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Abstract 
Transformer models such as GPT generate human-like language and are highly predictive of 
human brain responses to language. Here, using fMRI-measured brain responses to 1,000 
diverse sentences, we first show that a GPT-based encoding model can predict the magnitude 
of brain response associated with each sentence. Then, we use the model to identify new 
sentences that are predicted to drive or suppress responses in the human language network. 
We show that these model-selected novel sentences indeed strongly drive and suppress activity 
of human language areas in new individuals. A systematic analysis of the model-selected 
sentences reveals that surprisal and well-formedness of linguistic input are key determinants of 
response strength in the language network. These results establish the ability of neural network 
models to not only mimic human language but also noninvasively control neural activity in 
higher-level cortical areas, like the language network. 
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Introduction  
Reading and understanding this sentence engages a set of left-lateralized frontal and temporal 
brain regions. These interconnected areas, or the ‘language network’ (e.g., 1–3), a) support both 
comprehension and production of spoken, written, and signed linguistic utterances (e.g., 4,2,5–10) 
across diverse languages 11,12; b) are highly selective for language relative to diverse non-
linguistic inputs (e.g., 13–17; see 18 for a review); c) are sensitive to linguistic structure at many 
levels (e.g., 2,14,6,19–21,18,10); and d) are causally important for language such that their damage 
leads to linguistic deficits 22–28. However, many aspects of the representations and algorithms 
that support language comprehension remain unknown. 
 
Over the last few years, artificial neural networks for language have emerged as in-silico models 
of language processing. These large language models (LLMs) can generate coherent text, 
answer questions, translate between languages, and perform sophisticated language 
comprehension tasks  (e.g., 29–35). Strikingly, despite the fact that the LLMs were not developed 
with the goal of modeling human language processing, some of these models (especially the 
unidirectional Transformer architectures 36) have a remarkable capacity to mimic human 
language behavior (e.g., 37–40) and predict brain activity during language processing (e.g., 41–53). 
However, despite LLMs being today’s most quantitatively accurate models of language 
processing, there has been no attempt to test whether LLMs can causally control language 
responses in the brain (e.g., 41–53). By ‘causal control’ we mean the use of models to make 
quantitative predictions about a neural target (a cell or a brain area/network) and subsequently 
using those predictions to successfully modulate neural activity in the target in a ‘closed-loop’ 
manner.  
 
Recent work in visual neuroscience has shown that artificial neural network models of image 
recognition can causally intervene on the non-human primate visual system by generating visual 
stimuli that modulate activity in different regions of the ventral visual pathway 54–57. In this work, 
we ask whether similar model-based control is feasible for the higher-level cognitive domain of 
language: can we leverage the predictive power of LLMs to identify new stimuli to maximally 
drive or suppress brain responses in the language network of new individuals? This question 
taps into two key aspects of the generalization ability of LLMs: i) do LLMs capture features of 
language representations that generalize across humans? and ii) do LLMs have the capacity to 
predict brain responses to model-selected stimuli that extend beyond the distribution of naturally 
occurring linguistic input? We demonstrate that model-selected stimuli drive and suppress brain 
responses in the language network of new individuals, establishing the ability of brain-aligned 
LLMs to non-invasively control areas implicated in higher-level cognition. We then leverage 
sentence-level brain responses to a broad distribution of linguistic input to ask what kinds of 
linguistic input the language network is most responsive to. In a large-scale behavioral 
experiment, we collect rating norms for ten sentence properties and use these norms to 
characterize the language network’s preferred stimuli. 
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Results 

Model-selected sentences control language network responses 

 
Figure 1. Overview of the procedure for encoding model development and stimulus selection for 
evaluation.  
A) We developed an encoding model (M) of the left hemisphere (LH) language network in the human 
brain with the goal of identifying novel sentences that activate the language network to a maximal or 
minimal extent (Methods; Encoding model development). Five participants (train participants) read a large 
sample (n=1,000) of 6-word corpus-extracted sentences, the baseline set (sampled to maximize linguistic 
diversity; SI 1), in a rapid, event-related design while their brain activity was recorded using fMRI. Blood-
oxygen-level-dependent (BOLD) responses from voxels in the LH language network were averaged 
within each train participant and averaged across participants to yield an average language network 
response to each of the 1,000 baseline set sentences. We trained a ridge regression model from the 
representations of the unidirectional-attention Transformer language model, GPT2-XL (identified as the 
most brain-aligned language base model in Schrimpf et al. 43), to the 1,000 averaged fMRI responses. 
Given that GPT2-XL can generate a representation for any sentence, the encoding model (M) can predict 
the LH language network response for arbitrary sentences. To select the top-performing layer for our 
encoding model, we evaluated all 49 layers of GPT2-XL and selected the layer that had highest 
predictivity performance on brain responses to held-out baseline set sentences (layer 22; SI 6A).  
B) To evaluate the encoding model (M), we identified a set of sentences to activate the language network 
to a maximal extent (drive sentences) or minimal extent (suppress sentences) (Methods; Encoding model 
evaluation). To do so, we obtained GPT2-XL embeddings for ~1.8 million sentences from diverse, large 
text corpora, generated predicted language network responses, and ranked these responses to select the 
sentences that are predicted to increase or decrease brain responses relative to the baseline set. Finally, 
we collected brain responses to these novel sentences in new participants (evaluation participants).  
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Our aim is to test whether current models of the human language network are capable of driving 
and suppressing brain responses in these higher-level cognitive brain areas. We developed an 
encoding model of the left hemisphere (LH) language network in the human brain with the goal 
of identifying new sentences that would activate the language network to a maximal or minimal 
extent. The model takes as input last-token sentence embeddings from GPT2-XL 36 (previously 
identified as the most brain-aligned language model 43; layer 22, see SI 6A for the cross-
validated analysis that led to this choice) and was trained, via ridge regression, to predict the 
average LH language network’s (functionally defined 2) BOLD response (henceforth language 
network’s response; Methods; Definition of ROIs). The BOLD responses were acquired from 5 
train participants who read a set of 1,000 diverse, corpus-extracted sentences (baseline set) (2 
sessions each, n=10 sessions total; Methods; Encoding model development) (Figure 1A). The 
encoding model achieved a prediction performance of r=0.38 (noise ceiling is r=0.56; SI 6) when 
evaluated on held-out sentences within the baseline set (SE over five splits=0.16, all five p-
values <.001; SI 6A). To ensure that the encoding model performance did not hinge on specific 
experimental decisions, we confirmed that the model maintained high predictivity performance 
on held-out sentences when changing the procedure for obtaining sentence embeddings (the 
average of all tokens in the sentence; SI 6B) and even using sentence embeddings from a 
different LLM architecture (a bidirectional-attention Transformer model, BERT-large; SI 6C). 
Further, the encoding model also achieved relatively high predictive performance on 
anatomically, rather than functionally, defined language regions, although predictivity was lower 
(SI 6D). 
 
To identify sentences that would elicit a desired (high or low) level of activation in the language 
network, we searched across ~1.8 million sentences from 9 diverse large-scale text corpora 
(Figure 1B). We identified a set of 250 sentences that were predicted to elicit maximally strong 
activity in the language network (drive sentences; e.g., “Turin loves me not, nor will.” or “People 
on Insta Be Like, “Gross!””) and 250 sentences that were predicted to elicit minimal activity in 
the language network (suppress sentences; e.g., “We were sitting on the couch.” or “Inside was 
a tiny silver sculpture.”). We evaluated our encoding model by recording brain responses to 
these new drive and suppress sentences in new participants (denoted as evaluation 
participants) (note the fully independent procedure using both new stimuli and participants; for 
evidence that the new drive and suppress sentences differ from the baseline sentences, see SI 
10 and 11). 
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Figure 2. Model-selected sentences successfully drive and suppress responses in the language 
network. 
A) We used our encoding model to select sentences that would elicit maximal response (drive sentences) 
or minimal response (suppress sentences) in the functionally defined language network. To define 
functional ROIs, we used demarcations (‘language parcels’; shown on the surface-inflated MNI152 
template brain) within which most or all individuals in prior studies showed activity for the language 
localizer contrast in large samples (e.g., 2,3). We defined the LH language network as regions within the 
borders of these five parcels that were activated (top 10%) in the functional localizer acquired for each 
participant (see brain visualizations in B and C). 
B) The average language network fMRI response across, respectively, 250 drive, 250 suppress, and 
1,000 baseline sentences for n=3 evaluation participants, collected in an event-related, single-trial fMRI 
paradigm. In both B and C, individual points show the average of each condition per participant. fMRI 
responses were z-scored session-wise (see SI 12A for responses without normalization; no key patterns 
are affected). The evoked BOLD response was 85.7% higher for drive relative to baseline and 97.5% 
lower for suppress relative to baseline (SI 12A). Error bars show within-participant standard error of the 
mean. The brain illustrations show the functionally defined language network in the participants of interest 
on the surface-inflated brain, visualized in Freeview. For surface projections, volumetric data (in MNI 
IXI549Space; SPM12 197) were registered to FreeSurfer’s CVS35 (combined volumetric and surface-
based (CVS)) in the MNI152 space using mri_vol2surf in FreeSurfer v7.3.2 198 with a projection distance 
of 1.5mm and otherwise default parameters.  
C) The average language network fMRI response across, respectively, 240 drive, 240 suppress, and 240 
baseline sentences (randomly sampled from the superset of 250/250 drive/suppress sentences and 1,000 
baseline sentences) for n=4 evaluation participants, collected in a blocked fMRI paradigm. The evoked 
BOLD response was 12.9% higher for drive relative to baseline and 56.6% lower for suppress relative to 
baseline (SI 12B). 
D) Example sentences from each condition.  
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We collected fMRI responses to the drive and suppress sentences in an event-related, single-
trial paradigm in three new participants (3 sessions each, n=9 sessions total; Methods; 
Encoding model evaluation). The drive and suppress sentences were randomly interspersed 
among the 1,000 baseline sentences. Figure 2B shows the average responses for the n=3 
evaluation participants for the drive, suppress, and baseline sentence conditions. The drive 
sentences yielded significantly higher responses than the suppress sentences (β=0.57, t=15.94, 
p<.001 using linear mixed effect modeling, see Methods; Statistical analyses and SI 18). The 
drive sentences also yielded significantly higher responses than the baseline sentences 
(β=0.27, t=9.72, p<.001) with the evoked BOLD signal being 85.7% higher for the drive 
condition relative to baseline (quantified using non-normalized BOLD responses; SI 12A). 
Finally, the suppress sentences yielded lower responses than the baseline sentences (β=-0.29, 
t=-10.44, p<.001) with the evoked BOLD responses being 97.5% lower for the suppress 
condition relative to baseline (SI 12A). In summary, we trained an encoding model to generate 
predictions about the magnitude of activation in the language network for a new set of 
sentences and then ‘closed the loop’ by collecting brain data for these new sentences in new 
participants to demonstrate that these sentences modulate brain responses as predicted. We 
note that although we trained the encoding model using the responses in the LH language 
network as a whole, the five individual LH language fROIs showed highly correlated responses 
across the baseline set (SI 4; and Results; Language regions exhibit high stimulus-related 
activity) and similar condition-level responses to the drive, suppress, and baseline sentences (SI 
15F) (see SI 15G for evidence that this pattern of responses to drive, suppress, and baseline 
sentences is not ubiquitously present across the brain). These inter-fROI similarities align well 
with past work showing similar modulation of the different language areas by diverse linguistic 
manipulations (e.g., 10,11,14,15,17,21,58–60). 
 
 
To further validate the robustness of responses to the drive and suppress sentences, we 
collected brain data for a large subset of the drive, suppress, and baseline stimuli in a traditional 
blocked fMRI design, where drive, suppress, and baseline sentences are blocked into groups, in 
four additional participants (1 session each, n=4 sessions total; Methods; fMRI experiments). 
The results mirrored those from the event-related experiment: the drive sentences yielded the 
highest response followed by baseline sentences (the evoked BOLD response was 12.9% 
higher for drive relative to baseline; 56.6% lower for suppress relative to baseline; SI 12B). 
Hence, independent of experimental design (event-related vs. blocked) and b) modeling 
procedure (single-trial modeling vs. condition-level modeling), the brain responses to the drive 
sentences were high relative to the baseline sentences, and the responses to the suppress 
sentences were low relative to the baseline sentences.  
 
For a final examination of model-guided stimulus selection, we explored an alternative approach 
to selecting drive/suppress sentences: the modify approach where, instead of searching within 
existing text corpora, we used gradient-based modifications to transform a random sentence 
into a novel sentence predicted to elicit high or low fMRI responses (SI 16A) and collected 
responses to these novel sentences in two participants (event-related design, n=6 sessions 
total). We found that this exploratory modify approach was able to drive responses by 57% 
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relative to baseline, but failed to suppress responses, most likely because the resulting modify 
stimuli were often akin to word lists which the encoding model was not trained on (SI 16B). 

Model captures most explainable variance in new participants 
In the previous section, we examined predictivity at the condition level (drive vs. suppress vs. 
baseline). Here, we sought to evaluate the accuracy of the predictions from the encoding model 
at the level of individual sentences. To do so, we turned to the event-related experiment (Figure 
2B), which allows us to estimate sentence-level brain responses to 1,500 sentences for each of 
the three evaluation participants. 
 

 
Figure 3. The encoding model maintains high predictive performance for brain responses from 
three new participants to out-of-distribution-sentences.  
Sentence-level brain responses as a function of the predicted responses along with sentence examples. 
Predicted brain responses were obtained from the encoding model (x-axis). The observed brain 
responses (y-axis) are the average of n=3 evaluation participants’ language network responses 
(illustrated for individual participants in SI 13). The blue points represent the suppress sentences, the 
grey points represent the baseline sentences, and the red points represent the drive sentences. The 
suppress and drive sentences were selected to yield respectively low or high brain responses and are 
therefore clustered on the low and high end of the prediction axis (x-axis). Dashed horizontal lines show 
the mean of each condition.  
Inset: Simulated sentence-level brain responses as a function of predicted responses. Predicted brain 
responses were obtained from the encoding model (x-axis). The simulated brain responses (y-axis) were 
obtained by sampling from a noise distribution representing the empirical inter-participant variability. This 
plot illustrates the maximum possible predictive performance, given inter-participant variability and fMRI 
measurement noise.  
 
 
Figure 3 shows the model-predicted versus observed brain responses in the language network 
(n=3 evaluation participants). These participants were not used to train the encoding model and 
hence allow us to estimate encoding model predictivity performance in held-out participants and 
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held-out sentences. Across the full set of 1,500 baseline, drive, and suppress sentences, we 
obtained a Pearson correlation of 0.43 (dof=1498, p<.001, t=18.60, SE=0.02) between predicted 
and observed brain responses. Because the drive and suppress sentences were designed to 
elicit high or low brain responses respectively, one might expect that the correlation might be 
unduly driven by these two conditions. Therefore, we isolated the set of n=1,000 naturalistic, 
corpus-extracted baseline sentences and obtained a correlation of 0.30 (dof=998, p<.001, 
t=9.88, SE=0.03). Hence, the encoding model was able to predict a substantial and statistically 
significant amount of variance in brain responses in new participants to both naturalistic, 
sentences that fall within the distribution of the training (baseline) set and out-of-distribution 
sentences (drive/suppress set), for which encoding model predictions (x-axis in Figure 3) 
extend far beyond the training set distribution. 
 
To better interpret the accuracy of sentence-level predictions, we quantified the maximal 
possible prediction performance by treating inter-participant variability as “noise” that cannot be 
predicted by a computational model. The goal here is to assess how well our model predicts 
brain activity at the group level, taking into account irreducible variance due to inter-participant 
variability and measurement noise. First, we computed the empirical variability in participants’ 
responses to the 1,500 sentences. Next, we simulated response noise for each participant using 
the empirical variability across participants (drawing samples from a Gaussian distribution with 
zero mean and the empirical inter-participant standard deviation). For each sentence, simulated 
response noise was added to the encoding model’s predicted response (x-axis in Figure 3) and 
responses were then averaged across participants. This simulation provides an estimate of the 
maximum possible encoding model prediction performance. 
 
Figure 3 inset shows these simulated brain responses versus predicted responses. In these 
simulations, the Pearson correlation was 0.62 (dof=1498, p<.001, t=30.85, SE=0.02) across all 
1,500 sentences (observed: r=0.43, i.e., 69.4% of the theoretically obtainable correlation), and 
0.39 (dof=998, p<.001, t=13.32, SE=0.03) across the 1,000 baseline sentences (observed: 
r=0.30, i.e., 76.9% of the theoretically obtainable correlation). These results show that due to 
inter-participant variability in fMRI measurements, even a perfect model can achieve only r=0.62 
predictive performance. Although our model is not perfect, the performance level suggests that 
the model successfully captures much of the neurally relevant variance in responses to 
individual sentences. 
 

Language regions exhibit high stimulus-related activity  
Having established that model-selected stimuli could indeed drive and suppress brain 
responses in the language network of new individuals (Figure 2, 3), our next goal was to 
investigate what kinds of linguistic input the LH language network is most responsive to. Before 
delving into that investigation, however, we wanted to assess that the LH language regions 
show reliable responses to and track properties of linguistic stimuli. We also wanted to assess 
the similarity among the language fROIs in their fine-grained linguistic preferences in order to 
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decide whether it may be worth to examine the fROIs separately in addition to examining the 
language network as a whole. 
 

 
Figure 4. Left-hemisphere language regions show a high degree of stimulus-related activity for 
linguistic input relative to other brain areas and the left-hemisphere language regions show 
functionally similar responses.  
A) We quantified the noise ceiling (NC), a measure of stimulus-related response reliability, across all 
functionally defined ROIs in the language network (red), multiple demand (MD) network (blue), and the 
default mode network (DMN; green). For the language network, we defined 10 such fROIs (along with the 
“Language LH/RH network” fROI which is the mean across all voxels in the fROIs within the network and 
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hemisphere, i.e., yielding 12 ROIs in total), for the MD network, we defined 21 fROIs (note that one 
participant did not show a response to the MD localizer in the MD LH midFrontalOrb ROI, and hence this 
ROI was excluded in the NC computation), and for the DMN network, we defined 14 fROIs. Grey shaded 
areas indicate the network-level fROIs. The dots show the NC estimate computed across n=1,000 
baseline sentences across n=5 train participants, for each of the ROIs. Error bars show the NC reliability 
quantified as the standard error over NC values computed from 1,000 splits of the data (SI 5B). The brain 
illustrations show the anatomical parcels (demarcations) that were used to constrain the selection of 
participant-specific fROIs for each network in the surface-inflated MNI152 template brain. 
B) The Pearson correlation matrix computed over n=1,000 baseline sentences for the average of n=5 
train participants. The first five rows/columns show the five core LH language fROIs (IFGorb, IFG, MFG, 
AntTemp, and PostTemp; Methods; Definition of ROIs). The sixth row/column shows the full LH language 
network consisting of the average of the voxels from the five fROIs; these values show how 
representative the language network as a whole is of each of the five fROIs.  
C) Same as in panel B, but for the n=1,500 drive/suppress/baseline sentences for the average of n=3 
evaluation participants (derived using the main, search approach). Correlation matrices for individual 
participants are shown in SI 4. 
 
 
First, we quantified noise ceilings for the language regions along with a set of control brain 
regions (Figure 4A). A noise ceiling (NC) for a brain region is a measure of stimulus-related 
response reliability and is typically expressed in terms of the fraction of variance that can be 
attributed to the stimulus rather than to measurement noise. Standard approaches for NC 
estimation leverage repeated stimulus presentations, with the core assumption that repeated 
presentations should yield the same brain response (e.g., 61–63). Because in the current study, 
each sentence was presented only once to a given participant (for the motivation for this design 
choice and details of the procedure, see Methods and Discussion), we developed a procedure 
for NC estimation that makes use of the repeated presentations of the same sentence across 
participants, allowing for estimation of reliability in single-repetition paradigms (SI 5). Using this 
procedure, we computed NCs based on the brain responses to the 1,000 baseline sentences for 
the n=5 train participants in language regions and a set of control regions (Figure 4A). In 
particular, we examined two large-scale brain networks that have been linked to high-level 
cognitive processing—the multiple demand (MD) network 64–68 and the default mode network 
(DMN) 69–73—which we defined using independent functional localizers (see SI 15 for details) 
(Figure 4A). For additional comparison, we examined a set of anatomical parcels 74 that cover a 
large fraction of the cortical surface (SI 8). 
 
Prior studies have demonstrated high consistency of responses in language regions across 
participants using naturalistic story-listening paradigms 75–78. In line with those studies, we found 
that in our single-sentence paradigm, language regions were also characterized by high NC. 
The ceiling values were higher than those observed in the two other functional networks (Figure 
4A) and in anatomical areas across the brain (including anatomical areas that fall in spatially 
similar locations to the language areas, which provides further evidence for the advantages of 
functional localization 79,80; SI 8). 75–78In particular, for the LH language areas, the NC was 
estimated to be r=0.56 (split-half standard error (SE)=0.03), i.e., ~31% of the variance in the 
responses of these areas at the group-level can be considered “true”, stimulus-related, signal. 
For comparison: for the MD network, the NC was estimated to be r=0.07 (SE=0.11) (for the LH 
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MD areas) and r=0.27 (SE=0.10) (for the RH MD areas; see 77 for convergent evidence from a 
different approach), and for the DMN, the NC was estimated to be r=0.11 (SE=0.11) (for the LH 
DMN areas) and r=0 (SE=0.05) (for the RH DMN areas), The LH language network NC values 
were significantly higher than the NC in each of these four networks—LH and RH MD and DMN 
(dof=1999, all four p<.001, all four t>126 via Bonferroni-corrected one-sided t-tests using split-
half bootstrap NC values). Thus, other brain regions implicated in high-level cognition (MD, 
DMN) were not as reliable as the language regions in their responses to linguistic stimuli (and 
similarly not as well-predicted by GPT2-XL features; SI 8). In summary, the high NCs of the 
language regions show that these regions process stimulus-related information in a similar way 
across participants (see also 75–78,81,82), opening the door to investigations of what stimulus 
properties affect neural responses (see next section). 
 
Second, we examined whether the five regions that comprise the LH language network are 
similar in their responses at the fine-grained level of single sentences. Prior work has 
demonstrated that the LH language regions exhibit a) similar functional response profiles in 
terms of their selectivity for language relative to non-linguistic inputs (e.g., 13–15,17,18) and similar 
sensitivity to diverse linguistic manipulations (e.g., 10,21,58), as well as b) highly correlated time 
courses during naturalistic paradigms (e.g., 59,60,83,11). Here, we investigated whether the 5 LH 
language regions have similar preferences for some sentences over others across 
n=1,000/n=1,500 sentences. 
 
Figure 4B shows the Pearson correlation across the n=1,000 baseline sentences for LH fROIs 
from the average of n=5 train participants. Correspondingly, Figure 4C shows the correlation 
across the n=1,500 drive/suppress/baseline sentences for LH fROIs from the average of n=3 
evaluation participants. Both plots show high inter-fROI correlations for the LH language 
network (correlation range 0.47-0.83), which suggests that even in their fine-grained 
preferences for particular linguistic stimuli, the LH language fROIs show a high degree of 
similarity. Along with the prior body of evidence noted above, these high correlations motivated 
our decision to investigate what kinds of linguistic input engage this network as a whole (see 
next section). 
 

Sentence complexity modulates language network responses 
In order to gain understanding of what sentence properties modulate brain responses in the 
language network, we obtained a set of 11 features to characterize our experimental materials 
(n=2,000 sentences: 1,000 baseline, 250 drive and 250 suppress sentences from the search 
approach, and 250 drive and 250 suppress sentences from the exploratory modify approach, SI 
16) and correlated these features with sentence-level brain responses (Methods; Sentence 
properties that modulate brain responses). The choice of features was inspired by past work in 
linguistics/psycholinguistics and cognitive neuroscience of language. First, building on prior 
evidence that surprisal (the degree of contextual predictability, which is typically estimated as 
negative log probability), modulates language processing difficulty in both behavioral 
psycholinguistic work (e.g., 84–88) and brain imaging investigations (e.g., 89–97), we computed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.04.16.537080doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.16.537080
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

sentence-level log probability estimates for each of 2,000 sentences using GPT2-XL (Methods; 
Sentence properties that modulate brain responses). And second, we collected 10 behavioral 
rating norms from a total of n=3,600 participants (on average, 15.23 participants per sentence 
per norm, min: 10, max: 19). The norms spanned five broad categories and were selected 
based on prior behavioral (e.g., 98–100,85,101–103) and neural studies (e.g., 104–111,21). The first 
category targeted two core aspects of sentences: grammatical well-formedness (how much 
does the sentence obey the rules of English grammar?; for details of the instructions, see SI 
22C) and plausibility (how much sense does the sentence make?). Because sentence surprisal 
(log probability), as estimated with GPT2-XL, is likely to capture both of these aspects to some 
extent (e.g., 112–117), we grouped these two norms with surprisal in the analyses. Furthermore, 
because more generally, surprisal likely captures diverse aspects of form and meaning, we 
examined the norm-brain relationships for all other norms after factoring out variance due to 
surprisal. Inspired by work on distributed neural representation of meaning, including across the 
language network (e.g., 118–121), the next three norms probed different aspects of the sentence 
content: how much does the sentence make you think about i) others’ mental states, ii) physical 
objects and their interactions, and iii) places and environments. The latter two have to do with 
the physical world, and the former — with internal representations; the physical vs. social 
distinction is one plausible organizing dimension of meaning 122,123. Two norms probed 
emotional dimensions of the sentences: valence (how positive is the sentence’s content?) and 
arousal (how exciting is the sentence’s content?). One norm targeted visual imagery (how 
visualizable is the sentence’s content?). Finally, the last two norms probed people’s perception 
of how common the sentence is, in general vs. in conversational contexts. 
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Figure 5. Surprisal and several other sentence properties modulate responses in the language 
network. 
A) Correlation of the LH language network’s response with 11 sentence properties (columns) within five 
categories for all n=2,000 sentences (first row; drive, suppress, and baseline sentences averaged across 
n=5 train and n=5 evaluation participants) and n=1,000 baseline sentences (second row; similarly 
averaged across n=5 train and n=5 evaluation participants).  
B) Correlation among the sentence properties shown for either n=2,000 sentences (left matrix) or 
n=1,000 sentences (right matrix). Color scale same as in A. 
C) Sentence-level brain responses as a function of sentence property. The brain responses (y-axis) were 
averaged across n=5 train and n=5 evaluation participants. The sentence properties were derived from 
behavioral norming experiments in independent participants (besides the “Log probability” feature which 
was obtained from GPT2-XL). The inset line graphs show the average brain response with each property 
grouped into six uniformly sized bins. Error bars show standard error of the mean across items in each 
bin (often not visible given the large number of data points). For the behavioral norms, the bins were 
defined according to the rating scale, i.e., {1,2}, {2,3}, {3,4}, {4,5}, {5,6}, and {6,7}. For log probability, the 
bins were similarly uniformly spaced, but according to the range of surprisal values: {-13.1,-11.3}, {-11.3,-
9.4}, {-9.4,-7.5}, {-7.5,-5.7}, {-5.7,-3.8}, and {-3.8,-1.9} (omitted in the x-axis label). The color of the points 
in these graphs denotes the amount of data in each bin (darker dots correspond to larger amounts of 
data; bins containing less than 1% of the data, i.e., 20 responses, were omitted from the line graphs). 
Statistical comparisons accompanying the inset plots can be found in SI 24. 
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Figure 5A shows the correlation between the language network’s response and each of 11 
sentence properties across the five categories. The sentences spanned a broad range of brain 
responses as evidenced in the sentence-level scatter plots in Figure 5C (y-axis). Importantly, 
this broad range was made possible by our approach of specifically designing stimuli to drive 
and suppress neural responses. Notice how the drive and suppress sentences cover parts of 
the linguistic space that are barely covered by the set of naturalistic baseline sentences (for 
comparisons of linguistic properties among conditions, see SI 19). 
 
In terms of the effects of different sentence properties on neural responses, first, we found that 
less probable, i.e., more surprising, sentences elicited higher brain responses (Figure 5C) (r=-
0.30 for the n=1,000 baseline sentences, dof=998, p<.001, t=-9.83, SE=0.03; see Figure 5C for 
the correlation values for the full set of n=2,000 sentences and SI 19 for robustness to model 
choice to derive surprisal). This result aligns with previous evidence for a positive effect of 
surprisal on brain responses in MEG/EEG (e.g., 89,95) and fMRI (e.g., 90–92,96). Similarly, for the 
predictors related to a sentence’s grammaticality and plausibility, sentences that were rated 
as less grammatical or plausible elicited higher responses (r=-0.31, r=-0.30, dof=998, t=-11.92, 
t=-12.79, both p<.001, both SE=0.03; the two norms were correlated with each other at r=0.74). 
To understand whether grammaticality or plausibility explained variance above and beyond 
surprisal and each other, we fitted linear mixed effect models with different sets of sentence 
properties as predictors and compared these using likelihood ratio tests (see Methods ; 
Statistical analyses and SI 23). Plausibility explained variance beyond surprisal and 
grammaticality (𝑋!=17.86, p<.001; all likelihood ratio statistics reported on the baseline set). 
Similarly, grammaticality explained variance beyond surprisal and plausibility (𝑋!=12.97; 
p<.001), albeit to a lesser extent. Interestingly, a finer-grained examination of the relationship 
between these features and neural responses reveals a non-linearity, such that sentences in the 
mid-range of grammaticality and plausibility elicit stronger responses than sentences on the 
lower and higher ends of the scales (Figure 5C; note also that the response to surprisal 
asymptotes at the higher end of the surprisal scale such that more surprising sentences no 
longer lead to stronger responses). This pattern suggests that two effects may be at play: an 
increase in neural response is seen i) for sentences that better adhere to form and meaning 
regularities of language (similar to the previously reported stronger responses to sentences than 
lists of words; e.g., 2,124), and ii) for sentences that may have greater processing costs due to 
their unexpected form and/or meaning (e.g., see 91,125 for evidence of a strong relationship 
between behavioral processing difficulty and the strength of neural response in the language 
areas). 
 
For the properties that relate to the sentence content, we evidenced no increase in explained 
variance (beyond surprisal) related to whether the sentence concerned others’ mental states 
(𝑋!=0.69, p=0.407). This finding aligns with evidence that the language network does not 
support mental state inference and is robustly dissociated from the Theory of Mind network 
(e.g., 60,78,126) and challenges claims that the language areas are modulated by social content 
(e.g., 127–129). However, whether the sentence’s content concerned physical objects or places 
correlated negatively with brain responses (both r=-0.22, dof=998, both p<.001, t=-7.04 and t=-
7.11, both SE=0.03) and explained variance beyond surprisal (physical objects: 𝑋!=74.26, 
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p<.001; places: 𝑋!=63.47, p<.001; the two norms were correlated with each other at r=0.54). 
Note, however, that these two aspects of the sentence content were also strongly correlated 
with imageability (discussed below), which may be the underlying driver of these effects. 
 
For the properties that relate to the emotional aspects of sentences, we found that valence 
correlated negatively with brain responses, such that more positive sentences elicited a lower 
response (r=-0.15, dof=998, p<.001, t=-4.69, SE=0.03) and explained some variance beyond 
surprisal (𝑋!=16.53, p<.001). In contrast, whether the sentence was exciting did not explain 
additional variance beyond surprisal (r=-0.03, dof=998, p=0.329, t=-0.98, SE=0.03; likelihood 
ratio 𝑋!=0.18, p=0.668). 
 
Imageability–whether sentences are easy to visualize–was strongly correlated with whether the 
sentence’s content concerned physical objects (r=0.75) and places (r=0.49). Imageability 
strongly modulated brain responses, such that sentences rated as more imageable elicited a 
lower response (r=-0.30, dof=998, p<.001, t=-10.04, SE=0.03) and explained variance beyond 
surprisal (𝑋!=93.03, p<.001). 
 
Finally, for perceived frequency, we found that sentences that are perceived as more frequent 
(either in general or in conversational settings; these two norms were correlated with each other 
at r=0.77) elicited lower responses (r=-0.41 and r=-0.33, dof=998, both p<.001, t=-14.14 and t=-
10.89, both SE=0.03), with additional variance explained beyond surprisal (general perceived 
frequency: 𝑋!=96.63, p<.001; conversational perceived frequency: 𝑋!=44.46, p<.001). 
 
To summarize the findings in this section, sentences that are surprising, fall in the middle of the 
grammaticality and plausibility range, and are perceived as not very frequent elicit a stronger 
response in the language network. In contrast, sentences that have positive content, talk about 
physical objects and places, and, more generally, are easy to visualize elicit a lower response in 
the language network (Figure 5). These patterns were highly similar across individual LH 
language fROIs and anatomically defined language ROIs, but showed some differences from 
the RH language network in line with some past claims (SI 21).   

Discussion 
We provide the first demonstration of non-invasive neural activity control in areas that are 
implicated in higher-level cognition: a brain-aligned Transformer model (GPT2-XL) can be used 
to drive and suppress brain responses in the language network of new individuals. We also 
provide a rich characterization of stimulus properties that modulate neural responses in the 
language network and find that less probable sentences generally elicit higher responses, with 
additional contribution from several form- and meaning-related features. 
 
A number of studies have now shown that representations extracted from neural network 
models of language can capture neural responses to language in human brains, as recorded 
with fMRI or intracranial methods (e.g., 130–132,41–47,133,50,49,51–53). These studies have been 
conducted in an ‘open-loop’ manner: brain responses are simply acquired to a set of stimuli 
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without any attempt to achieve specific levels of brain activity according to quantitative 
predictions. These stimulus sets have been limited to naturally occurring sentences, which 
cover a restricted portion of the space of linguistic/semantic variation. Further, the encoding 
model is typically trained and tested on data from the same participant (e.g., 130–132,41–47,50,49,53,52, 
cf. 51,133), potentially making it overly reliant on patterns of participant-specific idiosyncrasies. 
Thus, prior work has established similarity between LLM and humans on a narrow distribution of 
linguistic input and using within-participant evaluation in an open-loop fashion. In this work, we 
go beyond these studies by taking inspiration from closed-loop stimulus design in visual 
systems neuroscience 134,54–57: we evaluate the ability of an LLM-based encoding model to 
modulate the strength of neural responses in new individuals via new model-selected stimuli. 
Unlike typical encoding or representational similarity approaches to testing neural networks as 
models of the brain, we here utilize their predictive power to generate stimuli that would 
maximally drive or suppress responses for the language network. We emphasize that although 
using LLMs to identify new stimuli requires similarity to the human brain, this similarity need not 
hold at the implementation level, only at the level of representations. We, and others, 
acknowledge that the hardware of LLMs differs in many ways from human neural circuits (but 
see 135). These hardware differences, possibly coupled with factors such as training data and 
objective, could explain why LLMs sometimes diverge in from human-level performance for 
common linguistic phenomena such as negation and quantifier use (e.g., 136,137). Nevertheless, 
in spite of these differences, LLMs and the human language system appear to arrive at a similar 
representational space (see 138 for similar findings in vision), making LLMs currently the most 
predictive models of the human language network at the granularity of fMRI voxels and 
intracranial recordings (e.g., 43,45) and allowing us to modulate brain responses via targeted 
stimulus selection. 
A priori, one might expect this approach to not be feasible within the domain of language 
because obtaining reliable neural responses to particular linguistic stimuli is challenging. First, 
unlike largely bottom-up brain systems such as the ventral visual stream 139, the language 
system extracts abstract meaning representations from linguistic sequences, which makes 
these representations further removed from the stimulus proper and thus more divergent across 
individuals, especially for more abstract meanings 140. And second, language processing 
requires attentional engagement 141, and such engagement is difficult to sustain for an extended 
period of time, especially if stimuli are repeated. One recent approach to combat 
fatigue/boredom has been to turn to rich naturalistic stimuli, like stories, podcasts, or movies 
and to collect massive amounts of data (sometimes, many hours’ worth) from a small number of 
individuals (e.g., 118,142,143)—what is often referred to as the ‘deep data’ approach (e.g., 144–149). 
However, such stimuli plausibly do not sample the space of linguistic and/or semantic variation 
well (see SI 10 for evidence), and consequently, do not allow for testing models on stimuli that 
differ substantially from those used during training. We solved these methodological challenges 
by collecting neural responses to each of 1,000 semantically, syntactically, and stylistically 
diverse sentences for each participant in rapid, event-related fMRI, presented once to maximize 
engagement. We extended existing state-of-the-art methods for single-trial modeling 150 and 
reliability estimation (e.g., 63) to obtain robust neural responses to each sentence. Even with 
robust neural data, it was unclear whether encoding model performance is contingent on 
features that are specific to the stimulus set and/or participant at hand 51, which would limit 
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generalization to i) stimuli that differ from the ones in the training set and/or ii) brain data from 
new individuals. By showing that model-selected stimuli successfully modulate brain responses 
in new individuals in ways predicted by the model, we established that LLM representations 
contain information that can be utilized for causal perturbation of language responses in the 
human brain in a general, participant-independent fashion. 
 
We identified sentences that would push neural activity towards the edges of the stimulus-
response distribution (driving and suppressing) using quantitative model-based predictions. 
Obtaining neural responses that span a wide range of activation levels enables us to ask which 
stimulus properties maximally (or minimally) engage the language network in the human brain, 
bringing us closer to understanding the representations and computations that support language 
comprehension. This general approach dates back to the pioneering work of Hubel and Wiesel 
151,152 that provided an understanding of visual cortical computations by examining what stimuli 
cause each neuron to respond the most. Because linguistic input is extremely rich and 
language-responsive neuronal populations could, in principle, be tuned to many (possibly 
interacting) dimensions related to lexical, syntactic, semantic, or other linguistic properties, 
including ones that were not hypothesized in advance, we here identified target drive and 
suppress sentences using model predictions, thus removing experimenter bias. 
 
Of course, a predictive model can be developed using features from any quantitative 
representation of sentences, including hidden states from an LLM (as we do here) but also 
much simpler univariate measures of different linguistic properties. Following a reviewer’s 
suggestion, we explicitly compared the predictivity performance of our encoding model, which 
uses GPT2-XL hidden states as features, to the performance of encoding models that use three 
univariate measures of surprisal (we focus on surprisal given its prominence in theorizing and 
empirical work on language 89–97). The encoding models based on univariate surprisal estimates 
perform substantially lower than the encoding model based on GPT2-XL hidden states (SI 17). 
Importantly, however, our motivation for using GPT2-XL representations goes beyond 
predictivity performance. LLMs allow for an assumption-neutral and multi-faceted approach for 
stimulus identification. Because LLMs are optimized for next-word prediction, their 
representations contain information about linguistic regularities at all levels, from word-level 
properties (including both word forms and their meanings), to syntactic structure, to semantic 
compositional meanings 153–159. This is because all of these properties can inform what word is 
likely to come next. By virtue of its assumption neutrality, this approach allows for bottom-up 
discovery. Surprisal models (e.g., based on n-grams or structure probabilities in a PCFG parser; 
SI 20) have the advantage of being interpretable, but can only be used for testing specific 
hypotheses. Neural network language models also allow for the testing of specific hypotheses, 
but additionally enable bottom-up discoveries of features that may not have been hypothesized 
in advance. 
 
Indeed, we identified drive sentences that we could not have come up with in advance. These 
sentences were unusual on various dimensions related to their linguistic properties (SI 19) and 
highly distinct from the naturalistic baseline sentences (SI 11; note that the suppress sentences 
were more akin to naturalistic sentences), making these sentences a priori unlikely to be 
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created or selected by experimenters and unlikely to be present in naturalistic stimuli, like 
stories or movies (SI 10). Yet these stimuli were able to drive responses in the language 
network. 
 
To understand what stimulus properties modulate neural responses, we examined the effects of 
11 sentence properties on the brain responses to the linguistically diverse set of 2,000 
sentences. In line with much past work (e.g., 89–97), we found that surprisal has a strong effect 
on neural activity, with less probable sentences eliciting higher responses. However, a number 
of other properties explained variance beyond surprisal, including grammatical well-formedness 
and plausibility. Examining responses to a highly diverse set of sentences revealed a non-
linearity in neural response in the form of an inverted-U shape. Sentences in the mid-range of 
well-formedness and plausibility elicit the highest response. This response is higher than a) the 
response to sentences in the low range, similar to the previously reported effects of stronger 
responses to phrases and sentences than lists of unconnected words (e.g., 2,160,124). The 
response is also higher than b) the response to sentences in the high range—sentences that 
are highly plausible and use common grammatical structures—which are easy to process (e.g., 
87). Put differently, it appears that in order to elicit a strong response in the language network, a 
stimulus has to sufficiently resemble the kind of input we encounter in our experiences with 
language, given that our experiences presumably tune the language network to those kinds of 
stimuli 161. However, once some minimal level of language-likeness is reached, neural 
responses are modulated by processing difficulty, which depends on a combination of lexical, 
syntactic, and semantic features. Finally, one contribution of this work relative to past brain 
imaging studies is that we show sensitivity to these different linguistic properties at the fine-
grained level of individual sentences (cf. standard blocked or event-related designs where 
groups of sentences are compared). In this way, we believe this rich dataset powerfully 
complements and extends prior evidence (e.g., 104,105,91,90,96,125) and allows for testing of new 
hypotheses about linguistic/semantic properties affecting neural responses. 
 
A few limitations and future directions are worth noting. First, we here studied the language 
network—comprised of three frontal and two temporal areas—as a whole. As discussed earlier, 
there are good reasons to adopt this approach: the different regions of this network i) have 
similar functional response profiles, both with respect to their selectivity for language (e.g., 13–
15,17,18) and their responses to linguistic manipulations (e.g., 21,58), and ii) exhibit highly correlated 
time courses during naturalistic cognition paradigms (e.g., 59,60,83,11). However, some functional 
heterogeneity has been argued to exist within the language network (e.g., 162–164,160,165,166). 
Future efforts using an approach like the one adopted here may discover functional differences 
within the language network (by searching for stimuli that would selectively drive particular 
regions within the network) as well as between the core LH language network and the RH 
homotopic areas and other language-responsive cortical, subcortical, and cerebellar areas. 
Second, the current results are limited to English but can be extended to other languages given 
the advances in multi-lingual language models (e.g., 167). Third, we have here relied on fMRI—a 
method with an inherently limited temporal resolution. Data from fMRI could be fruitfully 
supplemented with data from intracranial recordings, which would allow for model 
representations to be related to neural activity in a temporally resolved, word-by-word fashion 
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and potentially uncover functional dissociations that are obscured when activity is averaged 
across adjacent words. Finally, novel ways of quantifying properties of linguistic input, e.g., 
based on the LLM representational space (e.g., 157,158), hold great potential to further understand 
how certain sentences modulate responses in the mind and brain. 
 
In conclusion, we demonstrate modulation of brain responses in new individuals in the language 
network in a ‘closed-loop’ manner. This work has far-reaching implications for neuroscientific 
research and clinical applications. In particular, an accurate model-to-brain encoding model can 
serve as a quantitative, assumption-neutral tool for deriving experimental materials aimed at 
understanding the functional organization of the language network and putatively downstream 
areas that support abstract knowledge and reasoning (e.g., 168,169,73,170). Moreover, accurate 
encoding models can be used as a ‘virtual language network’ to simulate experimental contrasts 
in silico (e.g., 171–173). In particular, the model-selected sentences can be queried in a high-
throughput manner to analyze the response properties of the language network in detail, 
providing the ability to rapidly generate novel hypotheses about language processing that can 
then be tested in a ‘closed-loop’ manner. For prospective clinical application, stimuli can be 
optimized for eliciting a strong response, thus allowing for efficient identification of language 
circuits, which may be especially important for individuals with brain disorders and other special 
populations, or in circumstances where time is of essence (e.g., neurosurgical planning and 
intraoperative testing). Finally, integrating the rapid advancements of artificial neural network 
models with larger and/or time-resolved measures of neural activity opens the door to even 
more fine-grained control of areas implicated in higher-level cognition.  
 
 
Methods 
All experiments were performed with ethical approval from MIT’s Committee on the Use of 
Humans as Experimental Subjects (COUHES) (protocol number 2010000243). All participants 
gave informed written consent before starting the experiments. 
We developed an encoding model to predict brain responses to arbitrary new sentences in the 
language network and evaluated this model by i) identifying novel sentences that are predicted 
to activate the language network to a maximal (or minimal) extent, and ii) collecting brain 
responses to these sentences in new participants. We then investigated which stimulus 
properties drive the responses in the language network (see Figure 6 for an overview of the 
study). 
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Figure 6. Experimental overview. 
A) Encoding model development: We curated 
a large set (n=1,000) of diverse, corpus-
extracted sentences (baseline set) and 
collected brain responses in n=5 train 
participants in an event-related fMRI design 
across two sessions per participant. 
B) Encoding model evaluation: We identified 
a set of sentences to activate the language 
network to a maximal extent (250 drive 
sentences) or minimal extent (250 suppress 
sentences) by searching across ~1.8 million 
sentences (search approach). We collected 
responses to these 500 drive/suppress 
sentences randomly interspersed among the 
baseline sentences in n=3 new participants 
(evaluation participants) across three sessions 
per participant in the event-related design 
(panel i). Moreover, we collected responses to 
a large subset of the drive, suppress, and 
baseline sentences (240 from each condition, a 
total of 720 sentences) in n=4 new participants 
in a blocked fMRI design within one session for 
each participant. 
C) Sentence properties that modulate brain 
responses: In order to understand what 
sentence properties modulate brain responses 
in the language network, we collected 10 
behavioral rating norms (across 9 surveys) to 
characterize our experimental materials 
(n=2,000 sentences: 1,000 baseline, 250 drive 
and 250 suppress sentences from the search 
approach, and 250 drive and 250 suppress 
sentences from the exploratory modify 
approach; see SI 16) across n=3,600 
participants. 
 

 

Encoding model development 

General approach and data collection 
We developed an encoding model of the left hemisphere (LH) language network in the human 
brain. Developing an encoding model requires brain responses to a broad range of linguistic 
input. Therefore, we curated a large set of diverse, corpus-extracted 6-word sentences 
(n=1,000, baseline set), collected brain responses while five participants (train participants) read 

A)   Encoding model development

B)   Encoding model evaluation

Baseline sentences
Drive sentences
Suppress sentences

Sentence 1
Sentence 2
Sentence 3
Sentence 4

Sentence 500 Sentence 1,000

Sentence 501
Sentence 502
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Sentence 2
Sentence 3
Sentence 4
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Sentence 502
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(n=10 sessions total)
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Drive/suppress set:
n=250/250 sentences identified to elicit high 
or low responses in the language network 
(interspersed among the 1,000 baseline sentences) 

Collected across 3 sessions per participant
(n=9 sessions total)

Sentence 1
Sentence 2
Sentence 3
Sentence 4
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(n=4 sessions total)

ii)  Blocked experiment

Sentence 719 

n=3,600 participants
(after pre-defined 
exclusion criteria: n=2,741)

.....

Baseline/drive/suppress set: 
n=2,000 sentences with n=500/500 drive/suppress 
(250/250 drive/suppress from the main, search, approach 
and 250/250 from the exploratory, modify, approach: SI 16)  
n=1,000 baseline sentences
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Sentence 2
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C)   Sentence properties that modulate brain responses
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each sentence in an event-related, condition-rich fMRI paradigm (each sentence equals a 
condition), across two sessions each, and modeled those responses using a recently developed 
single-trial modeling framework 150, which we adapted for no-repeats designs (Methods; fMRI 
experiments and SI 3). The baseline set consisted of two subsets: the first subset (n=534 
sentences) aimed to maximize semantic diversity to cover a broad range of topics, and the 
second subset (n=466 sentences) was selected from across diverse genres and styles 
(newspaper text, web media, transcribed spoken language, etc.) (SI 1). In five train participants, 
we recorded brain responses to the sentences in the baseline set across two scanning sessions 
(Figure 6A). Participants were instructed to read attentively and think about the sentence’s 
meaning. To encourage engagement with the stimuli, prior to the session, participants were 
informed that they would be asked to perform a short memory task after the session (Methods; 
fMRI experiments). Sentences were presented one at a time for 2 seconds with a 4 second 
inter-stimulus interval. Each run contained 50 sentences (5:36 minutes) and sentence order was 
randomized across participants. 
 
The language network was defined functionally in each participant using an extensively 
validated localizer task (e.g., 2,3; Methods; Definition of ROIs). Although the network consists of 
five areas (two in the temporal lobe and three in the frontal lobe), we treat it here as a 
functionally integrated system given i) the similarity among the five regions in their functional 
response profiles across dozens of experiments (e.g., 21,58,96; see Figure 4B,C and SI 4 for 
evidence of similar preferences for the baseline set in the current data), ii) high inter-regional 
correlations during naturalistic cognition paradigms (e.g., 81,76,59,60,83,11). To mitigate the effect of 
collecting data across multiple scanning sessions and to equalize response units across voxels 
and participants, the blood-oxygen-level-dependent (BOLD) responses were z-scored session-
wise per voxel. BOLD responses from the voxels in the LH language network were averaged 
within each train participant (Methods; Definition of ROIs) and averaged across participants to 
yield an average language network response to each of the 1,000 baseline set sentences.  
 
Encoding model 
To develop an encoding model of the language network, we fitted a linear model from the 
representations of a large language model (LLM) to brain responses (an encoding approach; 
174). The brain data that were used to fit the encoding model were the averaged LH language 
network’s response from the n=5 train participants. To map from LLM representations to brain 
responses, we made use of a linear mapping model. Note that the term “mapping model” refers 
to the regression model from LLM representations to brain activity, while the term “encoding 
model” encompasses both the LLM used to transform a sentence into an embedding 
representation as well as the mapping model.  
 
The mapping model was a L2-regularized (“ridge”) regression model which can be seen as 
placing a zero-mean Gaussian prior on the regression coefficients 175. Introducing the L2-
penalty on the weights results in a closed-form solution to the regression problem, which is 
similar to the ordinary least-squares regression equation:  
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Where 𝑋 is a matrix of regressors (n stimuli by d regressors). The regressors are unit activations 
from the sentence representations derived by exposing an LLM to the same stimuli as the 
human participant was exposed to and hence d refers to the number of units in the LLM 
embedding representation (“hidden size”). 𝑦 is an n-length column vector containing the relevant 
brain ROI’s mean response to each stimulus. 𝐼 is the identity matrix (d by d). 𝑤 is a d-length 
column vector with the weights learned for each regressor. 𝑤" is the intercept term. 
Alpha (𝛼) is the regularization parameter that trades off between the fit to the data and the 
penalty for weights with high coefficients. To select this regularization parameter, we used 
leave-one-out cross-validation implemented using the scikit-learn Python library function 
RidgeCV (176; version 0.24.2). Specifically, for each of 60 logarithmically-spaced 𝛼 regularization 
parameter values (1e-30, 1e-29, …, 1e28, 1e29), we measured the squared error in the 
resulting prediction of the left-out stimulus using regression weights derived from the other 
stimuli in the data. We computed the average of this error (across the stimuli) for each of the 60 
potential 𝛼 regularization parameter values. We then selected the 𝛼 regularization parameter 
that minimized this mean squared error (𝛼 = 10,000). When cross-validation was performed, the 
𝛼 regularization parameter was always selected using the stimuli in the train split, and with the 𝛼 
parameter selected, the regression model using that parameter was used on the test split.  
 
Encoding model performance: We obtained an unbiased estimate of encoding model 
performance using three different approaches: i) Cross-validated predictivity performance on 
held-out sentences (SI 6), ii) Cross-validated predictivity performance on held-out participants 
within the train participants (SI 7), and iii) held-out prediction performance on new participants 
(evaluation participants) and sentences (Methods; Encoding model evaluation and Results; 
Model captures most explainable variance in new participants).  
 
All modeling and analysis code was written in Python (version 3.8.11), making heavy use of the 
numpy (177; version 1.21.2), scipy (178; version 1.7.3), scikit-learn (176; version 0.24.2), pandas 
(179; version 1.4.2) and transformers (180; version 4.11.3) libraries. 
 
 
Sentence representations from large language models (LLMs) 
To obtain sentence representations for the encoding model, we used the unidirectional-attention 
Transformer LLM GPT2-XL 36, which was identified as the most brain-aligned language base 
model in prior work 43 and which was the largest unidirectional OpenAI GPT model available on 
HuggingFace 180 at the time of the experiments (summer 2021)). (Supplementary analyses were 
performed using BERT-large (SI 6C).) We used the pretrained model available via the 
HuggingFace library (180, transformers version 4.11.3; https://huggingface.co/gpt2-xl). GPT2-XL 
has 48 layers (i.e., Transformer blocks) in addition to the embedding layer. The embedding 
dimension is 1,600. We obtained model representations by tokenizing each sentence using the 
model’s standard tokenizer (GPT2TokenizerFast) and passing each sentence through the 
model. We retrieved model representations for each model layer (i.e., at the end of each 
Transformer block). Given that human participants were exposed to the whole sentence at 
once, we similarly computed a sequence summary representation for each sentence. We 
obtained the representation of the last sentence token, given that unidirectional models 
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aggregate representations of the preceding context (i.e., earlier tokens in the sentence). 
Further, to ensure that the results were robust to this choice of summary representation, we also 
obtained a sequence summary representation by computing the arithmetic mean of the 
representations associated with each token in each sentence (SI 6B). The resulting features 
were used as regressors in the LLM-brain comparisons. Each LLM layer (model stage for which 
representations were extracted, i.e., Transformer blocks) was treated as a separate set of 
regressors in LLM-brain comparisons. Layer 22 features were selected as regressors in the 
encoding model based on cross-validated model performance evaluation (SI 6A). 

Encoding model evaluation 

General approach and data collection 
Using our trained encoding model, we identified a set of novel sentences to activate the 
language network to a maximal extent (drive sentences) or minimal extent (suppress 
sentences). To do so, we searched across ~1.8 million sentences to identify sentences 
predicted to elicit high or low fMRI responses (250 sentences of each kind) (Figure 6B; SI 9). 
We collected brain responses to these novel sentences in three new participants (across three 
sessions each). The drive and suppress sentences were randomly interspersed among the 
1,000 baseline sentences (for a total of n=1,500 sentences), collected across three scanning 
sessions per participant (n=9 sessions total). (In a more exploratory component of the study, we 
complemented the search approach with another approach—the modify approach—where we 
used gradient-based modifications to transform a random sentence into a novel sentence/string 
predicted to elicit high or low fMRI responses. We collected brain responses to these novel 
sentences in two new participants (see SI 16 for the details of methods and the results).) 
 
To ensure that the results are robust and generalizable to different experimental paradigms, we 
additionally collected fMRI responses to a large subset of the drive and suppress sentences 
along with the baseline sentences in a traditional blocked design in four independent 
participants (one scanning session each). The participants for the blocked experiment were 
exposed to a total of 720 unique sentences (from the baseline, drive, suppress conditions; 240 
per condition which were randomly sampled for each participant). Sentences were grouped into 
blocks of 5 sentences from the same condition and were presented on the screen one at a time 
for 2s with a 400ms inter-stimulus interval. Each run contained 120 sentences in 24 blocks (5:36 
minutes). Condition order was counterbalanced across runs and participants (Methods; fMRI 
experiments). 

fMRI experiments  

Participants 
A total of 14 neurotypical adults (9 female), aged 21 to 31 (mean 25.3; std 3), participated for 
payment between October 2021 and December 2022. The sample size was based on those 
used for previous fMRI semantic decoding experiments 118,119. All participants had normal or 
corrected-to-normal vision, and no history of neurological, developmental, or language 
impairments. 12 participants (~86%) were right-handed, as determined by self-report and the 
Edinburgh handedness inventory 181 and 2 (~14%) were left-handed. All participants had a left-
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lateralized/bilateral language network as determined by the examination of the activation maps 
for the language localizer 2. All participants were native speakers of English. Each scanning 
session lasted between 1 and 2 hours. All participants gave informed written consent in 
accordance with the requirements of the MIT’s Committee on the Use of Humans as 
Experimental Subjects (COUHES) (protocol number 2010000243). Participants were 
compensated for their time ($30/hour).To err on the conservative side, no participants were 
excluded from the study based on data quality considerations. 
 
Critical fMRI tasks 
 
Sentence-reading task: Event-related design: We developed a paradigm to collect brain 
responses to as many individual sentences as possible (similar to recent paradigms in visual 
neuroscience, e.g., the Natural Scenes Dataset 63). Participants passively read each sentence 
once, in a condition-rich, event-related fMRI design (each sentence is effectively a condition). 
Sentences were presented (in black font) on a light grey background one at a time for 2s with a 
4s inter-stimulus interval (ISI) consisting of a fixation cross. Each run contained 50 unique 
sentence trials and three 12s fixation blocks (in the beginning, middle (i.e., after 25 sentences) 
and end of each run). Each run lasted 336s (5:36 minutes). 
Participants were instructed to read attentively and think about the sentence’s meaning. To 
encourage engagement with the stimuli, prior to the session, participants were informed that 
they would be asked to perform a short memory task after the session (outside of the scanner). 
The first five participants (train participants) were exposed to the set of n=1,000 baseline 
sentences and therefore completed 20 experimental runs (across two scanning sessions). The 
sentences were randomly assigned to runs for each participant (i.e., participants were exposed 
to different presentation orders). 
The next five participants (evaluation participants) were exposed to n=250 drive and n=250 
suppress sentences interspersed among the set of n=1,000 baseline sentences–a total of 
n=1,500 sentences–and therefore completed 30 runs of the experiment (across three scanning 
sessions). The n=1,500 sentences were randomly assigned to experimental runs for each 
participant while ensuring a balanced distribution of baseline, drive, and suppress sentences in 
each run, leading the following distribution of baseline/drive/suppress sentences in the three 
scanning sessions: 333/84/83, 333/83/84, and 334/83/83. 
 
Sentence-reading task: Blocked design: To evaluate the robustness of brain responses to 
the drive and suppress sentences, we additionally presented a subset of the drive, suppress, 
and baseline sentence materials in a traditional blocked design. 
Sentences were grouped into blocks of 5 sentences from the same condition (baseline, drive, 
suppress) and were presented on the screen (in black font on a light grey background) one at a 
time for 2s with a 400ms ISI consisting of a fixation cross (for a total block duration of 12s). 
Each run consisted of 24 blocks with 8 blocks (40 sentences) per condition. There were five 12s 
fixation blocks: in the beginning and end of each run, as well as after 6, 12, and 18 blocks. Each 
run lasted 348s (5:48 minutes).  
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As in the event-related experiment, participants were instructed to read attentively and think 
about the sentence’s meaning. Prior to the session, participants were informed that they would 
be asked to perform a short memory task after the session (outside of the scanner). 
The participants for the blocked experiment were exposed to a total of 720 unique sentences 
(from the baseline, drive, suppress conditions; 240 per condition) across 6 runs in a single 
scanning session. These sentences were sampled randomly without replacement from the full 
set of materials (consisting of 250 drive, 250 suppress, and 1,000 baseline stimuli from the 
search approach). The sentences were randomly sampled and assigned to runs for each 
participant (i.e., participants were exposed to different presentation orders of different subsets of 
the materials). Condition order was counterbalanced across runs and participants. 
 
Memory task for the sentence-reading task: For both the event-related and blocked critical 
sentence-reading experiments, participants completed a memory task at the end of each 
scanning session (outside of the scanner) to incentivize attention throughout the session. 
Participants were informed ahead of time that they would be asked to perform a memory task 
after the scanning session.  
Participants were presented with a set of sentences, one at a time, and asked to decide for 
whether they had read it during the scanning session. For both the event-related and blocked 
experiment, the memory task consisted of 30 sentences: 20 sentences from the set used in the 
scanning session and 10 foil sentences. For the event-related experiment, the 20 correct targets 
were randomly sampled without replacement from each of the 10 runs in that session, 2 from 
each run. For the blocked experiment, the 20 correct targets were randomly sampled without 
replacement from each of the 6 runs in that session, 3 from each run, with an additional 2 
sentences from random runs. 
The 10 foil sentences were randomly sampled without replacement from a set of 100 sentences. 
These 100 foil sentences were manually selected from the same corpora that were used to 
construct the baseline stimulus set (15 sentences from each of the three genres from The 
Toronto Book Corpus–45 in total–and 55 sentences from the additional eight corpora, see SI 1).  
The average accuracy (sum of correct responses divided by total number of responses; chance-
level is 50%) was 70.4% (SD across sessions: 11.4%) for the event-related participants (n=24 
sessions – responses for one session were not saved due to an error in the script), and 61.7% 
(SD across sessions: 10%) for the blocked participants (n=4 sessions). 
 
 
fMRI data acquisition, preprocessing and first-level analysis 
 
fMRI data acquisition: Structural and functional data were collected on the whole-body, 3 
Tesla Siemens Prisma scanner with 32-channel head coil, at the Athinoula A. Martinos Imaging 
Center at the McGovern Institute for Brain Research at MIT. T1-weighted, Magnetization 
Prepared RApid Gradient Echo (MP-RAGE) structural images were collected in 176 sagittal 
slices with 1 mm isotropic voxels (TR = 2,530 ms, TE = 3.48 ms, TI = 1100 ms, flip = 8 
degrees). Functional, blood oxygenation level dependent (BOLD), data were acquired using an 
SMS EPI sequence (with a 90 degree flip angle and using a slice acceleration factor of 2), with 
the following acquisition parameters: fifty-two 2 mm thick near-axial slices acquired in the 
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interleaved order (with 10% distance factor) 2 mm × 2 mm in-plane resolution, FoV in the phase 
encoding (A ≫ P) direction 208 mm and matrix size 104 × 104, TR = 2,000 ms and TE = 30 ms, 
and partial Fourier of 7/8. The first 10 s of each run were excluded to allow for steady state 
magnetization. 
 
fMRI preprocessing: fMRI data were preprocessed using SPM12 (release 7487), CONN 
EvLab module (release 19b), and custom MATLAB scripts. Each participant’s functional and 
structural data were converted from DICOM to NIfTI format. All functional scans were 
coregistered and resampled using B-spline interpolation to the first scan of the first session. 
Potential outlier scans were identified from the resulting subject-motion estimates as well as 
from BOLD signal indicators using default thresholds in CONN preprocessing pipeline (5 
standard deviations above the mean in global BOLD signal change, or framewise displacement 
values above 0.9 mm; 182. Note that the identification of outlier scans was leveraged in the 
blocked first-level modeling, but not in the data-driven event-related first-level modeling). 
Functional and structural data were independently normalized into a common space (the 
Montreal Neurological Institute [MNI] template; IXI549Space) using SPM12 unified 
segmentation and normalization procedure 183 with a reference functional image computed as 
the mean functional data after realignment across all timepoints omitting outlier scans. The 
output data were resampled to a common bounding box between MNI-space coordinates (−90, 
−126, −72) and (90, 90, 108), using 2 mm isotropic voxels and 4th order spline interpolation for 
the functional data, and 1 mm isotropic voxels and trilinear interpolation for the structural data. 
Last, the functional data were smoothed spatially using spatial convolution with a 4 mm FWHM 
Gaussian kernel. 
 
First-level modeling of event-related experiments: The critical, event-related experiment was 
analyzed using GLMsingle 150, a framework for obtaining accurate response estimates in quick 
event-related single-trial fMRI designs. Modeling such responses is challenging due to temporal 
signal autocorrelation, participant head motion, and scanner instabilities. The GLMsingle 
framework introduces three main steps to combat noise in a data-driven manner: 1) Choice of 
HRF to convolve with the design matrix: an HRF is identified from a library of 20 candidate 
functions (derived from independent fMRI data 63) as the best fitting for each voxel separately, 
2) Noise regressors: a set of voxels that are unrelated to the experimental paradigm are 
identified and these voxels’ time courses are used to derive an optimal set of noise regressors 
by performing principal component analysis (PCA), and 3) Regularization of voxel responses: 
instead of an ordinary least squares (OLS) regression, GLMsingle uses fractional ridge 
regression 184 to model voxel responses in order to dampen the noise inflation in a standard 
OLS regression due to correlated predictors from rapid, successive trials. 
Using this framework, a General Linear Model (GLM) was used to estimate the beta weights 
that represent the blood oxygenation level dependent (BOLD) response amplitude evoked by 
each individual sentence trial (fixation was modeled implicitly, such that all timepoints that did 
not correspond to one of the conditions (sentences) were assumed to correspond to a fixation 
period). Data from different scanning sessions for a given participant were analyzed together. 
The ‘sessionindicator’ option in GLMsingle was used to specify how different input runs were 
grouped into sessions. For each voxel, the HRF which provided the best fit to the data was 
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identified (based on the amount of variance explained). The data were modeled using a fixed 
number of noise regressors (5) and a fixed ridge regression fraction (0.05) (these parameters 
were determined empirically using an extensive joint data modeling and data evaluation 
framework, see SI 3). 
By default, GLMsingle returns beta weights in units of percent signal change by dividing by the 
mean signal intensity observed at each voxel and multiplying by 100. Hence, the beta weight for 
each voxel can be interpreted as a change in BOLD signal for a given sentence trial relative to 
the fixation baseline. To mitigate the effect of collecting data across multiple scanning sessions, 
the betas were z-scored session-wise per voxel (see Methods; Definition of ROIs). 
 
First-level modeling of blocked experiments: Blocked experiments were analyzed using 
standard analysis procedures using SPM12 (release 7487), CONN EvLab module (release 
19b). Effects were estimated using a GLM in which the beta weights associated with each 
experimental condition was modeled with a boxcar function convolved with the canonical HRF) 
(fixation was modeled implicitly, such that all timepoints that did not correspond to one of the 
conditions were assumed to correspond to a fixation period). Temporal autocorrelations in the 
BOLD signal timeseries were accounted for by a combination of high-pass filtering with a 128 
seconds cutoff, and whitening using an AR(0.2) model (first-order autoregressive model 
linearized around the coefficient a = 0.2) to approximate the observed covariance of the 
functional data in the context of Restricted Maximum Likelihood estimation (ReML). In addition 
to experimental condition effects, the GLM design included first-order temporal derivatives for 
each condition (included to model variability in the HRF delays), as well as nuisance regressors 
to control for the effect of slow linear drifts, subject-motion parameters, and potential outlier 
scans on the BOLD signal. 
 

Definition of regions of interest (ROIs) 

 
Language regions of interest (ROIs) 
 
Language regions of interest (ROIs) were defined in individual participants using functional 
localization (e.g., 79,2,80,185). This approach is crucial because many functional regions do not 
exhibit a consistent mapping onto macro-anatomical landmarks (e.g., 186–188) and this variability 
is problematic when functionally distinct regions lie in close proximity to each other, as is the 
case with both frontal and temporal language areas (e.g., 189,83; see Fedorenko and Blank18 for 
discussion of this issue for ‘Broca’s area’). 
For each participant, functional ROIs (fROIs) were defined by combining two sources of 
information 2,190: i) the participant’s activation map for the localizer contrast of interest (t-map), 
and ii) group-level constraints (“parcels”) that delineated the expected gross locations of 
activations for the relevant contrast and were sufficiently large to encompass the extent of 
variability in the locations of individual activations (all parcels are available for download from 
https://evlab.mit.edu/funcloc/download-parcels).  
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Language network localizer task: The task used to localize the language network was a 
reading task contrasting sentences (e.g., THE SPEECH THAT THE POLITICIAN PREPARED 
WAS TOO LONG FOR THE MEETING) and lists of unconnected, pronounceable nonwords 
(e.g., LAS TUPING CUSARISTS FICK PRELL PRONT CRE POME VILLPA OLP WORNETIST 
CHO) in a standard blocked design with a counterbalanced condition order across runs 
(introduced in Fedorenko et al. 2)). The sentences > nonwords contrast targets higher-level 
aspects of language, including lexical and phrasal semantics, morphosyntax, and sentence-
level pragmatic processing, to the exclusion of perceptual (speech- or reading-related) 
processes. The areas identified by this contrast are strongly selective for language relative to 
diverse non-linguistic tasks (e.g., 14; see Fedorenko and Blank 18 for a review). This paradigm 
has been extensively validated and shown to be robust to variation in the materials, modality of 
presentation, language, and task (e.g., 2,7,11, inter alia). Further, a network that corresponds 
closely to the localizer contrast emerges robustly from whole-brain task-free data—voxel 
fluctuations during rest 83. 
Each stimulus consisted of 12 words/nonwords. Stimuli were presented in the center of the 
screen, one word/nonword at a time, at the rate of 450ms per word/nonword. Each stimulus was 
preceded by a 100ms blank screen and followed by a 400ms screen showing a picture of a 
finger pressing a button, and a blank screen for another 100ms, for a total trial duration of 6s. 
Experimental blocks lasted 18s (with 3 trials per block), and fixation blocks lasted 14s. Each run 
(consisting of 5 fixation blocks and 16 experimental blocks) lasted 358s. Participants completed 
2 runs. Participants were instructed to read attentively (silently) and press a button on the button 
box whenever they saw the picture of a finger pressing a button on the screen. The button-
pressing task was included to help participants remain alert.  
The materials and scripts are available from the Fedorenko Lab website 
(https://evlab.mit.edu/funcloc). 
 
Language network fROIs:The language fROIs were defined using the sentences > nonwords 
contrast from the language localizer collected in each participant’s first scanning session (see 
e.g., Mahowald and Fedorenko 191, for evidence that localizer maps are highly stable within 
individuals over time, including across sessions). This contrast targets higher-level aspects of 
language, to the exclusion of perceptual (speech/reading) and motor-articulatory processes (for 
discussion, see Fedorenko and Thompson-Schill 192). 
To define the language fROIs, each individual sentences > nonwords t-map was intersected 
with a set of ten binary parcels (five in each hemisphere). These parcels were derived from a 
probabilistic activation overlap map using watershed parcellation, as described by Fedorenko et 
al. 2 for the sentences > nonwords contrast in 220 independent participants and covered 
extensive portions of the lateral frontal, temporal, and parietal cortices. Specifically, five 
language fROIs were defined in the dominant hemisphere: three on the lateral surface of the 
frontal cortex (in the inferior frontal gyrus, IFG, and its orbital part, IFGorb, as well as in the 
middle frontal gyrus, MFG), and two on the lateral surface of the temporal and parietal cortex (in 
the anterior temporal cortex, AntTemp, and posterior temporal cortex, PostTemp). Following 
prior work (e.g., 59), to define the RH fROIs, the LH language parcels were transposed onto the 
RH, allowing the LH and RH homotopic fROIs to differ in their precise locations within the 
parcels.  
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Within each of these ten parcels, the 10% of voxels with the highest t-values for the sentences > 
nonwords contrast were selected (see SI 15E for number of voxels in each fROI).  
 
Control regions of interest (ROIs) 
 
In addition to language regions, we examined i) two large-scale brain networks linked to high-
level cognitive processing—the multiple demand (MD) network 64–68 and the default mode 
network (DMN) 69–73 which—similar to the language regions—were functionally defined using 
independent localizer tasks in each participant, and ii) a set of anatomical parcels 74 in an effort 
to cover the entire cortex (see SI 15 for details). 
 
Aggregation of voxels within each regions of interest (ROI) 
 
The voxels belonging to each functional ROI (language, MD, and DMN) and each anatomical 
Glasser ROI were aggregated by averaging. For the fMRI data reported in the main text, each 
voxel was z-scored session-wise prior to averaging, in order to minimize potential non-
stationarities that exist across different scanning sessions and to equalize response units across 
voxels. In SI 12 and SI 14, we report fMRI data without any normalization (the key patterns of 
results are not affected). 
On average, we extracted responses from 10 language fROIs (SD=0), 19.43 MD fROIs 
(SD=1.28), 12 DMN fROIs (SD=0), and 353.71 anatomical Glasser parcels (SD=10.34) across 
n=14 participants (5 train participants, 5 evaluation participants in the event-related fMRI design 
from the search and modify approaches, and 4 evaluation participants in the blocked fMRI 
design). In a few cases, (f)ROIs could not be extracted due to a negative t-statistic for the 
contrast of interest or lack of coverage in our functional acquisition sequence.  
 

Sentence properties that modulate brain responses  

General approach  
Finally, to shed light on what property or properties make some sentences elicit stronger 
responses in the language network, we collected an extensive set of norms to characterize the 
full set of sentences in this study (n=2,000: 1,000 baseline sentences, 250 drive and 250 
suppress sentences from the search approach, and 250 drive and 250 suppress sentences from 
the exploratory modify approach) (Figure 6C) and examined the relationship between these 
properties and fMRI responses. First, building on the body of evidence for surprisal modulating 
language processing difficulty, in both behavioral psycholinguistic work (e.g., 84–88) and brain 
imaging investigations (e.g., 89–97), we computed the average log probability for each sentence 
using GPT2-XL (surprisal is negative log probability; see Surprisal features). And second, we 
collected 10 behavioral rating norms across a total of n=3,600 participants (on average, 15.23 
participants per sentence per rating norm, min: 10, max: 19). The norms spanned five broad 
categories and were all motivated by prior work in linguistics and psycholinguistics (see 
Behavioral norms).  
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Surprisal features 
We estimated the log probability of a word given its context for the words in each sentence. The 
negative log probability of a word/sentence is known as “surprisal” 193,194. The log probability of 
each sentence was computed using the pre-trained unidirectional-attention language model 
GPT2-XL 36 from the HuggingFace library (180, transformers version 4.11.3). GPT2-XL was 
trained on 40GB on web text from various domains (WebText dataset). Each sentence was 
tokenized using the model’s standard tokenizer (GPT2Tokenizer) and the special token, [EOS], 
was prepended to each sentence. Punctuation was retained. We obtained the sentence-level 
surprisal by taking the mean of the token-level surprisals. 
For supplementary analyses, we obtained surprisal estimates from an n-gram model and a 
probabilistic context-free grammar model in addition to GPT2-XL (SI 20).   
 
Behavioral norms 
 
Participants: Participants were recruited using crowd-sourcing platforms:  Prolific (n=8 surveys) 
and Amazon Mechanical Turk (mTurk; n=1 survey). For Prolific, the study was restricted to 
workers with English as their first language and their most fluent language, USA as their 
location, and a submission approval rate greater than or equal to 90%. For mTurk, the study 
was restricted to “Mechanical Turk Masters” workers. Across the 9 surveys, a total of 3,600 
participants took part in the experiment (400 participants for each survey; see SI 21C for 
details). 2,741 participants remained after pre-defined exclusion criteria (SI 21A). The 
experiments were conducted with approval from and in accordance with MIT’s Committee on 
the Use of Humans as Experimental Subjects (COUHES) (protocol number 2010000243). 
Participants gave informed consent before starting each experiment and were compensated for 
their time (minimum $12/hour). 
Materials, design, and procedure: The n=2,000 sentences were randomly assigned to 20 
unique sets containing 100 sentences each. For each survey, the participants first provided 
informed consent. Then they answered several demographic questions (whether English is their 
first language, which country they are from, and what age bracket they fall into); they were 
explicitly told that payment is not contingent on their answers to these questions. Finally, they 
were presented with the survey-specific instructions and the following warning: “There are some 
sentences for which we expect everyone to answer in a particular way. If you do not speak 
English or do not understand the instructions, please do not do this hit – you will not get paid.”.  
One survey targeted two core aspects of sentences: grammatical well-formedness (how much 
does the sentence obey the rules of English grammar?; for details of the instructions, see SI 
22C) and plausibility (how much sense does the sentence make?). Three surveys probed 
different aspects of the sentence content: how much does the sentence make you think about i) 
others’ mental states, ii) physical objects and their interactions, and iii) places and 
environments. The latter two have to do with the physical world, and the former — with internal 
representations; the physical vs. social distinction is one plausible organizing dimension of 
meaning 122,123. Two surveys probed emotional dimensions of the sentences: valence (how 
positive is the sentence’s content?) and arousal (how exciting is the sentence’s content?). One 
survey targeted visual imagery (how visualizable is the sentence’s content?). Finally, the last 
two surveys probed people’s perception of how common the sentence is, in general vs. in 
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conversational contexts. The first survey (with two questions per sentence) took 25.01 minutes 
on average; the remaining surveys took 14.25 min on average. After the participants answered 
the rating question(s) for the 100 sentences (the order was randomized separately for each 
participant), they were asked to complete 6 sentence preambles (e.g., “When I was younger, I 
would often …”; see SI 22B for the full set), which were used post-hoc to evaluate English 
proficiency. See SI 22 for details on experimental procedures. 
 

Statistical analyses 

Linear mixed effects (LME) models (implemented using the lmer function from the lme4 R 
package 195; version 1.1-31) were used to evaluate the statistical significance i) of the 
differences in the BOLD response among the sentence conditions (baseline, drive, and 
suppress) and ii) of the effect of sentence properties on the BOLD response. The critical 
variable of interest (either condition or sentence property) was modeled as fixed effect(s). As 
additional effects, we modeled other variables that could modulate the BOLD response but that 
were not our critical variables of interest, including item (sentence), run order within a session 
(1-10), and sentence order within a run (1-50): 
BOLD response ~ variable_of_interest + (1 | sentence) + run_within_session + trial_within_run. 
(Note that because the BOLD responses were z-scored session-wise, there was no additional 
variance to explain by including session number or participant as a model term). 
The models were fitted using maximum likelihood estimation and used the Satterthwaite method 
for estimating degrees of freedom. For each LME model reported, we provide (in SI 18 and SI 
23) a table with model formulae, effect size estimates, standard error estimates, t-statistics, p-
values, degrees of freedom, and R2 values. We evaluated the statistical significance of 
differences between pairs of conditions using estimated marginal means (implemented using 
the emmeans function from the emmeans R package 196; version 1.8.4-1) using Tukey’s multiple 
comparison method. Finally, we evaluated the statistical significance of differences between 
pairs of LMEs using likelihood ratio tests using the Chi Square value, 𝑋!, as the test statistic 
(implemented using the anova function from the lme4 R package). 
 

Data Availability 
Data are publicly available and can be downloaded via the following repository: 
https://github.com/gretatuckute/drive_suppress_brains/ (available upon publication). 

Code Availability 
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