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Abstract

Purpose
The purpose of this prospective longitudinal study was to evaluate the changes in brain surface
gyri�cation in older long-term breast cancer survivors 5 to 15 years after chemotherapy treatment.

Methods
Older breast cancer survivors aged ≥ 65 years treated with chemotherapy (C+) or without chemotherapy
(C-) 5–15 years prior and age & sex-matched healthy controls (HC) were recruited (time point 1 (TP1))
and followed up for 2 years (time point 2 (TP2)). Study assessments for both time points included
neuropsychological (NP) testing with the NIH Toolbox cognition battery and cortical gyri�cation analysis
based on brain MRI.

Results
The study cohort with data for both TP1 and TP2 consisted of the following: 10 participants for the C + 
group, 12 participants for the C- group, and 13 participants for the HC group. The C + group had increased
gyri�cation in 6 local gyrus regions including the right fusiform, paracentral, precuneus, superior, middle
temporal gyri and left pars opercularis gyrus, and it had decreased gyri�cation in 2 local gyrus regions
from TP1 to TP2 (p < 0.05, Bonferroni corrected). The C- and HC groups showed decreased gyri�cation
only (p < 0.05, Bonferroni corrected). In C + group, changes in right paracentral gyri�cation and crystalized
composite scores were negatively correlated (R = -0.76, p = 0.01).

Conclusions
Altered gyri�cation could be the neural correlate of cognitive changes in older chemotherapy-treated long-
term breast cancer survivors.

Introduction
More than 4 million women have a history of breast cancer, and additional newly identi�ed 287,850 cases
have been reported as of January 1, 2022 in the United States alone [1]. Besides, more than 2.7 million
breast cancer survivors are 65 years and older [1]. Prior studies have shown that chemotherapy-treated
breast cancer survivors suffer from cancer-related cognitive impairment (CRCI) [2–4]. CRCI mainly affects
memory, attention, and executive functioning in older long-term survivors [5–7].

Neuroimaging studies have shed light on brain structural and functional alterations underlying CRCI in
breast cancer survivors [8–10]. Previous studies have found a signi�cant reduction in brain gray matter
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(GM) and white matter in long-term breast cancer survivors at ten or even twenty years after
chemotherapy [11–13]. GM atrophy has been known to have a signi�cant association with cognitive
dysfunction amongst breast cancer survivors [14–20]. Our previous study of older breast cancer survivors
showed cortical thinning in older long-term breast cancer survivors [9].

Cortical Gyri�cation is a morphometric feature related to the geometry of the brain surface [21, 22]. Since
GM forms an outer layer of the brain surface, the alterations in gyri�cation result in changes in cortical
surface area and cortical GM volume [23]. Gyri�cation analysis focuses on brain morphometric features
that are not identi�ed by GM or cortical thickness [24]. During brain development, gyri�cation increases
and peaks during childhood, promptly decreases during the adolescent stage and then gradually
decreases with age [24–27]. Thus, gyri�cation is expected to decrease with aging [24]. The decreased
gyri�cation is considered an early morphometric biomarker for cognitive changes in patients with
Alzheimer’s disease (AD) [28], subjective cognitive impairment [29], autism [30], mild traumatic brain
injury [31] and in healthy individuals with normal aging [32]. In addition to the decreased gyri�cation
patterns, prior studies on schizophrenia [24], AD [33], traumatic brain injury [34] and autism [35] have also
showed increased gyri�cation patterns which was associated with cognitive impairment. A previous
study of CRCI showed decreased gyri�cation in patients with breast cancer aged 29 to 68 years shortly
after chemotherapy [36]. However, there is limited literature on gyri�cation in older long-term breast
cancer survivors.

Here, we conducted a longitudinal study to assess the brain surface gyri�cation changes in older breast
cancer survivors. We hypothesized that gyri�cation would be decreased in the older long-term breast
cancer survivors with exposure to chemotherapy, which would be correlated with cognitive changes. To
test this hypothesis, we assessed brain gyri�cation on brain MRI and cognitive performance via
neuropsychological (NP) testing in older breast cancer survivors who had chemotherapy treatment 5–15
years prior to enrollment and compared this group to the two control groups including the no-
chemotherapy group and healthy control group over two years.

Methods
a. Subjects

The study was a neuroimaging sub-study of a multicenter trial of long-term breast cancer survivors
(parent trial: Cognition in Older Breast Cancer Survivors: Treatment Exposure, APOE and Smoking History,
NCT02122107). Breast cancer survivors treated with chemotherapy (C+) or without chemotherapy (C-) 5-
15 years prior and age & sex-matched healthy controls (HC) with no history of cancer were enrolled. All
participants were aged ≥ 65 years at the time of initial enrollment. Study assessment included brain MRI
and NP attesting with the National Institute of Health (NIH) Toolbox Cognition Battery both at time point 1
(TP1) upon enrollment and at the 2-year interval at time point 2 (TP2). The eligibility criteria for breast
cancer survivors were the following: woman aged 65 years and older with a history of stage I-III breast
cancer with or without chemotherapy treatment at 5 to 15 years after surviving breast cancer, and no
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contraindications such as orbital metal or claustrophobia for brain MRI scans. Exclusion criteria included
the following: history of stroke, psychiatric disease, metastatic disease, or any other cancer. Age and sex-
matched HCs were enrolled with similar criteria except for the history of cancer. The HCs were recruited
via local newspaper advertisements, patient referrals, and community health fairs. This study was
approved by the Institutional Review Board (IRB) of City of Hope National Medical Center. Written
informed consent was obtained from all participants in compliance with institutional guidelines and the
Declaration of Helsinki, as well as local, state, and federal regulations from all participating subjects.

b. MRI acquisition and gyri�cation analysis

All brain MRI scans were acquired for both TP1 and TP2 in the same in-house 3T VERIO Siemens scanner
(Siemens, Erlangen, Germany). Structural three-dimensional (3D) T1-weighted magnetization prepared
rapid gradient echo (MPRAGE) images were acquired with the following parameters: TR = 1900
millisecond (ms), TE = 2.94 ms, inversion time = 900 ms, FA = 9°, and voxel size = 0.45 x 0.45 x 1.5 .
Incidental brain pathology was assessed on the T1-weighted MPRAGE and �uid-attenuated inversion
recovery (FLAIR) images by the neuroradiologist in the study (BC). The cortical gyri�cation analysis was
performed using the Computational Anatomy Toolbox (CAT12) [24] from the T1-weighted images. All
images were manually re-oriented using the statistical parametric mapping toolbox (version SPM12)
(Wellcome Department of Cognitive Neurology, UK). The CAT12 and SPM12 toolboxes for our analysis
were based on MATLAB (R2019b). The mean gyri�cation values were analyzed based on Desikan-Killiany
(DK40) cortical atlas [37, 38]. We followed the standard pipeline and settings for preprocessing and
gyri�cation analysis [24]. The main steps were as follows: i) extraction of central surface, ii) estimation of
the local absolute mean curvature from each vertex point within the 3 mm of this central surface given
point, iii) smoothing and resampling of the gyri�cation maps using full width at half maximum (FWHM)
gaussian �lter at 20 mm.

c. NP testing with NIH toolbox for cognition

The NP testing was performed using the NIH Toolbox Cognition Battery [39, 40]. This cognitive testing
battery generated seven individual scores for List Sorting Working Memory, Picture Sequence Memory,
Pattern Comparison Processing Speed, Oral Reading Recognition, Picture Vocabulary, Flanker Inhibitory
Control, and Dimensional Change Card Sorting. Additionally, the crystalized, �uid, and total composite
cognition scores, were also generated.

d. Statistical analysis

Clinical and demographic information was assessed using analysis of variance (ANOVA) for continuous
variables. Categorical variables were analyzed using Fisher’s exact tests. Threshold of p-value at 0.05
was considered statistically signi�cant for both continuous and categorical variables, and all tests were
two-sided.
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NP test performance was analyzed using a generalized linear model (GLM) with the correlation of
repeated measurements within subjects [9, 41]. Group (C+, C-, HC) and time-point (TP1, TP2) were
considered categorical �xed effects in this analysis. Using the GLM, we tested the following: 1) whether
there were any differences in NP scores between the 3 groups at TP1 or TP2, 2) whether there were any
signi�cant longitudinal differences within group, 3) whether there was a group by time interaction effect.
SAS 9.3 (SAS Institute, Cary, NC) was used for data analyses.

Whole brain surface gyri�cation was compared between groups at TP1 using two-sample t-test. Within
group longitudinal change over the 2-year study interval was tested using paired t-tests. In both analyses,
effects were corrected for multiple comparisons for the whole brain using Bonferroni correction in the
CAT12 software with a signi�cance threshold of p < 0.05. The correlations of the mean gyri�cation values
with NP composite scores were tested using linear regression analysis with a p-value of 0.05 being
considered signi�cant. The linear regression analysis and group by time interaction were tested using the
statistical package for the social science software (SPSS, v 27, Chicago, IL).

Results
a. Demographic data 

At TP1, a total of 60 participants were enrolled with 20 participants for each of the three groups, i.e., C+,
C- and HC groups. At TP2, due to attrition from loss to follow-up, new cancer, new memory problems,
refusal and death, the cohort consisted of 10 participants for the C+ group, 12 participants for the C-
group, and 13 participants for HC group [9]. There were no signi�cant differences among the groups in
age (p = 0.75), education (p = 0.80) or race (p = 0.37) (Table 1). More detailed clinical and demographic
information for this cohort has been reported [9]. In the C+ group, 80% of survivors had Stage II breast
cancer.  The C- group consisted of 50% survivors in stage 0, 33% survivors in stage I and 17 % survivors in
stage II. In the C+ group, 90% of survivors had treatment with non-trastuzumab regimen and 10% of
survivors with trastuzumab regimen (Table 1). 

b. Gyri�cation results

There were no signi�cant gyri�cation differences at TP1 between C+ versus C-, C+ versus HC, and C-
versus HC (p > 0.05, Bonferroni corrected). 

Within the C+ group, gyri�cation was signi�cantly increased in 6 regions and decreased in 2 regions
longitudinally over the 2-year study interval (p < 0.05, Bonferroni corrected) (Table 2). The brain regions
with increased surface gyri�cation in the C+ group included the following (Bonferroni corrected): left pars
opercularis gyrus (p < 0.001), right superior temporal gyrus (p < 0.001), right middle temporal gyrus (p <
0.001), right precuneus gyrus (p < 0.001), right paracentral gyrus (p < 0.001) and right fusiform gyrus (p =
0.004) (Fig. 1). The brain regions with decreased surface gyri�cation in the C+ group included the
following (Bonferroni corrected): left superior parietal gyrus (p = 0.030) and left cuneus gyrus (p = 0.030). 
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Within the C- group, brain surface gyri�cation was signi�cantly decreased in 7 regions (p < 0.05,
Bonferroni corrected) and no regions showed increased gyri�cation. Decreased surface gyri�cation within
the C- group was noted in left fusiform gyrus (p < 0.001), left lingual gyrus (p < 0.001), left isthmus
cingulate gyrus (p < 0.001), left supramarginal gyrus (p = 0.001), right lateral orbitofrontal gyrus (p =
0.006), right inferior temporal gyrus (p = 0.001) and right caudal middle frontal gyrus (p < 0.001) (Fig. 2). 

In the HC group, brain surface gyri�cation was signi�cantly decreased in 9 regions (p < 0.05, Bonferroni
corrected) and no regions showed increased gyri�cation longitudinally. Decreased brain surface
gyri�cation was noted in the following regions: left superior frontal gyrus (p < 0.001), left postcentral
gyrus (p < 0.001), left precuneus gyrus (p < 0.001), left paracentral gyrus (p < 0.001), left caudal anterior
cingulate gyrus (p < 0.001), left transverse temporal gyrus (p < 0.001), right superior frontal gyrus (p <
0.001), right caudal middle frontal gyrus (p < 0.001) and right supramarginal gyrus (p < 0.001) (Fig. 3). 

There was no signi�cant gyri�cation difference noted in group-by-time interaction analysis (p > 0.05,
Bonferroni corrected).

c. NP testing scores 

The detailed results of the NIH Toolbox cognition battery testing scores  have been reported in our prior
study of cortical thickness in the same cohort [9]. Brie�y, the C+ group showed signi�cantly decreased
total composite score (p = 0.01), �uid composite score (p = 0.03) and picture vocabulary score (p = 0.04)
across the 2-year interval. No signi�cant changes in NP scores were noted in C- and HC group at a
threshold of p values at 0.05.   

d. Correlation between gyri�cation and NP scores

The correlation analysis was performed between the signi�cant gyri�cation alterations within each group
over time and the 3 NP composite scores. A signi�cant negative correlation was noted between
longitudinal changes in the crystallized composite scores and right paracentral gyri�cation values in the
C+ group (p = 0.01, R = -0.76).  No signi�cant correlations were noted in the C- or the HC group (Fig. 4).

Discussion
We identi�ed altered gyri�cation in the older long-term survivors of breast cancer with exposure to
chemotherapy. We found the mostly increased gyri�cation in the chemotherapy-treated group while only
decreased gyri�cation in the control groups over the 2-year study interval. In addition, we also found a
signi�cant correlation between the increased gyri�cation and the changes in cognitive testing scores. To
the best of our knowledge, this was the �rst prospective longitudinal study of the effect of chemotherapy
on gyri�cation in older long-term survivors of breast cancer.

Our C + group showed increased gyri�cation in the right superior temporal gyrus. In contrast, a previous
study of breast cancer patients with neoadjuvant chemotherapy showed decreased gyri�cation in the
same region [36]. The divergent results might be due to differences in study designs. The prior study
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focused on the acute effects of chemotherapy within 2 months after treatment and assessed the pre- and
post-chemotherapy differences in patients of 29 to 68 years of age [36]. Therefore, this prior study
assessed acute changes stimulated by neurotoxic effects of chemotherapy while our study assessed the
chronic chemotherapy-related neurotoxicity in older breast cancer survivors. Literature supports this
pattern of gyri�cation alteration with decreased gyri�cation in acute phase as noted in mild traumatic
brain injury within 3 months of brain injury [31] and increased gyri�cation in a cohort with childhood
traumatic brain injury after 6 to 15 years of post-injury [34]. Brain changes associated with chemotherapy
tend to be subtle and are similar to mild traumatic brain injury. One speculation for the increased
gyri�cation relies on the phenomena of neurogenesis [33], in which the brain might expand by increasing
gyri�cation to accommodate newly generated neurons. In addition, the right superior temporal gyrus
plays a role in social cognitive function such as auditory and language processing [42]. The oral reading
recognition score from the NP testing in our study assessed language and auditory skills [43] and was
decreased within the C + group, thus implying the brain structure including the superior temporal gyrus
underlying these functions, may be altered. Therefore, we speculate that the increased right superior
temporal gyri�cation might be a compensatory measure to accommodate the newly generated neurons
to counter neurotoxicity of chemotherapy [33].

We found increased gyri�cation in the right medial temporal gyrus in the C + group, which is in general
agreement with a prior study in patients with early stages of dementia [33]. Patients with mild cognitive
impairment (MCI) and Alzheimer’s Dementia (AD) [33] had increased gyri�cation and atrophy in
entorhinal cortex, which is a part of the medial temporal gyrus. The medial temporal lobe is associated
with episodic memory [44]. We also found a decreased picture vocabulary testing score in the C + group,
indicating diminished episodic memory. Our �ndings support the notion that gyri�cation alteration in the
medial temporal lobe may be useful as an imaging biomarker for CRCI and AD in older cancer survivors.
The right fusiform gyrus, close to the medial temporal gyrus, also showed increased gyri�cation in our C 
+ group. The fusiform gyrus plays an important role in semantic memory such as face recognition [45],
visual perception [46] and face stimuli [46]. Our own prior study noted GM reduction in the right fusiform
cortex in the chemotherapy-treated group [47]. Overall, our �ndings implicate the temporal lobe structures
as being vulnerable to chemotherapy neurotoxicity.

We found increased gyri�cation in the paracentral gyrus within the C + group over time and our �ndings
were consistent with a prior study showing decreased sulcus depth in the paracentral gyrus during the
early post-chemotherapy phase in breast cancer patients [36]. The paracentral gyrus is the medial
continuation of the precentral and postcentral regions, which controls motor and sensory innervations of
the contralateral lower extremity [48]. Our �ndings implicate the paracentral gyri�cation as a potential
neural correlate for CRCI in older long-term cancer survivors who had chemotherapy treatment many
years ago. The increased gyri�cation in the paracentral gyrus region had a signi�cant negative
association with the crystallized composite scores in the C + group. The crystalized intelligence consisted
of picture vocabulary and oral reading recognition based on past learning experiences [49]. Nevertheless,
the crystalized cognition score was only marginally signi�cant overtime in our C + group and this score
has been known to be resilient to change [50]. More studies in larger samples are needed to con�rm the
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association of crystalized composite score and paracentral gyri�cation changes in the older survivors
treated with chemotherapy.

We found decreased gyri�cation in the left superior parietal lobe in the older long-term breast cancer
survivors with history of chemotherapy treatment. A prior study showed similar �ndings in a cohort of
breast cancer patients shortly after chemotherapy [36]. The parietal lobe is important for cognitive
function, and atrophy of the superior partial lobe is associated with impairment of working memory,
attention and visuomotor functions [51, 52]. Taken together, the diminished left superior parietal
gyri�cation may have occurred shortly after chemotherapy and persisted into long-term survivorship.
Nevertheless, a longitudinal study including a pre-chemotherapy baseline and long-term follow-up is
needed to assess the trajectory of gyri�cation alterations.

The control groups in our study showed only decreased gyri�cation over time with no increase noted,
which was consistent with prior studies of normal aging. For instance, a prior study has shown decreased
gyri�cation in the older population as compared to the younger population [32]. The decreased
gyri�cation in the left lingual and right lateral orbitofrontal gyrus in our C- group and in the left postcentral
and precuneus in the HC group were in line with previous longitudinal study of healthy aging [33]. The
underlying neural mechanism for decreased gyri�cation in the aging studies is not well known [24]. We
speculate that it could be partly due to age-related brain volume loss, leading to less folding of gyrus thus
decreased gyri�cation during the aging process [24].

There were limitations to this study. First, our study cohort was small and there was severe attrition
during the 2-year study interval. We will implement measurements and lessons from this study to
decrease attrition in our future studies. Second, our study cohort included mostly non-Hispanic white
women, decreasing the generalizability of our gyri�cation results to other racial and ethnic groups. Third,
though gyri�cation is a signi�cant surface parameter to assess brain alterations, other surface
morphology parameters such as sulcal depth may help con�rm brain changes. Further analysis of brain
surface parameters is ongoing. Lastly, we only identi�ed longitudinal changes over a 2-year interval but
not at TP 1 during the initial enrollment. We believe a larger sample size may have detected subtle
differences among the groups at TP 1. Despite the limitations, this study has merits. This was the �rst
longitudinal study to assess the effect of chemotherapy on gyri�cation in older long-term survivors of
breast cancer. We contributed novel brain structural and functional information to advance CRCI research
in older cancer survivors.

Conclusions
We identi�ed altered brain surface gyri�cation and its association with cognitive function in long-term
breast cancer survivors who had chemotherapy many years ago. This study implicated gyri�cation as a
possible underlying neural correlate of CRCI in older long-term survivors of cancer.
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Parameters C+ 

N=10

C-

N=12

HC 

N=13

p

Age years        

Mean (SD) 74.70 (5.44) 76.50 (4.28) 75.54 (6.63) 0.752

Median (Range) 72.5 (68-84) 75.5 (71-86) 75.00 (67-88)  

 

Race* (N, %)

       

White or Caucasian  8 (80) 11 (92) 13 (100) 0.373

Black 1 (10) 1 (8) .  

Asian, Native Hawaiian 1 (10) . .  

Other . . .  

 

Highest grade (N, %)

       

High school or less 2 (20) 4 (33) 4 (31) 0.805

College or above  8 (80) 8 (67) 9 (69)  

 

AJCC Stage (N, %)

       

DCIS 1 (10) 6 (50) .  

Stage I 1 (10) 4 (33) .  

Stage II 8 (80) 2 (17) .  

 

Regimen

Non-Trastuzumab Regimen (N, %)

9 (90)      

Trastuzumab Regimen (N, %) 1 (10)      

Abbreviations: TP1: time point 1, TP2: time point 2, C+: Chemotherapy group, C-: No-chemotherapy group,
HC: Healthy control group, BMI: Body mass index, SD: Standard deviation, AJCC: American Joint
Committee on Cancer, DCIS: Ductal carcinoma in situ and N = number of subjects. For all the above
comparisons, ANOVA or Fisher tests were used (for continuous or categorical data,
respectively). Parameters were signi�cant with threshold at p of 0.05. 
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Table 2. Gyri�cation results 
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Changes  Size
(vertexes) 

p-value

 (corrected)

Overlap of atlas
region

Brain region (DK40)

C+ group:        

TP2>TP1 3119 0.00034 100% Left Pars opercularis

 
 

11925       0.00034 58%          Right Superior Temporal

 
 

 
 

 
 

42% Right Middle Temporal

 
 

11806 0.00025 68%          Right Precuneus

 
 

 
 

 
 

32% Right Paracentral

 
 

4661 0.00435 100% Right Fusiform

         

TP2<
TP1

12086 0.03061 87% Left Superior Parietal

 
 

 
 

 
 

13% Left cuneus

         

C- group:        

TP2<
TP1

11450 0.00001 41% Left Fusiform

      37%          Left Lingual

      22%          Left Isthmus Cingulate

  8600 0.00105 100%        Left Paravaginal

  4351 0.00616    
  

100%        Right Lateral Orbitofrontal

  4198 0.0010      100%        Right Inferior Temporal

  3494         0.00021 100% Right Caudal Middle frontal

         

HC
group:

       

TP2<
TP1

33739       0.00095  36% Left Superior Frontal
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      28% Left Postcentral

      22% Left Precuneus

      10% Left Paracentral

        4% Left Caudal Anterior
Cingulate

  1064 0.00022    100% Left Transverse Temporal

  15372       0.00040 77%          Right Superior Frontal

      23% Right Caudal Middle Frontal

  8150 0.00019 100% Right Supramarginal

 

Abbreviations: TP1: time point 1, TP2: time point 2, C+: Chemotherapy group, C-: No-chemotherapy group,
HC: Healthy control group, DK40: Desikan atlas. Cluster size >10. Results were signi�cant with threshold
at p of 0.05. 

Figures

Figure 1
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Brain regions with longitudinal changes in gyri�cation within the chemotherapy (C+) group. The altered
regions are (a) left cuneus, (b) left superior parietal gyrus, (c) left pars opercularis, (d) right fusiform
gyrus, (e) right middle temporal gyrus, (f) right precuneus, (g) right superior temporal gyrus, and (h) right
middle temporal gyrus. L- left hemisphere, R- right hemisphere. Results were Bonferroni correctedat
signi�cant level of 0.05.

Figure 2

Brain regions with decreased gyri�cation within the non-chemotherapy control (C-) group. These regions
included the following: (a) left isthmus cingulate gyrus, (b) left supramarginal gyrus, (c) left fusiform
gyrus, (d) left lingual gyrus, (e) right inferior temporal gyrus, (f) right lateral orbitofrontal gyrus, (g) right
caudal middle frontal gyrus. L- left hemisphere, R- right hemisphere. Results were Bonferroni corrected at
signi�cant level of 0.05.
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Figure 3

Brain regions with decreased gyri�cation within the healthy control (HC) group. These regions included
the following: (a) left paracentral gyrus, (b) left superior frontal gyrus, (c) left caudal anterior cingulate
gyrus, (d) left postcentral gyrus, (e) left transverse temporal gyrus, (f) left precuneus, (g) right superior
frontal gyrus, (h) right supramarginal gyrus, (i) right superior frontal gyrus, and (j) right caudal middle
frontal gyrus. L- left hemisphere, R- right hemisphere. Results were Bonferroni correctedat signi�cant level
of 0.05.

Figure 4
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Correlation of longitudinal changes between the right paracentral gyri�cation values and the crystallized
composite scores. (a) chemotherapy (C+) group, (b) no-chemotherapy (C-) group, and (c) healthy control
(HC) group. R: the Pearson’s correlation coe�cient with signi�cance set at p ≤ 0.05.


