),t)
∂u

∣∣∣∣
u(t)=0

ϵh(t)dt≃ ∂c(⃗x(t∗),u(t∗),t∗)
∂u

∣∣∣∣
u(t∗)=0

ϵ, (S5)924

where in the second step, we used the fact that h is a normalized narrow window function centered925

at time t∗. Hence, the sensitivity to a small, brief manipulation at time t∗ is given by926

lim
ϵ→0

∆J−∆K
ϵ

=∑
j

λj(t∗)
∂gj(⃗x(t∗),u(t∗),t∗)

∂u

∣∣∣∣
u(t∗)=0

− ∂c(⃗x(t∗),u(t∗),t∗)
∂u

∣∣∣∣
u(t∗)=0

. (S6)927

Note that unlike optimal control theory, we only need the linearized versions of the functions gj and928

c about u=0 and not their full functional forms in order to calculate the sensitivity.929
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S3 Change of adjoint variables under a change of state variables930

Let x⃗ be the original state variables, and y⃗ be the new state variables. For simplicity, assume that the931

transformation is invertible and also has no explicit time dependence, so we can write each new variable932

yi as a function yi(⃗x) of the old variables, and each old variable as a function xi(⃗y) of the new variables.933

When taking partial derivatives, it is important to keep track of what other variables are being held934

constant. We will use the notation ( ∂
∂xi
)x to mean holding all other xj̸=i constant. The old and new935

variables satisfy the dynamic equations936

dxi

dt
=gxi (⃗x(t),t),

dyi

dt
=gyi (⃗y(t),t). (S7)937

Since the transformation does not contain any explicit time dependence, chain rule tells us that938

dyi

dt
=∑

j

(
∂yi

∂xj

)
x

dxj

dt
=∑

j

(
∂yi

∂xj

)
x
gxj , (S8)939

so we have the relation and inverse relation940

gyi =∑
j

(
∂yi

∂xj

)
x
gxj , gxi =∑

j

(
∂xi

∂yj

)
y
gyj (S9)941

Let the reward function be942

J=
∫ T

0
f (⃗x(t),t)dx+Ψ(⃗x(T)). (S10)943

The old adjoint variables satisfy the adjoint equations and terminal conditions944

dλxi

dt
=−

(
∂ f
∂xi

)
x
−∑

j
λxj

(
∂gxj

∂xi

)
x
, λxi(T)=

(
∂Ψ
∂xi

)
x

∣∣∣∣⃗
x=⃗x(T)

, (S11)945

while the new adjoint variables satisfy946

dλyi

dt
=−

(
∂ f
∂yi

)
y
−∑

j
λyj

(
∂gyj

∂yi

)
y
, λyi(T)=

(
∂Ψ
∂yi

)
y

∣∣∣∣∣⃗
y=⃗y(T)

. (S12)947

In the remainder of this section, we will prove the relation948

λyi =∑
j

(
∂xj

∂yi

)
y
λxj . (S13)949
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First, we define950

λ′
i≡∑

j

(
∂xj

∂yi

)
y
λxj . (S14)951

Our strategy is to show that λ′
i satisfies the same adjoint equations and terminal conditions as λyi , so952

we can then conclude that λ′
i=λyi , hence proving the relation. Consider953

dλ′
i

dt
=

d
(

∑j

(
∂xj
∂yi

)
y
λxj

)
dt︸ ︷︷ ︸

definition of λ′
i

=∑
j

(
∂xj

∂yi

)
y

dλxj

dt
+∑

j
λxj

d
(

∂xj
∂yi

)
y

dt︸ ︷︷ ︸
from product rule

=∑
j

(
∂xj

∂yi

)
y

[
−
(

∂ f
∂xj

)
x
−∑

k
λxk

(
∂gxk

∂xj

)
x

]
︸ ︷︷ ︸

from adjoint equations Eqn. (S11)

+∑
j

λxj∑
k

gyk︷︸︸︷
dyk

dt

(
∂2xj

∂yi∂yk

)
y︸ ︷︷ ︸

from chain rule

=−∑
j

(
∂xj

∂yi

)
y

(
∂ f
∂xj

)
x︸ ︷︷ ︸(

∂ f
∂yi

)
y

−∑
j
∑

k

(
∂xj

∂yi

)
y
λxk

(
∂gxk

∂xj

)
x︸ ︷︷ ︸

(∗)

+∑
j
∑

k
λxj gyk

(
∂2xj

∂yi∂yk

)
y

.

(S15)954

We will first simplify the term (∗) before returning to the equation. We have955

(∗)=∑
j
∑

k
λxk

(
∂xj

∂yi

)
y

(
∂gxk

∂xj

)
x
=∑

j
∑

k
λxk

(
∂xj

∂yi

)
y
∑
m

(
∂ym

∂xj

)
x

(
∂gxk

∂ym

)
y︸ ︷︷ ︸

from chain rule

=∑
k

∑
m

λxk∑
j

(
∂xj

∂yi

)
y

(
∂ym

∂xj

)
x︸ ︷︷ ︸

δi,m

(
∂

∂ym

[
∑
n

(
∂xk

∂yn

)
y
gyn

]
︸ ︷︷ ︸

from Eqn. (S9)

)
y

=∑
k

∑
n

λxk∑
m

δi,m

(
∂

∂ym︸ ︷︷ ︸
∂

∂yi

[
∑
n

(
∂xk

∂yn

)
y
gyn

])
y

=∑
k

∑
n

λxk

[(
∂xk

∂yn

)
y

(
∂gyn

∂yi

)
y
+

(
∂2xk

∂yn∂yi

)
y
gyn

]
︸ ︷︷ ︸

from product rule

.

(S16)956

Now we replace the dummy variables k and n in (∗) by j and k respectively, and plug it back into957
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Eqn. (S15). We get958

dλ′
i

dt
=

(
∂ f
∂yi

)
y
−∑

j
∑

k
λxj

(
∂xj

∂yk

)
y

(
∂gyk

∂yi

)
y
−∑

j
∑

k
λxj

(
∂2xj

∂yk∂yi

)
y

gyk+∑
j
∑

k
λxj gyk

(
∂2xj

∂yi∂yk

)
y︸ ︷︷ ︸

cancels

=

(
∂ f
∂yi

)
y
−∑

k
λ′

k

(
∂gyk

∂yi

)
y
.

(S17)959

Comparing Eqn. (S17) to Eqn. (S12), we see that λ′
i does indeed satisfy the same adjoint equations in960

Eqn. (S12) as λyi . All that is left is to show that λ′
i also satisfy the same terminal conditions in Eqn. (S12).961

Consider962

λ′
i(T)=∑

j

(
∂xj

∂yi

)
y
λxj(T)=∑

j

(
∂xj

∂yi

)
y

(
∂Ψ
∂xj

)
x

∣∣∣∣∣⃗
x=⃗x(T)︸ ︷︷ ︸

from Eqn. (S11)

=

(
∂Ψ
∂yi

)
y

∣∣∣∣∣⃗
y=⃗y(T)

, (S18)963

hence completing the proof.964

More elegant proofs probably exist from optimal control theory, but this version is the most965

straightforward.966

S4 Parameter values for Example 1:967

Disease spillover into multi-species sink communities968

As mentioned in the main text, the parameter values have been chosen to best illustrate the qualitative969

features of interest. We explain the choices in more details below.970

• Disease-free mortality (µj): For simplicity, we assume that all species have the same µj. Without loss of971

generality, we choose the units of time so that one unit corresponds to one lifespan, so µj=1 for all j.972

• Unregulated per-capita birth rate (Bj): For the species of concern, we want there to be a substantial973

population decline despite the low infection prevalence (especially if the disease reaches the species974

of concern from the exogenous source only after a long chain of transmission), so that control975

measures are necessary. Therefore, we choose BjC =1.02 so that it is only very slightly above µjC .976

For all other species, as explained in the main text, culling an intermediate species too early in977

the season is ineffective since the population would have mostly recovered by the time the chain of978

infection reaches the species. To demonstrate this point clearly, we want Bj≫µj, so we choose Bj=5.979

• Intraspecific competition coefficient (aj) or carrying capacity (Kj): We can specify either aj or Kj since980

they are related by Kj=(1−µj/Bj)/aj. For simplicity, we assume that all species have the same Kj,981

and without loss of generality, we choose the units of population size so that Kj=1 for all j. This982

means that aj=0.8 for all species, except the species of concern, where ajC ≃0.02. In other words, the983
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large carrying capacity in the species of concern despite the low birth rate is due to low intraspecific984

competition.985

Alternatively, we could have chosen the same competition coefficient aj=0.8 for all j, in which986

case all species will have Kj=1 except for the species of concern, where KjC ≃0.02, i.e. a low carrying987

capacity. We find that most qualitative features observed in the two networks are still present under988

this alternative scenario.989

• Disease-induced mortality (νj): We want a large disease-induced mortality in the species of concern,990

so we choose νjC =5. In contrast, for all other species, we choose νj=0, so the disease has no impact991

on their populations.992

• Recovery rate (γj): Again, for there to be a substantial population decline in the species of concern, we993

need a high per-capita rate of infection in the species of concern, even after a long chain of transmis-994

sion, while still keeping R0<1. Numerically, we find that this is easiest to achieve when all species995

have comparable infectious lifetimes 1/(µj+νj+γj). Since the species of concern already has a short996

infectious lifetime due to the large disease-induced mortality νjC , we set γjC =0. For all other species997

without disease-induced mortality, we choose γj=5, so that they recover quickly from infection.998

• Length of active season (T): Even though both networks were meant to be hypothetical, we designed999

them with pollinators in mind. Since the average lifespan of a bee is of order 20–30 days, we choose1000

T=5 so that the active season would correspond to a realistic period of 100–150 days.1001

• Coefficients in the reward function (WSjC
, WIjC

, VSjC
, VIjC

): Without loss of generality, we choose the1002

units of value so that WSjC
=1. We assume that infected individuals are just as capable of providing1003

the ecosystem service, so WIjC
=1 as well. (One possible scenario is that most infected individuals1004

in the species of concern start off as asymptomatic carriers, but quickly die once the symptoms set1005

in. Therefore, the fecundity of infected individuals as well as the ecosystem service they provide1006

remain unaffected before they die.) For the terminal payoffs, we arbitrarily choose VSjC
=VIjC

=1.1007

We find that most qualitative features observed in the networks are still present under other choices1008

of WIjC
, VSjC

and VIjC
.1009

• Transmission coefficients (bj,k): We parametrize bj,k according to the network structure and then1010

rescale them so that the dominant eigenvalue of the next-generation matrix is R0. Below, we present1011

the values of bj,k before rescaling.1012

– Network 1: We take the c→∞ limit of the trait-matching model, which gives1013

B=



1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1


. (S19)1014
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– Network 2: We first define resource utilization rj,k as the relative frequency an individual of1015

species k chooses to utilize resource type j. As explained in the main text, there are two resource1016

types, and bridge species 3 (the species of concern) is less specialized, so we choose1017

r=

1 1 0.2 0 0

0 0 0.8 1 1

 (S20)1018

We then assume that B is given by B=rTr. To enhance intraspecific transmission in species 5,1019

we also double the value of b5,5.1020

• Basic reproduction number (R0): We choose R0=0.9 for Network 1, and R0=0.95 for Network 2.1021

• Spillover coefficient (σj): In both networks, only the first species receive exogenous spillover. We1022

choose σ1=0.2 for both networks.1023

• Initial conditions (Sj(0), Ij(0)): We choose Sj(0)=Kj and Ij(0)=0 for all j. In other words, we assume1024

that each species starts the current season disease-free at the carrying capacity. This is mainly for sim-1025

plicity, so that the transient dynamics mostly reflect disease transmission and not population growth.1026

S5 More details on Example 2:1027

Leopard frogs as reservoirs of the amphibian chytrid fungus1028

S5.1 Functional forms and parameter values1029

The load-dependent functions ℓ(x), G0(x) and G(x′|x) are assumed to take the form1030

ℓ(x)=1−Φ(x|µl,σl),

G0(x′)=ϕ(x′|a(t),σ0),

G(x′|x)=ϕ(x′|a(t)+bx,σ0).

(S21)1031

Here ϕ and Φ are the probability density and cumulative distribution functions of the normal distri-1032

bution, with mean and standard deviation given by the two parameters after the vertical bars.1033

The temperature-dependent functions a(T) and sZ(T) are assumed to take the form1034

a(T)=a0+a1(T−Tbase),

sZ(T)=
sZ,0

1+e(T−TZ)/σZ
,

(S22)1035

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


The temperature is assumed to vary sinusoidally across the year, and is given by1036

T(t)=Tmin+
Tmax−Tmin

2

[
1−cos

(
2πt
52

)]
, (S23)1037

where t here is in weeks, and it is assumed that one year has exactly 52 weeks.1038

Wilber et al. (2022) fitted separate Bd transmission models at four geographic locations (Louisiana,1039

Tennessee, Pennsylvania, and Vermont), and at three possible values of the parameter K controlling1040

density dependence in recruitment: e10 (low density), e8 (medium density) and e4 (high density). Most1041

parameter values can be found in Table S2 from Wilber et al. (2022); we chose parameter values for1042

Tennessee under the high-density assumption, as well as sI =1. Other parameter values that can only1043

be found in the main text or in their scripts are: Tmin=4◦C, Tmax=27◦C, aquatic calendar days 30–1501044

(so W(t)=1 for week numbers 5–21), and reproduction calendar day 90 (so R(t)=1 for week number1045

13).1046

S5.2 Discretizing the IPM1047

We discretize the IPM in Eqn. (20) into m bins each of width h. The ith bin has midpoint xi, lower and1048

upper boundaries xi and xi, and contains Ii(t) infected individuals (so Ii(t) approximates I(xi,t)h). The1049

discretized equations are then given by1050

L(t+1)=r′
N(t)

2
R(t)+L(t)sL(1−mL),

S(t+1)=L(t)sLmLe−KN(t)+S(t)s0e−βZ(t)W(t)+s0sI

m

∑
i=1

ℓi Ii(t),

Ii(t+1)=S(t)s0

(
1−e−βZ(t)W(t)

)
(G0)i+s0sI

m

∑
j=1

(1−ℓj)GijIj(t),

Z(t+1)=λW(t)
m

∑
i=1

exi Ii(t)+sZ(t)Z(t)+ω,

(S24)1051

where1052

N(t)=S(t)+
m

∑
i=1

Ii(t),

ℓi=1−Φ(xi|µl,σl),

(G0)i=Φ(xi|a(t),σ0)−Φ(xi|a(t),σ0),

Gij=Φ(xi|a(t)+bxj,σ0)−Φ(xi|a(t)+bxj,σ0).

(S25)1053
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S5.3 Deriving the adjoint equations1054

To derive the adjoint equations, we first write down the Hamiltonian1055

H=λL(t+1)·
[

r′
S(t)+∑m

i=1Ii(t)
2

R(t)+L(t)sL(1−mL)

]
+λS(t+1)·

[
L(t)sLmLe−KS(t)−K∑m

i=1 Ii(t)+S(t)s0e−βZ(t)W(t)+s0sI

m

∑
i=1

ℓi Ii(t)

]

+
m

∑
i=1

λI,i(t+1)·
[

S(t)s0

(
1−e−βZ(t)W(t)

)
(G0)i+s0sI

m

∑
j=1

(1−ℓj)GijIj(t)

]

+λZ(t+1)·
[

λW(t)
m

∑
i=1

exi Ii(t)+sZ(t)Z(t)+ω

]
−V(t)Z(t).

(S26)1056

We then obtain the adjoint equations, Eqn. (22), by taking partial derivatives of the Hamiltonian H1057

according to Eqn. (11).1058
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S6 More details on Example 3:1059

Population cycles in the pine looper and the larch budmoth1060

S6.1 Larch budmoth: Model details1061

Johnson et al. (2004, 2006) proposed a tritrophic, spatially-explicit, discrete-time model, where budmoths1062

and their parasitoids are located in patches of suitable habitats embedded within a larger landscape.1063

In each patch, which we index by i (maximum n), and at year t, the local densities of budmoths1064

and parasitoids are represented by state variables H(i,t) and P(i,t), while the local plant quality is1065

represented by the state variable Q(i,t) with a maximum value of 1. The dynamics can be represented1066

by the equations1067

H(i,t+1)=
n

∑
j=1

{
e−(dij/αH)

2

CH︸ ︷︷ ︸
budmoth
dispersal

Hjexp
[

r0

(
1−e−Q(j,t)/δ− H(j,t)

k

)]
︸ ︷︷ ︸

local budmoth growth

exp
(
− aP(j,t)

1+awP(j,t)

)
︸ ︷︷ ︸

avoiding local parasitism

}
,

P(i,t+1)=
n

∑
j=1

{
e−(dij/αP)

2

CP︸ ︷︷ ︸
parasitoid
dispersal

Hj

[
1−exp

(
− aP(j,t)

1+awP(j,t)

)]
︸ ︷︷ ︸

local parasitism

}
,

Q(i,t+1)=(1−β)+βQ(i,t)︸ ︷︷ ︸
local plant recovery

− uH(i,t)
v+H(i,t)︸ ︷︷ ︸

local herbivory

.

(S27)1068

For dispersal, dij is the distance between patches, and we assume a Gaussian kernel with dispersal1069

parameters αH and αP for the budmoths and parasitoids; CH and CP are normalization constants.1070

Before dispersal, we assume that the local budmoth and parasitoid densities change in accordance to1071

the local dynamics. For the budmoth, r0 is the maximum growth rate2, δ is a scale parameter that1072

determines how fast the growth rate approaches r0 with increasing plant quality Q(j,t), and k is the1073

budmoth carrying capacity in the limit of large Q(j,t), so 1/k characterizes intraspecific competition.1074

Local parasitism is described by a modified Nicholson-Bailey framework: the exponential describes1075

the probability of a budmoth avoiding parasitism, and is parametrized by a and w representing the1076

search efficiency of a parasitoid and the mutual interference between parasitoids. Finally, for local1077

plant dynamics, β represent the rate at which plant quality Q(i,t) recovers towards 1, while u and1078

v characterize the impact of budmoth herbivory on plant quality. We note that Johnson et al. (2004)1079

also introduced an additional parameter that is meant to approximate the effects of demographic1080

stochasticity, although it was omitted in Johnson et al. (2006); we chose to omit it as well.1081

2Or nearly so, since Q(j,t) cannot exceed 1, so the maximum growth rate is really r0(1−e−1/δ)≃0.989r0 for the chosen
value of δ=0.22.
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Most parameter values can be found in Table 1 of Johnson et al. (2006), although note that the1082

parameter labels (r0,K,A,W,A,C,D,δ) should be corrected to (r0,k,a,w,β,u,v,δ). Other parameter values1083

that can only be found in the main text are: αH =10 km and αP=5 km. For the normalization constants1084

CH and CP, the authors stated that they were chosen such that the “total proportion of dispersal across1085

suitable and unsuitable habitat sums to one”. Therefore, we discretized the landscape into an arbitrarily1086

large spatial grid of resolution 3×3 km (based on the patch dimensions in Johnson et al. (2004)), and1087

assumed that the Gaussian kernel applied to any pair of grid cells, and not just grid cells assigned1088

as suitable patches. We then obtained CH using1089

CH =
∞

∑
i=−∞

∞

∑
j=−∞

e(i
2+j2)/(αH/(3 km))2

, (S28)1090

where i and j here are grid indices (not patch indices). A similar expression was used for CP.1091

We wanted to replicate the scenario in Johnson et al. (2004, 2006) where patches near the center of1092

the landscape had the highest connectivity. According to Johnson et al. (2004), “habitat configurations1093

were created by assuming that the probability of a patch being suitable declined exponentially with the1094

distance from the focal location”. Therefore, we drew random samples from an exponential distribution1095

with a mean of 5 grid units, applied a random sign, and rounded them to the nearest integer. Pairs1096

of these integers were then used as grid indices for the suitable patches. We generated 500 unique1097

patches this way.1098

Since we were only interested in the deterministic version of the model, we did not introduce1099

random variations into r0 for each patch and timestep as was done in Johnson et al. (2006). Also, even1100

though we initialized the simulation the same way as Johnson et al. (2006), we ran the simulation for1101

many time steps before the start of the time horizon, to allow any transients to die off.1102

S6.2 Larch budmoth: Objective function and adjoint equations1103

A possible objective function is to maximize the plant quality over a time horizon from t=1 to T, with1104

weight W(i,t) assigned to patch i at time t, so1105

J=
T−1

∑
t=1

n

∑
i=1

W(i,t)Q(i,t)+
n

∑
i=1

W(i,t)Q(i,T).1106

We choose an arbitrary time horizon of T=200 years, and we assigned equal weight to all patches,1107

but more weight to more recent years, by having1108

W(i,t)=e−t/τ,1109
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where τ=50 years. Just as in the pine looper example, the decaying weights reduce the dependence1110

of the time-dependent sensitivities on the time horizon, should the dynamics be quasiperiodic.1111

The Hamiltonian (which we denote by H to avoid confusion with the budmoth density) is given by1112

H=
n

∑
i=1

λH(i,t+1)
n

∑
j=1

{
e−(dij/αH)

2

CH
H(j,t)exp

[
r0

(
1−e−Q(j,t)/δ− H(j,t)

k

)]
exp
(
− aP(j,t)

1+awP(j,t)

)}

+
n

∑
i=1

λP(i,t+1)
n

∑
j=1

{
e−(dij/αP)

2

CP
H(j,t)

[
1−exp

(
− aP(j,t)

1+awP(j,t)

)]}

+
n

∑
i=1

λQ(i,t+1)
[
(1−β)+βQ(i,t)− uH(i,t)

v+H(i,t)

]
+

n

∑
i=1

W(i,t)Q(i,t),

(S29)1113

where the last term comes from the objective function. The adjoint equations are then given by1114

λH(i,t)=
∂H

∂H(i,t)
=

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH

(
1− r0H(i,t)

k

)
exp
[

r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
exp
(
− aP(i,t)

1+awP(i,t)

)}

+
n

∑
j=1

λP(j,t+1)

{
e−(dji/αP)

2

CP

[
1−exp

(
− aP(i,t)

1+awP(i,t)

)]}
−λQ(i,t)

uv
[v+H(i,t)]2

,

λP(i,t)=
∂H

∂P(i,t)
=−

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH
H(i,t)exp

[
r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
a

[1+awP(i,t)]2
exp
(
− aP(i,t)

1+awP(i,t)

)}

+
n

∑
j=1

λP(j,t+1)

{
e−(dji/αP)

2

CP
H(i,t)

a
[1+awP(i,t)]2

exp
(
− aP(i,t)

1+awP(i,t)

)}
,

λQ(i,t)=
∂H

∂Q(i,t)
=

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH
H(i,t)

r0

δ
e−Q(i,t)/δexp

[
r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
exp
(
− aP(i,t)

1+awP(i,t)

)}
+λQ(i,t+1)β+W(i,t),

(S30)1115

with terminal conditions1116

λH(i,T)=λP(i,T)=0, λQ(i,T)=W(i,T) for all i.1117
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S7 Supplementary figures and tables from Example 1:1118

Exogenous disease spillover in multi-species sink networks1119
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Figure S1: Additional figures from Network 1. (A) Matrix representation of the transmission coefficients bj,k. (B)
Population decline in the species of concern (species 5) over a 10-year period, assuming that the population size
at the end of one season carries over to the start of the next season. The purpose is to show that the population
decline can be significant despite the low infection prevalence shown in Fig. 3(D). (C) Time-dependent sensitivity
when only susceptible individuals are culled. (D) Time-dependent sensitivity when only infected individuals
are culled (−λIj). The weighted sum of (C) and (D) gives the time-dependent sensitivity to indiscriminate culling
(−λNj) shown in Fig. 3(G).
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Figure S2: Similar to Fig. S1, except for Network 2.
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Figure S3: For Network 1, the graphs above show the population rebound in the species of concern (species
5) when 10% of another species is indiscriminately culled. Late culling leaves less time for the population to
rebound (affecting the terminal payoffs VSjC

and VIjC
), and also less time for the rebound to contribute to the

integral in the reward function.
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Figure S4: More results from Network 2, obtained using modified parameter values. (A) Reducing R0 caused the
importance of species 5 to fall entirely below species 1, due to multi-step within-module transmission becoming
less likely at a lower R0. (B) Increasing the exogenous spillover rate σ1 caused the most important species to
switch from species 5 back to species 1 towards the end of the season. This is due to the large decrease in the
population of species 3 resulting from the increased spillover; the switch no longer occurred in (C) when we
converted most of the disease-induced mortality rate in species 3 to its recovery rate.
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S8 Supplementary figures and tables from Example 2:1120

Leopard frogs as reservoirs of the amphibian chytrid fungus1121
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Figure S5: (A) Number of infected frogs in each log load bin, each week across the year, at steady state. (B) Log
load distribution each week, obtained by normalizing the sum of each vertical column in (A) to 1. Due to the
temperature-dependent load dynamics, we see that the load is the lowest in summer and the highest in winter.
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Figure S6: The sensitivity to removing an infected frog from each log load bin, each week across the year. Note
that this sensitivity does not take into account whether the log load bin is actually “occupied” which is why
we choose to work with −λI(t) as defined in Eqn. (24) instead.
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Figure S7: Effects of the time horizon T. Similar to Fig. 6, except that we have also shown the sensitivities every
year within the time horizon. We see that if the time horizon is sufficiently long, the seasonal sensitivity patterns
during the first few years are identical. At steady state, each year starts with the same “initial conditions”, so the
second year can be thought of as the same system with a time horizon of 9 years, the third year a time horizon of
8 years, etc. Therefore, the fact that the early years show identical seasonal patterns means that the early-year pat-
terns are independent of the time horizon, and hence expected to be the same as when the time horizon is infinite.
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Figure S8: Varying the number of bins in the discretized IPM. Similar to Fig. 6, except that we have varied
the number of bins used when discretizing the IPM.
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Figure S9: Checking against explicit perturbations. Similar to Fig. 6, except that we have also shown the sensitiv-
ities obtained by explicitly perturbing the state variables at each time point (red dashed lines). The perfect agree-
ment with the adjoint variables implies that the adjoint equations have been correctly derived and implemented.
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S9 Supplementary figures and tables from Example 3:1122

Population cycles in the pine looper and the larch budmoth1123

S9.1 Pine looper1124

Site r s u xmin β

Culbin 5.064×10−5 0.079 3.364 2.150 0.204

Roseisle 5.760×10−2 0.246 3.644 0.510 1.016

Tentsmuir 5.677×10−3 0.000 4.075 0.618 0.294

Table S1: Parameter values of the maternal effects model, fitted separately using data at three sites.
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Figure S10: Phase plane diagram at Roseisle, Tentsmuir and Culbin, showing the periodic steady-state solution
at Roseisle, and the quasiperiodic steady-state solutions at Tentsmuir and Culbin. At Roseisle, we only showed
10 years to illustrate one complete cycle of two oscillations, whereas at Tentsmuir and Culbin, we showed every
year across the time horizon of 200 years.
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Figure S11: Changes in the current pupae density N(t) and the cumulative moth density ∑t
t′=1 N(t′) at all

t, following a 20% cull at t = tpert. (A) Roseisle; tpert = 4. (B) Roseisle; tpert = 6. (C) Tentsmuir; tpert = 7. We
see that the changes in current density decay with time in (A) and (B), but persist indefinitely in (C), likely
because of the steady-state trajectories being periodic in Roseisle, but quasiperiodic in Tentsmuir. As a result,
the cumulative changes approach constant, non-oscillatory values in (A) and (B), but remain oscillatory in (C).
Note that the choices of tpert are unimportant here; we made these specific choices only to facilitate comparison
with Fig. 7(D-F) and Fig. S12.
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Figure S12: Changes in the current reward −N(t)W(t) and the cumulative reward −∑t
t′=1N(t′)W(t′) at all t,

following a 20% cull at t= tpert. We have rescaled these changes by a factor of 1/0.2, so that the cumulative
reward at t= T = 200 should be approximately equal to the demi-elasticity in Fig. S13 at t= tpert; any small
discrepancies are due to nonlinearities from the relatively large perturbation. (A) Roseisle; tpert=4. (B) Roseisle;
tpert = 6. (C) Tentsmuir; tpert = 7. Note that unlike Fig. S11(C), the changes in current reward decay in time
because of the decaying weight W(t). This allows the cumulative reward to approach a constant, non-oscillatory
value, and hence reduces the dependence of the demi-elasticities on the time horizon T.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 10 15 20

−
4

−
2

0
2

4
6

Time (years)

D
em

i−
el

as
tic

ity
 to

 p
up

ae
 r

em
ov

al
 (−

λ N
) Site = Roseisle

P
up

ae
 d

en
si

ty
 (

N
, /

m
2 )

0
1

2
3

4
5

6

(A)

5 10 15 20

0
2

4
6

8

Time (years)

D
em

i−
el

as
tic

ity
 to

 p
up

ae
 r

em
ov

al
 (−

λ N
) Site = Tentsmuir

P
up

ae
 d

en
si

ty
 (

N
, /

m
2 )

0
1

2
3

4
5

6

(B)

5 10 15 20

−
1

0
1

2
3

4

Time (years)

D
em

i−
el

as
tic

ity
 to

 p
up

ae
 r

em
ov

al
 (−

λ N
) Site = Culbin

P
up

ae
 d

en
si

ty
 (

N
, /

m
2 )

0.
5

1.
0

1.
5

2.
0

2.
5

(C)

Figure S13: Demi-elasticities of the reward to the culling of pine looper at (A) Roseisle, (B) Tentsmuir and (C)
Culbin.
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Figure S14: Verifying that TDSA gives the correct sensitivities for the larch budmoth model using explicit
perturbations. We focused on the two patches discussed in Fig. 8.
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Figure S15: The effects of adding parasitoids at t=15 to the two patches discussed in Fig. 8. The current reward
refers to the sum of plant quality times the weight in the current year, and the cumulative reward the sum
of current rewards from t=1 up to the current year. We used small perturbations to ensure linearity, but scaled
the results by the inverse of the perturbation size, so that the change in cumulative reward at t=T=200 (the
end of the time horizon) should be equal to the sensitivity at t= 15 (the time of perturbation). As expected,
they indeed agree with Fig. S14 at t=15 (∼40 for Patch A, ∼−80 for Patch B).
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