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Abstract
The relationship between gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity is still
not well understood. Here we investigated these associations in a large (n=1904) African origin cohort
from Ghana, South Africa, Jamaica, Seychelles, and the US. Fecal microbiota diversity and SCFA
concentration were greatest in Ghanaians, and lowest in the US population, representing the lowest and
highest end of the epidemiologic transition spectrum, respectively. Obesity was signi�cantly associated
with a reduction in SCFA concentration, microbial diversity and SCFA synthesizing bacteria. Country of
origin could be accurately predicted from the fecal microbiota (AUC=0.97), while the predictive accuracy
for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC =
0.57). The �ndings suggest that the microbiota differences between obesity and non-obesity may be
larger in low-to-middle-income countries compared to high-income countries. Further investigation is
needed to determine the factors driving this association.�

Introduction
Obesity, which affects more than 600 million adults worldwide (“Obesity and Overweight” n.d.), over a
third of Americans (Hales et al. 2020), and accounts for over 60% of deaths related to high body mass
index (BMI) (Tseng and Wu 2019), remains an ongoing global health epidemic that continues to worsen
at an alarming rate. A major driver of obesity is the adoption of a western lifestyle, which is characterized
by excessive consumption of ultra-processed foods. Obesity is a major risk factor for type 2 diabetes, and
according to the most recent National Diabetes Statistics Report almost 13% of the adult US population
now have diabetes. Not only do 49.6% of adult African Americans present with obesity but over 17% of
them now have diabetes, and are 1.5 times as likely to present with type 2 diabetes compared to whites
(“National Diabetes Statistics Report” 2022). Populations of African origin outside of the US are
experiencing similar fates, as the prevalence of obesity among adults living in Sub-Saharan Africa is
greater than 13%, and higher than the global obesity prevalence for adults (Agyemang et al. 2016). This
has been accompanied by dramatic increases in the prevalence of non-communicable diseases such as
type two diabetes and hypertension among people of African origin (Roth et al. 2020; Gouda et al. 2019).
Therefore, disrupting the rapidly expanding obesity epidemic, particularly among African origin
populations is critical to controlling the cardiometabolic disorder epidemic (Geng et al. 2022). However,
successfully managing and treating obesity and its comorbidities, and speci�cally maintaining weight
loss long-term, is particularly challenging due to an incomplete understanding of the heterogeneous and
complex etiopathology, as well as additional challenges facing populations experiencing rapid
urbanization (Nordmo, Danielsen, and Nordmo 2020; Geng et al. 2022; Barone et al. 2022). The
epidemiologic transition is a model able to capture these shifts in dietary and rural to urban movements
and is characterized by diets that are high in ultra-processed foods with a signi�cant loss in �ber, as
evidenced in the US, where less than 50% of the population meet dietary �ber recommendations (Dahl
and Stewart 2015).
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Gut microbial ecology and metabolism play pivotal roles in the onset and progression of obesity and its
related metabolic disorders (Ley 2010). Obese and lean individuals have reported differences in the
composition and functional potential of the gut microbiome, with an overall reduction in species diversity
in the obese gut (Dugas, Bernabé, et al. 2018; Greenblum, Turnbaugh, and Borenstein 2012; Jumpertz et
al. 2011; Ley et al. 2006; Turnbaugh et al. 2009; Le Chatelier et al. 2013), additionally, fecal microbiota
transfer from obese donors to mouse models can recapitulate the obese phenotype (Turnbaugh et al.
2006, 2008; Ridaura et al. 2013). Further, fecal microbiota transplant from healthy donors into patients
with obese and metabolic syndrome has been shown to improve markers of metabolic health in the
recipients (Vrieze et al. 2012). While these studies suggest that modi�cation of microbial ecology may
offer new options for the treatment and prevention of obesity, the mechanism that drives the microbiota-
obesity relationship is not fully understood. The microbiota may facilitate greater energy exploitation
from food, and storage capacity by the host (Turnbaugh et al. 2006; DiBaise et al. 2008), in�uencing
adipose tissue composition and fat mass gain, as well as providing chronic low-grade in�ammation and
insulin resistance (Cani and Delzenne 2009; J. L. Sonnenburg and Bäckhed 2016).

Among the numerous microbial metabolites modulating obesity, there is an ever-growing interest in the
role of short-chain fatty acids (SCFAs), which includes butyrate, acetate, and propionate as potential
biomarkers for metabolic health as well as therapeutic targets. SCFAs derive primarily from microbial
fermentation of non-digestible dietary �ber in the colon. They have many effects on host metabolism
including serving as an energy source for host colonocytes, used as precursors for the biosynthesis of
cholesterol, lipids, proteins and regulating gut barrier activities (Dalile et al. 2019; Koh et al. 2016; van der
Hee and Wells 2021). Human and animal studies demonstrate a protective role of SCFAs in obesity and
metabolic disease. In experimental animal models, SCFA supplementation reduces body weight, improves
insulin sensitivity, and reduces obesity-associated in�ammation (Vinolo et al. 2011; Gao et al. 2009;
Henagan et al. 2015; Lu et al. 2016; Bonomo et al. 2020). In humans, increased gut production of butyrate
correlates with improved insulin response after an oral glucose-tolerance test (Sanna et al. 2019).
Although increased SCFA levels are generally observed as positive for health (Valdes et al. 2018), other
studies have suggested that overproduction may promote obesity, possibly resulting from greater energy
accumulation (Schwiertz et al. 2010; Rahat-Rozenbloom et al. 2014; Teixeira et al. 2013). Indeed, a
previous study observed greater fecal SCFA concentrations to be linked with obesity, increased gut
permeability, metabolic dysregulation, and hypertension in a human cohort (de la Cuesta-Zuluaga,
Mueller, et al. 2018).

The con�icting obesity role of SCFAs identi�ed by existing studies may result from the variation in the gut
microbiota, which is shaped by lifestyle and diet. Adequately powered studies in well-characterized
populations may permit more rigorous assessments of individual differences. Prior comparative
epidemiological studies have broadly focused on either contrasting the gut microbiota of extremely
different populations, such as the traditional hunter-gatherers and urban-westernized countries, or
ethnically homogenous populations (Pasolli et al. 2019; He et al. 2018; Peters et al. 2018; Zhernakova et
al. 2016). Demographic factors represent one of the largest contributors to the individualized nature of
the gut microbiome (Falony et al. 2016; Zhernakova et al. 2016; Yatsunenko et al. 2012). The �ve diverse,
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well-de�ned cohorts from the Modeling the Epidemiologic Transition Study (METS) offers a unique
opportunity to examine the issues since they are more representative of most of the world’s population.
METS has longitudinally followed an international cohort of approximately 2,500 African origin adults
spanning the epidemiologic transition from Ghana, South Africa, Jamaica, Seychelles, and the US since
2010 to investigate differences in health outcomes utilizing the framework of the epidemiologic
transition. Pioneering microbiome studies from the METS cohorts reveal that cardiometabolic risk factors
including obesity is signi�cantly associated with reduced microbial diversity, and the enrichment of
speci�c taxa and predicted functional traits in a geographic-speci�c manner (Dugas, Bernabé, et al. 2018;
Fei et al. 2019). While yielding valuable descriptions of the connections between the gut microbiota
ecology and disease, particularly obesity, as well as pioneering the efforts of microbiome studies of
populations of African origin on different stages of the ongoing nutritional epidemiologic transitions,
these studies, however, have applied small sample size (N=100 to N=655), and also did not utilize all the
countries in the METS cohort. Thus, uncertainties remain as to the precise interpretation of the
microbiome-obesity associations, which hampers further progress towards diagnostic and clinical
applications.

Our new study METS-Microbiome investigated associations between the gut microbiota composition and
functional patterns, concentrations of fecal SCFAs and obesity in a large (N = 1,904) adult population
cohort of African origin, comprised of Ghana, South Africa, Jamaica, Seychelles, and the US spanning the
epidemiologic transition (Dugas, Lie, et al. 2018; Luke et al. 2011). The central hypothesis is that shifts
towards the highest end of the epidemiologic transition spectrum is associated with alterations in
microbiota diversity and community composition, reductions in levels of fecal SCFAs and obesity.

Results
Obesity differs signi�cantly across the epidemiological transition. From 2018-2019, the METS-
Microbiome study recruited 2,085 participants (~60% women) ages 35-55 years old from �ve different
sites (Ghana, South Africa, Jamaica, Seychelles, and US). Of these participants, 1,249 have been followed
on a yearly basis since 2010 under the parent METS study. Data from 1,867 participants with complete
data sets were used in this analysis. Overall mean age was 42.5 ± 8.0 years (Table 1). Mean fasted blood
glucose was 105.2 ± 39.4 mg/dL, mean systolic blood pressure was 123.4±18.1 mm Hg and mean
diastolic blood pressure was 77.2 ± 13.1 (Table 1). When compared to the high-income countries
(Jamaica, Seychelles, and US), both women and men from the lower- and middle-income countries
(Ghana and South Africa) had signi�cantly lower BMI, fasted blood glucose and blood pressure (systolic
and diastolic). Mean BMI was lowest in the South African men (22.3 kg/m2 ± 4.1) and highest in US
women (36.3 kg/m2 ± 8.8). When compared to the US, all sites had signi�cantly lower prevalence of
obesity (p<0.001 for all sites except for Seychelles: p=0.02). Prevalence of hypertension was lowest in
Ghanaian men (33.1%) and highest in US men (72.7%). Prevalence of diabetes was lowest in South
African women and men (3.5% for women and men) and highest for Seychellois men (22.8%). When
compared to the US, prevalence of hypertension and diabetes was signi�cantly lower in countries at the
lower end of the spectrum of HDI (i.e., Ghana and South Africa) when compared to the US (p<0.001).
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Microbial community composition and predicted metabolic potential differs signi�cantly between
countries and correlates with obesity. Following the removal of samples that had fewer than 6,000 reads
and features less than ten reads in the entire dataset, a total of 433,364,873 16S rRNA gene sequences
were generated from the 1,873 fecal samples which were clustered into 13,254 ASVs. Country of origin
describes most of the variation in microbial diversity and composition, with signi�cant differences in both
alpha and beta diversity. Although there were major variations in alpha diversity between countries and
large degree of inter-individual variation within countries, Ghana showed signi�cantly greater diversity for
all the alpha diversity metrics (Observed ASVs, Shannon Diversity and Faith’s phylogenetic diversity)
when compared to all other countries. The Seychelles and US had the lowest alpha diversity (Fig. 1). The
stool microbiota alpha diversity of non-obese individuals was signi�cantly greater when compared with
that of obese individuals (Fig. 1). Beta diversity was also signi�cantly different between countries (Fig. 1,
Supplementary Tables 2 & 3; principal coordinate analysis, weighted UniFrac distance; F-statistic =58.67;
p < 0.001; unweighted UniFrac distance; F= 39.87; p < 0.001) and obese group (weighted UniFrac distance;
F-statistic =2.39; p = 0.031; unweighted UniFrac distance; F=6.06; p < 0.001).

Next, we compared fecal microbiota diversity between obese individuals with their non-obese
counterparts within each country independently. Greater alpha diversity was detected in non-obese
subjects in the Ghanaian (Observed ASVs, Faith PD; p<0.05) and South African cohorts (Observed ASVs;
p<0.05) only (Supplementary Table 1). Similarly, signi�cant differences in beta diversity between obese
and non-obese microbiota were observed in Ghana (Unweighted UniFrac; p<0.05), South Africa
(Unweighted UniFrac; p<0.05) and US (Weighted UniFrac; p<0.05) data sets (Supplementary Tables 2 & 3).
These results suggest that the beta diversity differences observed in the Ghanaian and South African
participants may partly be due to the presence of more abundant fecal microbiota taxa in the fecal
samples whereas among the US participants, the differences may be related to the abundance of rare
taxa. Collectively, these observations suggest that country is a major driver of the variance in gut
microbiota diversity and composition among participants with or without obesity with marked
contributions from Ghana and South Africa and modest contribution from the US in the overall cohort.

We also examined whether country of origin or obesity relates to the presence of speci�c microbial
genera frequently used to stratify humans into enterotypes (Arumugam et al. 2011). As expected, large
differences in enterotype between the countries were observed. The Prevotella enterotype (P-type) was
enriched on the African continent, with 81% and 62% in Ghanaians and South Africans respectively while
Bacteroides enterotype (B-type) was dominant in the US (75%), Jamaican cohorts (68%), and comparable
proportions of both enterotypes among individuals from Seychelles. Further, obese individuals displayed
a greater abundance of B-type whereas a higher proportion of the P-type associated with the non-obese
group (Supplementary Table 4). Consistent with this observation, the abundance of B-type correlated with
higher BMI (p=0.004) than P-type. Signi�cantly greater diversity and increased levels of total SCFA were
observed in participants in the P-type (Supplementary Table 4). The relative abundance of shared and
unique features between the different countries illustrated by the Venn diagram showed that Ghana
carries the largest proportion of unique taxa than the other countries, and US the lowest (Fig. 1).
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Microbial taxa differ signi�cantly between countries and between lean and obese individuals. In
comparison with the US, South African fecal microbiota had a signi�cantly greater proportion of
Clostridium, Olsenella, Bacilli and Mogibacterium; Jamaican samples had a signi�cantly greater
proportion of Bacilli, Bacteroides, Clostridia, Dialister, Enterobacteriaceae, and Oscillospiraceae;
Seychelles samples had a signi�cantly greater proportion of Clostridium, Olsenella and Haemophilus; and
Ghanaian samples had a signi�cantly greater proportion of Clostridium, Prevotella, Weisella,
Enterobacteriaceae and Butyricicoccaceae. The US samples had a signi�cantly greater proportion of
Aldercreutzia, Anaerostipes, Clostridium, Eggerthella, Eisenbergiella, Ruminococcaceae and Sellimonas
compared to the 4 countries (Fig. 2 and Supplementary Fig. 1).

When adjusted for country, age, and sex (p < 0.05; false discovery rate (fdr)-corrected), 38 Amplicon
Sequence Variants (ASVs) were signi�cantly different between obese and non-obese groups. The obese
group was characterized by an increased proportion of Allisonella, Dialister, Oribacterium, Mitsuokella,
and Lachnospira, whereas non-obese microbiota had a signi�cantly greater proportion of Alistipes,
Bacteroides, Clostridium, Parabacteroides, Christensenella, Oscillospira, Ruminococcaceae (UBA1819),
and Oscillospiraceae (UCG010) (Fig. 2).

Microbial taxonomic features predict obesity overall and within each country. Using supervised Random
Forest machine learning, the predictive capacity of the gut microbiota features in stratifying individuals to
country of origin, sex, or with metabolic phenotypes were assessed. The predictive performance of the
model was calculated by area under the receiver operating characteristic curve (AUC) analysis, which
showed a high accuracy for country of origin (AUC = 0.97), and a comparatively lower level of predictive
accuracy for obese state (AUC = 0.65) (Fig. 3). Sex was predicted with AUC = 0.75, the diabetes status
with AUC = 0.63, hypertensive status with AUC = 0.65 and glucose status with AUC = 0.66. Random Forest
analysis was also used to identify the top 30 microbial taxonomic features that differentiate between
countries and obese states. Similar to the ANCOMBC results, Prevotella and Streptococcus were at a
greater proportion in the microbiota of Ghanaian and non-obese individuals, whereas Mogibacterium was
at a greater proportion in the South African cohort. A greater proportion of Megasphaera was associated
with the Jamaican cohort, while a greater proportion of Ruminococcaceae was observed in the American
microbiota. Weisella, which was identi�ed as having a signi�cantly greater proportion in the Ghanaian
cohort using ANCOMBC, was observed to be a discriminatory feature for Seychelles microbiota using
Random Forest (Supplementary Fig. 2).

Similarly, the predictive capacity of the gut microbiota features in stratifying individuals by obese state
was assessed at each of the �ve study sites. The predictive performance of the model was calculated by
AUC analysis, which showed a moderate accuracy for obese state for all sites, namely, Ghana (AUC = 
0.57), South Africa (AUC = 0.52), Jamaica (AUC = 0.48), Seychelles (AUC = 0.43) and US (AUC = 0.52)
(Supplementary Fig. 3).

Predicted genetic metabolic potential differs by country and obesity status. The predicted potential
microbial functional traits resulting from the compositional differences in microbial taxa between
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countries and obese state were assessed. PICRUSt2 predicted a total of 372 MetaCyc functional
pathways. ANCOM-BC analysis adjusted for sex, age and BMI identi�ed 67 pathways (p< 0.05; false
discovery rate (fdr)-corrected), LFC>1.4) that accounted for discriminative features between the 4
different countries with the US (Supplementary Fig. 4). In comparison with US, MetaCyc pathways
differentially increased in Ghana and Jamaica include methylgallate degradation, norspermidine
biosynthesis (PWY-6562), gallate degradation I pathway, gallate degradation II pathway, histamine
degradation (PWY-6185), and toluene degradation III (via p-cresol) (PWY-5181). South African samples
had a greater proportion of L-glutamate degradation VIII (to propanoate) (PWY-5088), isopropanol
biosynthesis (PWY-6876), creatinine degradation (PWY-4722), adenosyl cobalamin biosynthesis
(anaerobic) (PWY-5507), respiration I (cytochrome c) (PWY-3781). MetaCyc pathways linked to
norspermidine biosynthesis (PWy-6562), mycothiol biosynthesis (PWY1G-0), were at a greater proportion
in the Seychelles samples, whereas reductive acetyl coenzyme A (CODH-PWY), and chorismate
biosynthesis II (PWy-6165) were depleted in the US samples. ANCOM-BC analysis adjusted for site, sex
and age identi�ed 24 predicted pathways that differentiated between obese and non-obese individuals
(Supplementary Fig. 4). Notably, the microbiota of non-obese individuals had a greater proportion of
predicted pathways including the TCA cycle, amino acid metabolism (P162-PWY, PWY-5154, PWY-5345),
ubiquinol biosynthesis-related pathways (PWY-5855, PWY-5856, PWY-5857, PWY-6708, UBISYN-PWY),
cell structure biosynthesis and nucleic acid processing (PWY0 845, PYRIDOXSYN-PWY).

Next, KEGG orthology (KO) involved in pathways related to butanoate (butyrate) metabolism and LPS
biosynthesis were investigated. Predicted genes involved in butyrate biosynthesis pathways showed that
enoyl-CoA hydratase enzymes (K01825, K01782, K01692), lysine, glutarate /succinate enzymes (K07250,
K00135, K00247), glutarate/Acetyl CoA enzymes (K00175, K00174, K00242, K00241 K01040, K01039)
were differentially abundant in participants from Ghana, South Africa, Jamaica, and Seychelles in
comparison to the US cohort. The relative abundance of succinic semialdehyde reductase (K18122) was
signi�cantly increased only in South Africa, Jamaica, and Seychelles population. Further, predicted genes
proportionally abundant only in speci�c countries were observed. For instance, succinate semialdehyde
dehydrogenase (K18119) was enriched only in the Ghanaian cohort, 4-hydroxybutyrate CoA-transferase
(K18122) enriched among South African participants and lysine/glutarate/succinate enzyme (K14268)
differentially abundant within the Seychelles population. The relative abundance of predicted genes
encoded for enzymes such as maleate isomerase (K10799), 3-oxoacid CoA-transferase(K01027) and
pyruvate/acetyl CoA (K00171, K00172, K00169) were greater in the US participants compared with
participants from the 4 countries (Supplementary Fig. 5). The non-obese exhibited a signi�cantly greater
abundance of genes that catalyze the production of butyrate via the fermentation of pyruvate or
branched amino-acids such as enoyl-CoA hydratase enzyme (K0182), Leucine/Acetyl CoA enzyme
(K01640) and pyruvate/acetyl CoA enzyme (K00171, K00172, K00169, K1907) by contrast obese
individuals were differentially enriched for succinyl-CoA:acetate CoA-transferase (K18118)
(Supplementary Fig. 5). All analyses were adjusted for country, sex, BMI and age (fdr-corrected p < 0.05).

Several gut microbial predicted genes involved in LPS biosynthesis differentially enriched among the
countries (p< 0.05; false discovery rate (fdr)-corrected) were identi�ed. In particular, the relative
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abundance of speci�c LPS genes (K02560, K12973, K02849, K12979, K12975, K12974) were signi�cantly
enriched in Ghana, South Africa, Jamaica, and Seychelles when compared with US. Higher proportions of
LPS genes including K12981, K12976 K09953, K03280 were signi�cantly increased in Seychelles
samples in comparison with US samples and also signi�cantly increased in the US cohorts in
comparison with participants from Ghana, South Africa, and Seychelles. US samples had a greater
proportion of the following genes (K15669, K09778, K07264, K03273, K03271) in comparison with the
other 4 countries (Supplementary Fig. 6). Non-obese individuals had a greater abundance of predicted
genes encoding LPS biosynthesis (K02841, K02843, K03271, K03273, K19353, K02850) whereas only 1
LPS gene (K02841) differentially elevated in the non-obese group (Supplementary Fig. 6). All analyses
were adjusted for country, sex, BMI and age (fdr-corrected p < 0.05).

Microbial community composition and taxonomy correlate with observed fecal SCFA concentrations. All
countries had signi�cantly higher weight-adjusted fecal total SCFA levels when compared to the US
participants (p<0.001), with Ghanaians having the highest weight-adjusted fecal total SCFA levels
(Supplementary Table 5). When compared to their obese counterparts, non-obese participants had
signi�cantly higher weight-adjusted fecal total and individual SCFA levels (Supplementary Table 6). Total
SCFA levels displayed weak, but signi�cantly positive correlation with Shannon diversity (r = 0.0.074). A
similar trend was observed in the different individual SCFAs, namely valerate (r = 0.19), butyrate (r = 0.12),
propionate (r = 0.073) and acetate (r = 0.058) (Fig. 4). Observed ASVs were not signi�cantly correlated
with total SCFAs (p>0.05). Levels of acetate, butyrate and propionate exhibited strong signi�cant
correlations with total SCFA, whereas valerate levels signi�cantly correlated negatively (r = -0.09) with
total SCFAs. Next, we assessed if levels of total SCFAs could be predicted by a mixed model. Country
explained 45.7% of the variation in SCFAs. No signi�cant effect was explained either by obesity or
Shannon diversity.

To explore the connection between SCFAs with gut microbiota, Spearman correlations between taxa that
were proportionally signi�cantly different between countries and concentrations of SCFAs were
determined. Valerate negatively correlated with the proportion of Clostridium, Prevotella,
Faecalibacterium, Roseburia and Streptococcus, which were all positively correlated with acetate,
propionate, and butyrate. Similarly, the proportions of Christensenellaceae, Eubacterium, and UCG 002
(Ruminococcaceae) were signi�cantly positively associated with valerate, and negatively correlated with
acetate, propionate, and butyrate. In addition, only a single ASV annotated to Ruminococcus was
observed to be positively associated with all 4 SCFAs (Fig. 5). Similarly, Spearman’s rank correlation
coe�cients were calculated between the differentially abundant ASVs identi�ed between obese and non-
obese group with concentrations of SCFAs. Broadly, the proportions of most ASVs were signi�cantly
positively associated with acetate in comparison with the other 3 SCFAs. Consistent with the correlations
mentioned above, valerate negatively correlated with most ASVs that were found to be positively
correlated with the three major SCFAs, acetate, propionate, and butyrate and vice versa. The relative
proportions of ASVs belonging to Allisonella, Erysipelotrichaceae and Libanicoccus positively correlated
with acetate, propionate, and butyrate, whereas signi�cantly negative relationships were observed
between Parabacteroides and Bacteroides abundances with the aforementioned SCFAs. Valerate showed
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signi�cantly positive associations with Oscillospiralles and Ruminococcaceae abundances and
signi�cantly negative correlations with Lachnospira and Eggerthella abundances (Fig. 5).

Discussion
By leveraging a well characterized large population-based cohort of African origin residing in
geographically distinct regions of Ghana, South Africa, Jamaica, Seychelles, and the US, we examined the
relationships between gut microbiota, SCFAs and adiposity. Our data revealed profound variations in gut
microbiota, which are re�ected in the signi�cant changes in community composition, structure, and
predicted functional pathways as a function of population obesity and geography, despite their shared
ancestral background. Our data further revealed an inverse relation between fecal SCFA concentrations,
microbial diversity, and obesity; importantly, the utility of the microbiota in predicting whether an
individual was lean or obese was inversely correlated with the income-level of the country of origin.
Overall, our �ndings are important for understanding the complex relationships between the gut
microbiota, population lifestyle and the development of obesity, which may set the stage for de�ning the
mechanisms through which the microbiome may shape health outcomes in populations of African origin.

As reported previously our data showed that geographic origin can modulate the composition of the gut
microbiota. Our �ndings were also consistent with our previous METS studies (Fei et al. 2019; Dugas,
Bernabé, et al. 2018) and other large scale continental cohort studies (De Filippo et al. 2010, 2017;
Yatsunenko et al. 2012; Schnorr et al. 2014; Clemente et al. 2015; Rampelli et al. 2015; Gomez et al. 2016;
Mancabelli et al. 2017), that report a higher bacterial diversity and composition/microbial richness in
traditionally non-western groups that distinguish them from urban-industrialized individuals whose diets
are low in �ber and high in saturated fats (E. D. Sonnenburg and Sonnenburg 2019; Kolodziejczyk, Zheng,
and Elinav 2019). Although we observe enrichment in the relative abundance of several taxa associated
with country of origin in our cohorts, we also detect a pattern where the gut microbiota of Ghanaian and
South African cohort tends to share many features, while the gut microbiota of the Jamaican cohort
shared many features with all 4 countries, possibly re�ecting the ongoing epidemiological transitional
nature of their communities represented by the overlap with western and traditionally non-western
populations. Notably, traditionally non-western associated taxa including Prevotella, Butyrivibrio, Weisella
and Romboutsia were enriched in participants from Ghana and South Africa, as suggested previously
(Mancabelli et al. 2017). Western-associated taxa such as Bacteroides and Parabacteroides were
enriched in individuals from Jamaica and the US (Mancabelli et al. 2017; Kao et al. 2015), while an ASV
annotated as Olsenella was proportionally abundant in Seychelles microbiota. Bi�dobacterium and
Aldercreutzia were enriched in the US cohort. Clostridium sensu stricto 1 was over-represented in all 4
countries in comparison with the US. We also found greater enrichment of VANISH taxa including
Butyricicoccus and Succinivibrio in the Ghanaian cohort, in line with individuals practicing traditional
lifestyles (Pasolli et al. 2019). Prevotella is usually associated with plant-based diets rich in dietary �bers,
while Bacteroides abundance broadly correlates with diets high in fat, animal protein, and sugars (Gupta,
Paul, and Dutta 2017; Wu et al. 2011), which is in agreement with our enterotype analysis where a
Prevotella-rich microbiota dominates the Ghanaian and South African gut, while a Bacteroides-rich
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microbiota dominated in the high-income countries. As Prevotella synthesizes SCFAs (T. Chen et al.
2017), its depletion may lead to the observed reduction in SCFA concentrations. Our results support a
potential role for geography in reinforcing variations in the gut microbiota in our study cohort despite
shared origin. Geography may re�ect subtle shifts in lifestyle and/or environmental exposures including
heterogeneity of dietary sources, exposure to medications, socioeconomic factors, medical history, and
biogeographical patterns in microbial dispersion (Asnicar et al. 2021; Pasolli et al. 2019; Costello et al.
2012; He et al. 2018).

We also inferred the metabolic capacity of the gut microbiota associated with the different countries.
Several metabolic pathways linked to carrier, cofactor and vitamin biosynthesis,
biosynthesis/degradation of amines, amino acids, aromatic xenobiotics, and tricarboxylic acid (TCA)
cycle were differentially enriched between the different countries compared with the US. These pathways
are involved in biochemical reactions that regulate several processes including energy metabolism,
in�ammation, epigenetic processes, and oxidative stress. Participants from Ghana and Jamaica were
enriched for gallate degradation, which can result in phenolic catechin metabolites which are thought to
alleviate obesity-related pathologies (Marchesi et al. 2016; Liu et al. 2021). Additionally, glutamate
metabolism, which can be fermented to butyrate and propionate, was enriched in South Africans and
Ghanaians compared to the US. In the Seychelles, actinobacterial mycothiol biosynthesis was
upregulated, which is involved in antioxidant activity and the removal of toxic compounds from cells
(Newton, Buchmeier, and Fahey 2008). We further identi�ed an increase in SCFA synthesis pathways, e.g.
acetyl coenzyme A pathway, threonine biosynthesis, and leucine degradation in the microbiomes of all
four countries compared to the US. Further studies are required to evaluate the potential causal relations
of these gut microbial functions with health outcomes using shotgun metagenomic sequencing.

Preclinical mouse models provided early causal links between gut microbial ecology and obesity (Ley et
al. 2005; Bäckhed et al. 2007), suggesting the potential to predict obesity risk from the microbiome.
However, prediction has proven di�cult because results are con�icting (Finucane et al. 2014). As we
observed, the bulk of evidence from prior studies show that obesity is associated with a less diverse
bacterial community (Turnbaugh et al. 2009; Dugas, Bernabé, et al. 2018; Peters et al. 2018). In addition,
we identi�ed several SCFA producing bacteria that were signi�cantly depleted in obese individuals, which
may in�uence host energy metabolism. For example, Oscillospira and Christensenella which were
statistically associated with increases SCFA concentrations and reduced obesity have previously been
associated with a lean phenotype (Beaumont et al. 2016; Konikoff and Gophna 2016; Gophna, Konikoff,
and Nielsen 2017; Morotomi, Nagai, and Watanabe 2012), and produce SCFAs (Konikoff and Gophna
2016; Gophna, Konikoff, and Nielsen 2017) including butyrate, which improves insulin sensitivity and
reduces in�ammation (M.-H. Kim et al. 2020). We also detected several butyrate producing ASVs
including Eubacterium, Alistipes, Clostridium and Odoribacter to be proportionally enriched in individuals
who were non-obese. We observed that obese individuals presented a greater abundance of Lachnospira,
which does produce SCFAs, a �nding also consistent with our prior study in the same population (Dugas,
Bernabé, et al. 2018), and others (Lippert et al. 2017; Meehan and Beiko 2014; de la Cuesta-Zuluaga,
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Corrales-Agudelo, et al. 2018). However, other studies have observed the opposite (Companys et al. 2021;
Stanislawski et al. 2017).

SCFA supplementation has been documented to protect against a high‐fat diet‐induced obesity in mice
(H. V. Lin et al. 2012; Lu et al. 2016) as well as weight gain in humans (Chambers et al. 2015). Conversely,
other studies, mostly from western populations, have reported that elevated SCFA concentrations in stool
can associate with obesity (Schwiertz et al. 2010; Fernandes et al. 2014; Riva et al. 2017; de la Cuesta-
Zuluaga, Mueller, et al. 2018). For instance, a Colombian cohort showed associations between elevated
fecal SCFA levels, central obesity, gut permeability, and hypertension (de la Cuesta-Zuluaga, Mueller, et al.
2018). One potential explanation is that obese gut microbiota may lead to less e�cient SCFA absorption,
hence the increased SCFA excretion (de la Cuesta-Zuluaga, Mueller, et al. 2018). However, as we found
diets high in �ber correlate positively with weight loss (Hu et al. 2013; Esposito et al. 2011) and increased
levels of fecal SCFAs (De Filippis et al. 2016). One explanation may be in differences lifestyle factors,
including medication, activity, and pollutant exposure, which could also impact intestinal absorption in
western countries. We note that fecal SCFA concentrations are not a direct measure of intestinal SCFA
production, but rather re�ect a net result of the difference between production and absorption (Canfora,
Jocken, and Blaak 2015). Studies using stable isotopes to measure SCFA dynamics would improve
interpretation of dichotomy.

While SCFAs associate with obese phenotype, another mechanism underpinning obesity is metabolic
endotoxemia. An increase in Proteobacteria, which often accompanies a high fat/high sugar diet, is often
associated with an increase in circulating lipopolysaccharide (LPS) and H2S, which provoke low-grade
in�ammation, increased intestinal permeability, and clock gene disruption in the liver, which associate
with adiposity (Zhao 2013; Cani et al. 2008; Leone et al. 2015). We identi�ed an increase in Dialister in
obese individuals which has been associated with increased LPS production (Yang et al. 2022; Boulangé
et al. 2016), obesity (Zhang et al. 2021), sleep disruption and chronic in�ammation (Yan et al. 2021;
Karlsson et al. 2012; Fei and Zhao 2013; Cani et al. 2007; Fei et al. 2021). Collectively, our results
demonstrate that obese individuals harbor a marked in�ammatory state favoring the development of
obesity, and this is in concordance with the associated metabolic endotoxemia pathway linking gut
bacteria to obesity.

In obese individuals, as well as SCFA metabolism, we also detected marked depletion in pathways
involved in cell structure, vitamin B6, NAD, and amino acid biosynthesis. This suggests that pathways
important for growth and energy homeostasis are disrupted in individuals with obesity. We also noted an
enrichment of the formaldehyde assimilation I (serine pathway) pathway. Endogenous formaldehyde
produced at su�cient levels has carcinogenic properties and detrimental effects on genome stability. To
counteract this reactive molecule, organisms have evolved a detoxi�cation system that converts
formaldehyde to formate, a less reactive molecule that can be used for nucleotide biosynthesis
(Reingruber and Pontel 2018; N. H. Chen et al. 2016). Thus, we may infer that the pattern of increased
formaldehyde assimilation pathway in our data might result from a defect or diminished capacity of
formaldehyde detoxi�cation system pathway, an assumption which requires further veri�cation. A study
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reported increases in the abundance of formaldehyde assimilation pathway in a depressed group when
compared with non-depressed controls (S.-Y. Kim et al. 2022). We are the �rst to show that the gut of
obese participants is enriched in the formaldehyde assimilation pathway. Although we do not understand
the mechanistic details, it is known that toxic formaldehyde is generated along with reactive oxygen
species during in�ammatory processes (N. H. Chen et al. 2016). Thus, an increased capacity for
formaldehyde pathway may indicate a microbiome-induced increase in reactive oxygen species in the gut
of obese individuals. Indeed, prior work has identi�ed induction of oxygen stress by microbial
perturbations as one of the mechanisms by which the microbiome can promote weight gain and insulin
resistance (J. Qin et al. 2012). The speci�c alterations of the gut microbiota and the associated predicted
functionality may constitute a potential avenue for the development of microbiome-based therapeutics to
treat obesity and/or to promote and sustain weight loss.

Study strengths and limitations. While our study has several strengths including a large sample size,
diverse population along an epidemiological transition gradient with a comprehensive dataset that
allowed the exclusion of the potential effects of origin as well as control of potential interpersonal
covariates, and use of validated and standard tools for data collection, we acknowledge some limitations
as well. First, the cross-sectional nature of our study design is unable to establish temporality or identify
mechanisms by which the gut microbiome may causally in�uence the observed associations. In that
regard, we expect that prospective data from the METS cohort study will provide the basis to assess the
longitudinal association between gut microbiota composition, metabolites, and obesity, and we have an
ongoing study exploring the potential correlations longitudinally. The use of 16S rRNA sequencing in our
analysis for inferences on microbial functional ecology inherently has its limitations for drawing
conclusions on species and strain level functionality due to its low resolution. Nevertheless, our results
provide insight into the relationship between obesity, gut microbiota, and metabolic pathways in
individuals of African origin across different geographies, stimulating further examination of large-scale
studies using multi-omic approaches with deeper taxonomic and functional resolution and animal
transplantation studies to investigate potentially novel microbial strains and to explore the clinical
relevance of the observed metabolic differences.

Conclusion
Our study analyzed the relationship between gut microbiota composition, SCFA concentrations, and
obesity in a cohort of African origin from different countries. Ghanaian participants had the most diverse
microbiota, and the American cohort had the least. Obese individuals had different gut microbiota
composition and function compared to non-obese individuals. Non-obese participants had more SCFA-
producing microbes and higher total SCFA concentrations in feces. The predictive accuracy of the
microbiota for obesity was greatest in low-income countries, suggesting that lifestyle traits in high-
income countries may increase obesity risk even for lean individuals. Alterations in the gut microbiota
and associated metabolic functions could guide the development of microbiome-based solutions to treat
obesity. Further studies using multi-omic approaches are needed to con�rm the identi�ed taxonomic and
metabolic signatures.
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Methods
Study Cohort. Since 2010, METS, and the currently funded METS-Microbiome study has longitudinally
followed an international cohort of African origin adults spanning the epidemiologic transition from
Ghana, South Africa, Jamaica, Seychelles, and US (Dugas, Lie, et al. 2018; Luke et al. 2011). METS
utilizes the framework of the epidemiologic transition to investigate differences in health outcomes
based on country of origin. The epidemiologic transition is de�ned using the United Nations Human
Development Index (HDI) as an approximation of the epidemiologic transition. Ghana represents a lower-
middle income country, South Africa represents a middle-income country, Jamaica and Seychelles
represent high income countries and the US represents a very high-income country. This framework has
allowed us to investigate aspects of increased Westernization throughout the world (ex. increased
consumption of ultra-processed foods) are related to increased prevalence of obesity, diabetes and
cardiometabolic diseases. Our data from the original METS cohort demonstrate that the epidemiologic
transition has altered habitual diets in the international METS sites, and that reduced �ber intake is
associated with higher metabolic risk, in�ammation, and obesity across the epidemiologic transition
(Mehta et al. 2021). Originally, 2,506 African origin adults (25–45 yrs), were enrolled in METS between
January 2010 and December 2011 and followed on a yearly basis. In 2018, METS participants were
recontacted and invited to participate in METS-Microbiome. Participants were excluded from participating
in the original METS study if they self-reported an infectious disease, including HIV-positive individuals,
pregnancy, breast-feeding or any condition which prevented the individual from participating in normal
physical activities. METS-Microbiome was approved by the Institutional Review Board of Loyola
University Chicago, IL, US; the Committee on Human Research Publication and Ethics of Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana; the Research Ethics Committee of the University of
Cape Town, South Africa; the Board for Ethics and Clinical Research of the University of Lausanne,
Switzerland; and the Ethics Committee of the University of the West Indies, Kingston, Jamaica. All study
procedures were explained to participants in their native languages, and participants provided written
informed consent after being given the opportunity to ask any questions.

Participant anthropometry, sociodemographic and biochemical measurements. Participants completed
the research visits at the established METS research clinics located in the respective communities (Luke
et al. 2011). Brie�y, they presented themselves at the site-speci�c research clinic early in the morning,
following an overnight fast. The weight of the participant was measured without shoes and dressed in
light clothing to the nearest 0.1 kg using a standard digital scale (Seca, SC, USA). Height was measured
using a stadiometer without shoes and head held in the Frankfort plane to the nearest 0.1 cm. Waist
circumference was measured to the nearest 0.1 cm at the umbilicus, while hip circumference was
measured to the nearest 0.1 cm at the point of maximum extension of the buttocks. Adiposity (% body
fat) was assessed using BIA (Quantum, RJL Systems, Clinton Township, MI), and study speci�c
equations (Luke et al. 2011). Blood pressure was measured using the standard METS protocol using the
Omron Automatic Digital Blood Pressure Monitor (model HEM-747Ic, Omron Healthcare, Bannockburn, IL,
USA), with the antecubital fossa at heart level. Participants were asked to provide a fecal sample using a
standard collection kit (EasySampler stool collection kit, Alpco, NH). Fecal samples were placed within a
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-80° freezer immediately upon receipt at all the sites. Participants were requested to fast from 8 pm in the
evening prior to the clinic examination, during which fasting capillary glucose concentrations were
determined using �nger stick (Accu-check Aviva, Roche).

Fecal Short Chain Fatty Acid quanti�cation. As in our previous studies (Nooromid et al. 2020;
Lewandowski et al. 2021; Reiman, Layden, and Dai 2021; Barengolts et al. 2019; Navarro et al. 2018;
Dugas, Bernabé, et al. 2018), fecal SCFAs were measured using LC-MC/MS at the University of Illinois-
Chicago Mass Spectrometry Core using previously published methods (Moreau et al. 2003; Richardson et
al. 1989). The LC-MC/MS analysis was completed on an AB Sciex Qtrap 5500 coupled to Agilent
UPLC/HPLC system. All samples were analyzed by Agilent poroshell 120 EC-C18 Column, 100Å, 2.7 µm,
2.1 mm X 100 mm coupled to an Agilent UPLC system, which was operated at a �ow rate of 400 µl/min.
A gradient of buffer A (H20, 0.1% Formic acid) and buffer B (Acetonitrile, 0.1% Formic acid) were applied
as: 0 min, 30% of buffer B; increase buffer B to 100% in 4 min; maintain B at 100% for 5 min. The column
was then equilibrated for 3 min at 30% B between the injections with the MS detection is in negative
mode. The MRM transitions of all targeted compounds include the precursor ions and the signature
production ion. Unit resolution is used for both analyzers Q1 and Q3. The MS parameters such as
declustering potential, collision energy and collision cell exit potential are optimized in order to achieve
the optimal sensitivity. SCFAs are presented as individual SCFAs (μg/g), including: butyric acid, propionic
acid, acetic acid and valeric acid, as well as total SCFAs (sum of 4).

METS data showed Ghanaians consumed the greatest amount of both soluble and insoluble �ber and
had the lowest percentage energy from fat (42.5% of the Ghanaian cohort, dietary �ber intake: 24.9 g ±
9.7g/day). The US has the highest proportion of energy from fat and the lowest �ber intake of the �ve
sites (3.2% of the US cohort, dietary �ber intake: 14.2 g ± 7.1 g/day).

DNA extraction, Amplicon Sequencing. Fecal samples were shipped on dry ice to the microbiome core
sequencing facility, University of California, San Diego for 16S rRNA gene processing. Fecal samples were
randomly sorted, transferred to 96‐well extraction plates and DNA was extracted using MagAttract Power
Microbiome kit. Blank controls and mock controls (ZymoBiomics) were included per extraction plate,
which were carried through all downstream processing steps. Extracted DNA was used for ampli�cation
of the V4 region of the 16S rRNA gene with 515F-806R region-speci�c primers according to the Earth
Microbiome Project (Thompson et al. 2017; Walters et al. 2016). Puri�ed amplicon libraries were
sequenced on the Illumina NovaSeq platform to produce 150 bp forward and reverse reads through the
IGM Genomics Center, University of California San Diego. Full DNA extraction, ampli�cation,
quanti�cation, and sequencing protocols and standards are available at
http://www.earthmicrobiome.org/protocols-and-standards; (Thompson et al. 2017).

Bioinformatic analysis. The generated raw sequence data were uploaded and processed in Qiita
(Gonzalez et al. 2018) (Qiita ID 13512) an open-source, web-enabled microbiome analysis platform.
Sequences were demultiplexed, quality �ltered, trimmed, erroneous sequences were removed, and
amplicon sequence variants (ASVs) were de�ned using Deblur (Amir et al. 2017). The deblur ASV table
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was exported to Qiime2 (Bolyen et al. 2019; Bokulich et al. 2018) and representative sequences of the
ASVs were inserted into the Greengenes 13.8 99% identity tree with SATé-enabled phylogenetic placement
(SEPP) using q2-fragment-insertion (Bolyen et al. 2019; Mirarab, Nguyen, and Warnow 2012) to generate
an insertion tree for diversity computation. Additionally, the deblur ASV table was assigned taxonomic
classi�cation using the Qiime2 feature-classi�er, with Naive Bayes classi�ers trained on the SILVA
database (version 138; (McLaren 2020)). A total of 463,258,036 reads, 154,952 ASVs and 1902 samples
were obtained from the deblur table. The resulting ASV count table, taxonomy data, insertion tree, and
sample metadata were exported and merged into a phyloseq (McMurdie and Holmes 2013) object in R (R
Foundation for Statistical Computing, Vienna, Austria) for downstream analysis. Features with less than
ten reads in the entire dataset and samples with fewer than 6,000 reads were removed from the phyloseq
object. In addition, mitochondrial and chloroplast-derived sequences, non-bacterial sequences, as well as
ASVs that were unassigned at phylum level were �ltered prior to analyses. There were 433,364,873 reads
and 13254 ASVs in the remaining 1873 fecal samples in the phyloseq object. The remaining samples
after �ltering were rare�ed to a depth of 6,000 reads to avoid sequencing bias, before generating alpha
diversity measures, leaving 9917 ASVs across 1873 samples.

Diversity and differential proportional analyses: Alpha diversity measures based on Observed Amplicon
Sequence Variants (ASVs), Faith’s Phylogenetic Diversity, and Shannon Index were conducted on rari�ed
samples using phyloseq (McMurdie and Holmes 2013) and picante (Kembel et al. 2010) libraries. Beta
diversity was determined using both weighted and unweighted UniFrac distance matrices (Lozupone and
Knight 2005), generated in phyloseq. The Bacteroides Prevotella ratio was calculated by dividing the
abundance of the genera Bacteroides by Prevotella. Participants were classi�ed into Bacteroides
enterotype (B-type) if the ratio was greater than 1, otherwise Prevotella enterotype (P-type). For differential
abundance analysis, samples were processed to remove exceptionally rare taxa. First, the non-rare�ed
reads were �ltered to remove samples with < 10,000 reads. Next, ASVs with fewer than 50 reads in total
across all samples and/or were present in less than 2% of samples were excluded. This retained 2061
ASVs across 1694 samples. The retained ASVs were binned at genus level, and subsequently used in the
analysis of compositions of microbiomes with bias correction (ANCOMBC; (H. Lin and Peddada 2020) to
determine speci�c taxa differentially abundant across sites or obese phenotype. ANCOM-BC is a
statistical approach that accounts for sampling fraction, normalizes the read counts by a process
identical to log-ratio transformations while controlling for false discovery rates and increasing power.
Site, age, sex, BMI were added as covariates in the ANCOM-BC formula to reduce the effect of
confounders.

Random forest classi�er: Random Forest supervised learning models implemented in Qiime2 were used
to estimate the predictive power of microbial community pro�les for site and obese phenotype. The
classi�cations were done with 500 trees based on 10-fold cross-validation using the QIIME “sample-
classi�er classify-samples” plugin (Bokulich et al. 2018). A randomly drawn 80% of samples were used
for model training, whereas the remaining 20% were used for validation. Further, the 30 most important
ASVs for differentiating between site or obese phenotype were predicted and annotated.
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Predicted metabolic gene pathway analysis: The functional potential of microbial communities was
inferred using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2
(PICRUSt2) v2.5.1 with the ASV table processed to remove exceptionally rare taxa and the representative
sequences as input �les (Douglas et al. 2020). The metabolic pathway from the PICRUSt2 pipeline was
annotated using the MetaCyc database (Caspi et al. 2016). The predicted MetaCyc abundances
(unstrati�ed pathway abundances) were analyzed with ANCOM-BC to determine differentially abundant
pathway associations across sites and obese status. Site, age, sex, BMI were added as covariates in the
ANCOM-BC formula to reduce the effect of confounders.

Statistical Analysis: All statistical analyses and graphs were done with R software. Kruskal-Wallis test
and Permutational Analysis of Variance (PERMANOVA) test with 999 permutations using the Adonis
function in the vegan package (Oksanen et al. 2013) were performed to compare alpha and beta diversity
measures respectively with multiple groups comparison correction. PERMANOVA models were adjusted
for BMI, age, sex for country whereas age, sex and country were accounted for in obese groups. Variables
that showed signi�cant differences in the PERMANOVA analyses, PERMDISP test was performed to
assess differences in dispersion or centroids. For differential abundance analysis, the false-discovery rate
(FDR) method incorporated in the ANCOM-BC library was used to correct p-values for multiple testing. A
cut-off of Padj < 0.05 was used to assess signi�cance. Spearman correlations were performed between
concentrations of short chain fatty acids, Shannon diversity or concentrations of short chain fatty acids
and differentially abundant taxa that were identi�ed either among study sites or in obese and non-obese
individuals. The resulting p-values were adjusted for multiple testing using the false-discovery rate (FDR).
P value < 0.05 was considered statistically signi�cant. A mixed model was built using lme4 package to
assess whether total SCFAs could be predicted by Shannon diversity, obesity, and country, setting obesity
and Shannon diversity as �xed effects and random intercept by country.

Data availability: All 16S rRNA gene sequence data are publicly available via the QIITA platform
(https://qiita.ucsd.edu) under the study identi�er (ID=13512) and will soon be deposited on the European
Bioinformatics Institute (EBI) site. The SILVA 16 S rRNA database used for alignment is available at
https://data.qiime2.org/2022.2/common/silva-138-99-515-806-nb-classi�er.qza. The data and analyses
generated in this study are available within the paper, Supplementary Information and Source data �les
provided with this paper.
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Table
Table 1. METS-Microbiome participant characteristics from Ghana, South Africa, Jamaica, Seychelles
and US. Data are presented as mean + standard deviation for continuous variables and percentages (%)
for categorical variables.
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Women

Ghana South Africa Jamaica Seychelles US

n=254 n=228 n=263 n=196 n=213

Age (years) 40.74 ± 8.1 35.56 ± 7.8 45.16 ± 7.5 43.84 ±     6.1 45.44 ± 6.4

BMI (kg/m2) 28.30 ± 5.9 33.42 ± 8.6 32.12 ± 7.3 30.32 ± 7.2 36.34 ± 8.8

Obese (%) 45,0% 61,0% 60,4% 49,5% 74,7%

SBP (mm Hg) 117.1 ± 18.5 115.20 ±
17.1

126.08 ±
19.0

123.28 ±
17.8

124.19 ±
18.4

DBP (mm Hg) 70.53 ± 12.2 75.20 ± 12.1 79.41 ± 12.6 79.37 ± 14.4 81.52 ± 12.1

Hypertensive (%) 37,5% 37,3% 57,4% 55,5% 65,4%

Glucose
(mg/dL)

110.45 ±
62.7

89.17 ± 20.0 107.46 ±
39.1

111.35 ±
27.2

107.07 ±
44.0

Diabetic (%) 10,0% 3,5% 12,9% 13,9% 19,9%

Men

Ghana South Africa Jamaica Seychelles US

n=117 n=171 n=133 n=164 n=107

Age (years) 43.92 ± 8.7 36.53 ± 7.2 44.42 ± 7.5 44.57 ± 5.1 47.12 ± 5.5

BMI (kg/m2) 23.7 ± 4.4 22.26 ± 4.1 24.8 ± 5.3 28.46 ± 5.5 30.37 ± 8.2

Obese (%) 13,4% 5,3% 15,7% 39,2% 44,4%

SBP (mm Hg) 121.28 ±
15.4

122.71 ±
15.5

129.23 ±
17.1

130.43 ±
16.2

130.67 ±
16.0

DBP (mm Hg) 68.02 ± 13.0 75.32 ± 11.1 78.07 ± 11.5 81.64 ± 12.1 82.37 ± 12.2

Hypertensive (%) 33,1% 45,0% 50,3% 65,9% 72,7%

Glucose
(mg/dL)

100.52 ±
19.4

94 ± 23.4 99.04 ± 33.1 124.26 ±
44.2

107 ± 36.2

Diabetic (%) 4,6% 3,5% 4,8% 22,8% 17,5%

Figures
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Figure 1

Variation in gut microbiome diversity. (a)Alpha diversity estimated by Shannon, Observed ASVs and
Faith’s PD (Phylogenetic Diversity) between countries. (b) Alpha diversity estimated by Shannon,
Observed ASVs and Faith’s PD (Phylogenetic Diversity) between obese and non-obese. Alpha diversity
metrics (Faith’s PD, Observed ASVs and Shannon) are shown on the y-axis in different panels, while
country or obese group are shown on the x-axis. (c) Beta diversity principal coordinate analysis based on
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weighted UniFrac distance between countries. (d) Beta diversity principal coordinate analysis based on
weighted UniFrac distance between obese and non-obese. (e) Beta diversity principal coordinate analysis
based on unweighted UniFrac distance between countries. (f) Beta diversity principal coordinate analysis
based on unweighted UniFrac distance between obese and non-obese. Proportion of variance explained
by each principal coordinate axis is denoted in the corresponding axis label. (g) Venn diagram of shared
and unique ASVs between the �ve countries. Box plots show the interquartile range (IQR), the horizontal
lines show the median values, and the whiskers extend from the hinge no further than 1.5*IQR. Each
colored dot denotes a sample. Statistical signi�cance adjusted for multiple comparisons using false
discovery rate (FDR) correction are indicated: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ∗∗∗, P < 0.001
across countries and obese groups (Kruskal-Wallis test) for alpha diversity or by permutational
multivariate analysis of variance (PERMANOVA) for beta diversity. Alpha diversity analysis for country,
n=1873 samples (Ghana, n= 373; South Africa, n=390; Jamaica, n= 401; Seychelles, n= 396; USA, n= 313)
and obesity status, n=1764 samples. For Beta diversity analysis, n=1764 samples.

Figure 2

Variation in gut microbiome composition. Differentially abundant taxa among (a) countries and (b) obese
group adjusted for BMI, age, sex and country using ANCOM-BC. Bars represent ANCOM-BC estimated log
fold change between compared groups and error bars, with the 95% con�dence interval. Representative
ASVs with log fold change >1.4 in at least one group are shown for country. FDR-adjusted (p < 0.05) effect
sizes are indicated by *, ** and ***, corresponding to p < 0.05, <0.01 and <0.001 respectively. n= 1694
samples. FDR= False Discovery Rate.
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Figure 3

Receiver operating characteristic curves showing the classi�cation accuracy of gut microbiota in a
Random Forest model. Classi�cation accuracy for estimating (a). All countries (n=1694); (b) Obesity
status (n=1694), (c). Diabetes status (n=1657); (d). Glucose status (n=1657); (e). Hypertensive status
(1694); (f). Sex (n=1694) are presented. AUC= area under the curve

Figure 4
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Shannon index correlates positively with fecal short chain fatty acids. Correlations between Shannon
diversity (n = 1764) and concentrations (n=1704) of the different types of fecal short chain fatty acids
(SCFAs) namely (a) total SCFA; (b) Acetate; (c) Butyrate; (d) Propionate; (e) Valerate among countries.
Each colored dot represents a sample of speci�c country and the horizontal line on scatterplot denotes
line of best �t.

Figure 5

Associations of gut microbiota ASVs with concentrations of short chain fatty acids (SCFAs). (a) Heatmap
of Spearman’s correlation between concentrations of SCFAs (n=) and top 30 differentially abundant ASVs
(identi�ed by ANCOM-BC) among countries. (b) Heatmap of Spearman’s correlation between
concentrations of SCFAs and differentially abundant ASVs (identi�ed by ANCOM-BC) for obese.
Correlations are identi�ed by Spearman’s rank correlation coe�cient. Brick red squares indicate positive
correlation, gray squares represent negative correlation and white squares are insigni�cant correlation.
Mapping from FDR adjusted p values are denoted as: *, ** and ***, corresponding to p < 0.05, <0.01 and
<0.001 respectively.
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