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Summary  
Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and 
Aducanumab for Alzheimer’s Disease, highlight the importance of the underlying biological mechanisms in driving 
discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for 
therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and 
resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-
data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we 
provide mechanistic insights into disease processes and potential network-level consequences of gene-based 
therapeutics. We identify 116 Alzheimer’s disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 
Parkinson’s disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 
2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based 
on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of 
these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of 
genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-
competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may 
require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users 
explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community 
[https://nih-card-ndd-smr-home-syboky.streamlit.app/]. 
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Introduction 
Currently, there are few approved disease-modifying therapeutics available to those with a neurodegenerative 
disease (NDD), the most recent being Lecanamab for the treatment of Alzheimer’s disease.1 NDDs such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Lewy body dementia 
(LBD), Frontotemporal lobar degeneration (FTLD), and progressive supranuclear palsy (PSP) are diseases caused 
by progressive nerve cell degeneration that result in a loss of cognition and/or motor function.2 The World Health 
Organization (WHO) expects dementia diagnoses alone to reach 78 million by 2030 and 139 million by 2050. 
Without disease-modifying therapies, the health, social, and economic impacts of dementia and related NDDs will 
be catastrophic.3 The identification of rational therapeutic targets for NDD will require both the generation of new 
data and the development and deployment of rapid, open, and transparent tools. 
 
Drugs that are supported by genetic or genomic data frequently outperform those without such evidence in clinical 
trials. Over two-thirds of the Food and Drug Administration (FDA) approved drugs in 2021 were supported by 
genetic or genomic evidence.4 Therapeutics with genetically supported target mechanisms are twice as likely to pass 
a trial phase as those without supporting genetic data.5 Given the importance of anchoring therapeutic targets to a 
disease mechanism substantiated by genetic evidence, we developed omicSynth: a dynamic, open, and accessible 
resource that leverages large-scale genetic and genomic data for the identification of therapeutic targets in the 
neurodegenerative disease space. 
 
The omicSynth resource integrates genetic and genomic data in a Summary-data-based Mendelian Randomization 
(SMR) framework. The genetic data, primarily in the form of genome-wide association studies (GWAS) from 
population-scale resources, includes millions of samples across multiple neurodegenerative diseases. Genomic data 
includes quantitative trait loci (QTL) studies measuring methylation, gene expression, chromatin state, and protein 
expression. The SMR framework facilitates functional inferences relating disease risk (from GWAS) to the 
underlying mechanism (from QTL data in relevant cell types). Additionally, we incorporated expression-QTL 
(eQTL) data from genetically diverse backgrounds into our SMR analyses, addressing the lack of multi-ancestry 
data in NDD research and allowing for functional inferences regarding differences between ancestral populations. 
 
To add additional context to nominated gene targets, we also investigated single nucleus data from disease-enriched 
cell types.6,7 Many therapeutics mechanistically target inhibition of expression, thus, it is necessary that the target is 
expressed at baseline in the relevant cell types in order for these treatments to be effective in addressing a particular 
disease. Using single nucleus expression data, we investigated whether the nominated genes could potentially be 
affected by inhibitors that are capable of crossing the blood-brain barrier, as in general, genes need to be expressed 
in order to be susceptible to inhibition from a mechanistic perspective. 
 
We prioritize identified genes as therapeutic targets of interest into three classes based upon known druggability and 
product market information (Figure 1). Novel targets include genes which exhibit significant functional inferences in 
relevant tissue and cell types in druggable regions of the genome, are not currently targeted by disease-specific 
therapeutics, and should be prioritized in future repurposing studies. Known targets include genes within relevant 
tissue and cell types that have documented significant functional inferences but are already impacted by a known 
drug that specifically targets any NDD. Difficult target genes are not in regions of the genome currently annotated as 
druggable. For all novel targets, we searched the corresponding gene regulatory networks to identify companion 
genes that could also be useful as therapeutic targets. Potential upstream and downstream effects on targeting these 
genes for therapeutic intervention were provided based on network memberships, and toxicity within these networks 
was inferred by evaluating liver eQTLs within the network as well as known interacting drugs for each gene of 
interest. Results can be browsed through the omicSynth resource, which is made available via a free web-based 
platform, further decreasing activation energy for therapeutic target discovery within the research community 
[https://nih-card-ndd-smr-home-syboky.streamlit.app/]. 
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Figure 1: Graphical representation of research workflow and results. Panel a: graphical representation of the 
general workflow used in conducting our analyses. NDD = Neurodegenerative Disease, SMR = Summary-data-
based Mendelian Randomization b. Graphical Summary of Results. Panel b: Sankey plot depicting the flow of 
candidate genes into their respective tier. On the left, we highlight novel genes, but the remainder of the plot 
visualizes all 159 candidate genes regardless of the final classification tier. 

Results 
Overview 
We identified 540 candidate gene-level SMR associations (159 unique gene targets) across six NDD and 186 tissue-
omic pairings with a stringent disease-level multiple test correction threshold (pSMR_multi < 2.95×10-6 and pHEIDI > 
0.01; Supplementary Tables S1, S2, S4). On a per-disease basis we identified 317 total significant associations: 
116 unique gene targets for AD, 4 significant associations across 3 unique gene targets for ALS, 13 significant 
associations across 5 unique genes for LBD, 184 significant associations across 46 unique gene targets for PD, and 
22 significant associations across 9 unique gene targets for PSP. FTLD had no significant associations at our 
corrected p-value threshold. No NDD showed significant pQTL or caQTL associations. Of the 159 unique genes 
across all diseases, 69.8% (111 genes) were expressed in tissues enriched with disease-associated gene expression 
and 11.9% (19 genes) showed colocalization with brain tissue eQTLs with posterior probability (PP) > 0.90.7 
Colocalized genes from this complementary analysis are also bolded in Table 1 and Table 2. 
 
SMR analysis identifies 15 common genes significant across multiple NDD 
Using SMR, we identified 15 unique genes across 182 associations to be significant in two or more NDDs at a 
stringent significance threshold (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01; Table 1, Supplementary Tables S2-S4). 
Of the identified genes, five genes (MAPT, CRHR1, KANSL1, ARL17A, and ARHGAP27) were found to be 
significant across 97 tested associations and three NDDs (AD, PD, and PSP). MAPT and CRHR1 were found to be 
largely significant in mQTL omics with MAPT significant in whole blood and brain mQTL data for all previously 
mentioned NDDs and CRHR1 found to be significant in whole blood mQTL data for all three NDDs 
(Supplementary Tables S3 – S5). Additionally, only MAPT and CRHR1 are annotated as druggable in multiple drug 
data sources as of the writing of this manuscript. All genes, except for ARL17A, had multiple significant associations 
in both brain and blood mQTL tissues. ARHGAP27 and KANSL1 had significant associations replicated in the multi-
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ancestry eQTL data (African, American, East Asian, European, and South Asian ancestries), suggesting a potential 
generalizability of these targets across different populations.  
 
We identified 10 unique genes across 85 significant associations in any two NDD (pSMR_multi < 2.95×10-6 and pHEIDI > 
0.01). One of the identified genes is considered therapeutic and the remaining nine are non-therapeutic. KAT8, 
ARL17B, PRSS36, LRRC37A2, WNT3, and SPPL2C were all found to be significant in both AD and PD, IDUA and 
TMEM175 were found to be significant in LBD and PD, PLEKHM1 was significant in PD and PSP, and FMNL1 
was significant in AD and PSP (Supplementary Tables S3- S5). KAT8, the only therapeutic gene, showed 
significant associations with decreased expression in brain tissue and blood, as well as a significant association with 
increased methylation. Of the remaining nine genes, IDUA, FMNL1, PRSS36, and TMEM175 had significant 
associations in mQTL sources. Additionally, FMNL1, LRRC37A2, and PRSS36 had significant associations 
replicated in the multi ancestry eQTL data (pSMR_multi < 2.95×10-6; Supplementary Table S7). 
 
Drug Target Discovery using significant genes identifies 41 novel gene targets for follow-up study. 
Using the approach previously outlined in our introduction and methods for drug target gene nomination, we 
categorized 159 gene hits into one of three tiers (Table 2). In our first tier, novel genes, we nominated 41 gene 
targets. SMR results for the novel genes are listed in Supplementary Table S8. Genes are categorized as novel if 
they are in druggable regions of the genome that can be targeted by common molecular methods and currently have 
no FDA-approved treatment for any NDD as identified by current literature, knowledge base, and drug databases. 
Our second tier, known genes, had three gene targets identified - MAPT, KCNN4, and ADORA2B. Known genes are 
genes that have at least one FDA-approved therapeutic for treatment of an NDD (Supplementary Table S9). The 3 
nominated known gene targets are targeted by four therapeutics - Apomorphine, Carbidopa, Istradefylline, and 
Riluzole. Currently these therapeutics are used for the treatment of PD symptoms (Apomorphine, Carbidopa, 
Istradefylline) and prolonged survival for ALS (Riluzole). In our last and largest tier, difficult genes, we identified 
115 gene targets with no currently known therapeutics that target these genes and no known druggability. A total of 
52 of the identified difficult genes exhibited at least two significant associations, with LRRC37A2 having the 
maximum number of significant associations at 25 associations across AD and PD. 
 
Network analysis provides insight into druggable companion genes to non-druggable genes of interest. 
We further implemented a gene network analysis for our novel and difficult tier candidates to identify potential 
proxy gene targets within each nominated genes Signor curated network. In the novel tier gene, we identified 87 
companion genes of which 58 are considered potentially druggable (Supplementary Table S9). Of the 58 
druggable companion genes, 30 were found to be targeted by a known drug and a further five are targeted by 
therapeutics approved for treatment of AD. The five companion genes with AD targeted therapeutics are NCSTN, 
MAPK14, PSEN1, PSEN2, and PSENEN. Genes NCSTN, PSEN1, PSEN2, and PSENEN are all targeted by 
Tarenflurbil, Semagacestat, and Avagacestat, while MAPK14 is targeted by Neflamapimod, an oral p38 alpha kinase 
inhibitor that the FDA approved for use in the treatment of AD and LBD (Figure 2). Further analysis of difficult 
genes co-expression networks identified 27 genes with 65 curated companion genes (Supplementary Tables S10- 
S12, Supplementary Figure S1). Of the 65 identified companion genes for the difficult target tier, 34 were found to 
be druggable with 18 having known drugs. MAPK14 was the only companion gene to have a therapeutic approved to 
treat an NDD in the difficult target tier. MAPK14 was identified as a companion gene to the difficult gene TRIM27 
(Figure 2). 
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Figure 2: Network Visualization of Novel and Difficult genes companion genes and drugs. Graph network 
visualization of both novel (green nodes) and difficult (purple nodes) genes and their SIGNOR curated partners (blue 
nodes). Drugs that interact with companion genes are denoted by orange-colored diamonds while FDA-approved 
drugs for use in NDD treatment are colored pink. Connecting arrows indicate the direction from regulator gene to 
target gene. 

 
Multi-ancestry analyses reveal opposing gene expression patterns in significant disease risk loci between Non-
European and European ancestries. 
To investigate our findings in more diverse data, we also performed SMR with multi-ancestry eQTL data, aiming to 
replicate previous significant results (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01) and nominate targets that show 
evidence towards generalizability across multiple ancestry groups. After multiple test correction, we significantly 
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replicated 11 total associations corresponding to 9 genes that were nominated in our initial analysis: ARHGAP27, 
ARL17A, GPNMB, KANSL1, LRRC37A2, PILRA, PILRB, PRSS36, and ZNF232 (see Supplementary Table S7). 
 
We then categorized these nine replicated genes based on their druggable status. One of the replicated hits, GPNMB, 
is classified in our novel gene tier, meaning that it is druggable and has no known treatment approved for treatment 
of NDDs, which suggests this gene may be an interesting but also potentially generalizable target across ancestries. 
The remaining eight replicated genes were in our difficult tier, meaning they are currently considered non-druggable. 
 
 
Nominated genes of interest found to be expressed in disease relevant adult human brain snRNA-seq 
expression data.  
 
To provide additional evidence for biological relevance of our nominated targets, we investigated whether the 159 
significant genes nominated through SMR (PSMR_multi < 2.95×10-6 & PHEIDI > 0.01) were expressed in relevant cell 
types from adult human brain snRNA-seq data.  
 
We tested the 159 genes found to be significant against adult human snRNA-seq data to identify expression in 
varying brain single cell types (PSMR_multi < 2.95×10-6 & PHEIDI > 0.01). We calculated the mean and median 
expression percentile rank (EPR) for each gene across cells corresponding to each of the 31 tested cell types. To 
ease interpretation, we additionally binned the mean EPR values into three expression categories: off, low, and high 
based on the mean EPR value for each gene-cell type combination. Using our binned mean EPR values we found 
that 40 genes had all exclusively off EPR values while 16 genes had exclusively all low EPR values across all 31 
tested cell types (Figure 3, Supplementary Tables S13-S14).  We identified 11 genes (KANSL1, LRRFIP2, 
CELF1, MAPT, STK39, RABEP1, SCFD1, CLU, SNCA, TMEM163, and SHROOM3) that had at least one gene 
highly expressed in any single cell type with KANSL1 having the most high EPR values across 15 cell types (Figure 
3, Supplementary Tables S13-S14). Detailed breakdowns of both mean and median EPR values are provided in 
Supplementary Figures S2-S4 and Supplementary Tables S13-S14. Cell types Hippocampal CA4 and Deep layer 
intratelencephalic had the most genes with high EPR values and Hippocampal CA4 had the least number of genes 
with off EPR values (nhigh= 5, nlow=89, noff=65) The Vascular cell type had the highest number of genes with off 
values (noff=123). 
 
We also investigated the nominated genes in disease relevant cell types - Bergmann glia, CGE interneuron, 
Committed oligodendrocyte precursor, Deep layer intratelencephalic, Eccentric medium spiny neuron, Hippocampal 
CA1 3, Hippocampal dentate gyrus, LAMP5 LHX6 and Chandelier, MGE interneuron, Mammillary body, 
Microglia, Midbrain derived inhibitory, Oligodendrocyte precursor, Thalamic excitatory, Upper layer 
intratelencephalic, Upper rhombic lip - identified in Alvarado et al to be significantly enriched with AD and PD-
relevant genes.7 Significant genes from our SMR analysis were highly expressed in three of these disease relevant 
cell types, Thalamic excitatory, Eccentric medium spiny neuron, and Mamillary body. KANSL1 had high expression 
in all three listed cell types (Figure 3). Of the 159 tested genes, 20 had all low EPR values in the disease relevant 
cell types. The thalamic excitatory cell type had the least number of off EPR values for genes INPP5D, ITGAX, 
EGFR, and DOC2A. 
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Figure 3: scRNA-seq expression for significant genes (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). Expression of a 
given gene within each cell type is categorized as being highly expressed (dark blue, top 10% of all genes), 
intermediately expressed (green, middle 80%) or undetected (orange, bottom 10%). Genes that had off mean 
expression percentile rank values across all tested cell types were excluded from the heatmap. Cell types found to be 
enriched with AD and/or PD-relevant genes are marked by an asterisk. 

Discussion 
As the global population continues to age, the threat posed by NDDs presents a behemoth and multifaceted 
challenge. Our research aims to address the challenge of treating NDDs by identifying therapeutic targets anchored 
in genetic data - a proven strategy in therapeutic development. Implementation of this strategy has been impeded by 
the small sample sizes and the dispersed nature of genetic and disease-related data, such as proteomics and 
transcriptomics. Here, we attempted to address this need by creating and implementing an open-source framework to
identify druggable targets across varied NDDs.  
 
In our targeted analyses, we were unable to identify any potentially functionally important genes that were 
significant across all six tested NDDs. While NDDs share prominent hallmarks, such as cell death, inflammation, 
and pathological protein aggregation, the role that each hallmark and its associated biological processes plays in the 
pathogenesis of each NDD differs, creating a spectrum.8,9 We identified MAPT, CRHR1, KANSL1, ARL17A, and 
ARHGAP27 to be significant in multiple different omics for AD, PD, and PSP (Supplementary Tables S3-S5). 
MAPT was found to have significant associations with primarily increased expression for AD, PD, and PSP across 
eQTL and mQTL omic data, as supported by previous research.10-12 The MAPT locus, 17q21, contains genes 
CRHR1, KANSL1, ARL17A, and ARHGAP27, and mutations in this locus have been previously associated with both 
PD and PSP.13 Previous evidence of significant association of this locus in AD is more fragmented and sparse. The 
17q21 locus which includes genes KANSL1 and MAPT has been previously implicated in AD.14 ARL17A has been 
reported to harbor eQTL SNPs implicated in both brain and blood tissues in relation to AD.15 CRHR1’s role in stress 
response has been hypothesized to exacerbate AD pathologies given its abundance in the brain including areas 
implicated in learning and memory.16 Lastly, evidence of ARHGAP27’s significance in AD includes associations 
between complex traits such as cognitive functioning, reaction time, and cortical structure phenotypes.17,18 
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A deep dive into KANSL1 highlights its role in autophagy pathways. KANSL1 is a core member of the nonspecific 
lethal (NSL) complex that binds to MOF (also known as KAT8) which is necessary for the acetylation of histone H4 
lysine 16 acetylation (H4K16ac).19,20 Some studies have associated elevated expression levels of KANSL1 with over 
promoted autophagic activity resulting in cell death and cytotoxicity from autophagosome accumulation;, although 
further research is required to understand this mechanism.21 Additional research into the role of autophagy and 
lysosomal pathways in NDD have indicated that altered autophagy function results in the inability to clear out 
protein aggregates resulting in cell death and potentially contributing to disease pathogenesis and 
neurodegeneration. 20,22-24 Our results are consistent with previous research linking increased expression of KANSL1 
with neurodegenerative effects. When assessing associations with AD, PD, and PSP, KANSL1 is associated with an 
increased expression in brain mQTLs, three different brain eQTLs (psychEncode, multi ancestry, and anterior 
cingulate cortex), and spinal cord eQTLs. The consistent significance of KANSL1 and most of our gene hits in 
mQTL omics highlights the influence of DNA methylation for NDD pathogenesis and progression. 
 
We identified 10 genes as significant in two diseases. The nominated genes do not share any explicit relationships 
but are common in their importance for varying biological processes and cellular functions such as cell proliferation 
and differentiation, degradation of transmembrane proteins, calcium homeostasis, and autophagy regulation [50-54]. 
25-29Six of our nominated genes, ARL17B, KAT8, LRRC37A2, PRSS36, SPPL2C, and WNT3, are associated with 
both AD and PD. Given the significantly larger sample sizes and increased power of the two diseases in GWAS 
summary statistics, we did not find this unexpected. LBD and PD share two genes, IDUA and TMEM175, while AD 
and PSP share FMNL1 and PD and PSP share PLEKHM1 (Supplementary Tables S3, S4, S6). In general, the bulk of 
the gene hits were found to be significant in mQTL data for both brain and blood tissues (nwhole brain= 4; nwhole blood= 4) 
followed by cortex eQTLs (ncortex metaBrain = 6, ncortex GTEx = 3, nFrontal Cortex BA9 = 2, nprefrontal cortex = 3).  
 
The only gene found in two diseases, AD and PD, that could be targeted therapeutically was KAT8, which we 
previously mentioned in the context of the KANSL1 gene. In literature, KAT8 (Lysine Acetyltransferase 8) is 
identified as a protein-coding gene that plays a vital role in the NSL complex for acetylation of H4K16ac.24 
Scientific observation has identified the consequences of autophagic dysfunction in NDD to include impaired 
neuronal function, neuronal death, and neuron loss. In opposition to the expression pattern of KANSL1, decreased 
expression of KAT8 is associated with deacetylation of H4K16ac in AD patients, while an overexpression of KAT8 
has been linked to increased expression levels of neuroprotective soluble amyloid precursor protein (sAPP)α and β-
secretase (BACE)2 and decreased levels of sAPPβ and BACE1.30 In our results, we found blood mQTLs for AD and 
brain mQTLs for AD and PD to be associated with increased expression of KAT8; this is in contrast to gene 
expression in some of the same tissues, such as blood and brain mQTLs, for KANSL1. The associated increased 
expression of KAT8 in our results suggest that an increase in expression may be correlated with excess autophagy 
resulting in cell death, which is a hallmark symptom of all three NDD (AD, PD, and LBD).31,32 There currently does 
not exist any FDA approved therapeutics that target KAT8 in NDD. However, compound MG149, a histone 
acetyltransferase inhibitor, has been found to reduce proinflammatory genes via inhibition of MYST type histone 
acetyltransferase KAT8.33 MG149 has also been found to be effective in restoring impaired autophagic flux via the 
inhibition of histone acetylation of H4K16ac in cases of ischemic stroke and inflammatory diseases.23,34 Further 
research into the application of MG149 could result in a novel treatment targeting the characteristic accumulation of 
toxic proteins in NDD. 
 
FTLD was the only tested disease that did not have any suggestive targets at our test correction threshold. This may 
be because the FTLD GWAS had the smallest sample size out of all the diseases tested, and results will likely 
improve as larger FTLD GWAS are conducted. As there were no significant results for FTLD after correction, we 
decided to investigate potential pleiotropic relationships between FTLD and the other NDDs. To do this, we looked 
for FTLD associations at a less-stringent P value threshold (pSMR_multi < 0.05) only in the 254 unique candidate genes 
passing our original threshold of pSMR_multi < 2.95×10-6, a process detailed by Baird et al.35 This resulted in 124 
FTLD hits made up of 31 unique genes that have a potential pleiotropic relationship between FTLD and another 
NDD. Of those 31, 12 were classified as druggable through our sources (STX4, STX1B, VKORC1, POU5F1, 
HSD3B7, PSORS1C1, SLC44A4, CD38, EPHX2, FBXL19, CLU, CDSN). All 12 fall into the novel tier of drug 
targets, representing potential avenues for drug repurposing for FTLD. 
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Our creation of a drug target classification scheme is an attempt to inform drug discovery and repurposing from 
genes considered significant with evidence of causative roles in NDD. Further inspection of our 41 novel genes 
provides multiple insights into the genes that compose the tier. Many genes that compose our novel tier have 
therapeutics used in the treatment of multiple types of cancers and tumors. Fourteen of our novel genes have 
therapeutics approved for use in the treatment of cancer (MONDO_0004992). Other common approved indications 
for therapeutics that target our novel genes include, but are not limited to, neoplasm (EFO_0000616), hypertension 
(EFO_0000537), and cardiovascular disease (EFO_0000319). GPNMB, which is of particular interest due to support 
for its role in PD, falls into this grouping of 14 genes. Similar to its role in cancer and tumor growth, our results 
highlight GPNMB’s pattern of increased expression as shown in brain related PD eQTLs. We were able to find 
replication of increased GPNMB expression in brain related tissues in Li et al, Ortiz et al, and Nalls et al. 36-38 
Glembatumumab Vedotin is one of the therapeutics that targets GPNMB where its primary mechanism of action 
(MOA) is Tubulin inhibition.39 Consequently, Glembatumumab Vedotin’s inhibitory MOA could be repurposed for 
use in PD treatment for suppression of inflammation given the recognized role of inflammatory 
response/neuroinflammation in PD onset and progression.40,41 However, any treatment developed targeting GPNMB, 
would most likely be limited in treating people of European ancestries due to the gene’s importance and role 
compared to non-European ancestries - further increasing inequality. 
 
Our largest and most uncertain classification tier contains 121 difficult genes. Despite not having any currently 
known therapeutics, this classification tier could lead to the development of NDD targeted therapeutics or the 
repurposing of existing ones. Our approach for these genes focused on analyzing well curated networks centered on 
each difficult gene to identify any partner genes with existing therapeutic drugs. This approach provides us context 
into any biological pathways and processes that may be affected by a targeted treatment which could help eliminate 
the time and resources spent on developing and researching ineffective therapies. 
 
The smallest tier, known genes, is composed of the three genes targeted by NDD targeted therapeutics. 
Apomorphine, Carbidopa, and Istradefylline are indicated for use in treatment of PD. Riluzole is indicated for the 
treatment of ALS but has undergone phase 2 clinical trials for use in treatment of AD. The results in clinical trials 
for use of Riluzole in AD treatment were promising with cerebral glucose metabolism, an AD biomarker, preserved 
in patients receiving riluzole compared to those in the placebo group [66].42 The researchers conducting the study 
suggested a more powerful and longer study, but no follow up studies have yet been initiated. Our results support the 
continued follow up of Riluzole clinical trials. 
 
Focusing on genes we flagged as putatively associated with risk across multiple diseases, 13 of 15 were noted as 
being at least moderately expressed in cell types of interest (those with enriched expression for GWAS risk 
signatures) from single nucleus sequencing. Positive beta coefficients at these genes from the SMR analysis suggest 
that if an expression effect was inhibited, it could be possible to reduce disease risk. Two of these genes, KANSL1, 
and MAPT, showed significant positive associations (defined as a gene with positive beta values in more than 50% 
of its significant SMR associations) between risk and expression in our SMR analyses, providing a contextual 
insight for future follow-up. 
 
Genes such as GPNMB had different expression patterns in European and non-European ancestries. For example, 
GPNMB had decreased associated expression in multi ancestry eQTLs but an increased associated expression in all 
other tested eQTLs. Previous research in certain Asian populations has found no significant association between 
GPNMB and PD [67,68].43,44 Rizig and colleagues, conducting the largest PD GWAS in the African and African 
admixed populations in ~200,000 individuals, of which 1,488 are cases, report the following per SNP in GPNMB: 
rs858275, P=0.1250, beta=-0.0824, indicating no association in African/African admixed ancestries. Our multi 
ancestry data reports the same direction of expression in GPNMB SNP rs858275, P=1.080397×10-8, beta=-0.107745 
in PD. Interestingly, the reported direction of expression in our multi ancestry data and Rizig and colleagues’ data is 
in contrast to the direction of expression reported for European ancestries, in addition to indicating no significant 
associations (Supplementary Table S13, unpublished data).45 
 
The limitations we encountered in our research included limited GWAS data for diseases excluding AD and PD, 
limited non-eQTL omic data, as well as limited multi ancestry omic data and reference panels. In general, the 
availability of publicly and freely available omic data is consistently increasing. As new data is published, we intend 
to conduct updates and incorporate new omic types into our analysis such as more pQTL, single cell QTLs, and 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


splicing quantitative trait loci (sQTLs). The incorporation of additional multi omic data should provide new and 
novel insights into the complex underpinnings of NDD. 
 
The limitation we feel presents the most barriers is that of limited multi ancestry data. The state of diversity in the 
NDD research space has historically been Eurocentric which remains the case in this study due to the limited 
availability of genetic data from non-European participants. One of the distinguishing aspects of this study is the 
inclusion of multi ancestry eQTL data in the search for generalizable drug targets. This is particularly important in 
an era where precision medicine and machine learning can introduce inherent bias when the only reference data is 
from European ancestry populations. We identified common hits which are consistent with current understanding 
that there are NDD risk loci that are shared across genetic ancestries while providing insight on which gene loci and 
differences in expression may play a role in NDD development and treatment in non-Europeans. It is worth noting 
that while replication was limited at our stringent significance threshold, we were able to make some interesting 
observations. While we made attempts to include a limited set of multi ancestry in the future we would like to be 
able to include more multi ancestry disease GWAS and omic data to make more meaningful insights. We look 
forward to the increasing availability of non-European data with the creation of data sources such All of Us, an NIH 
research program focusing on inclusion of health data of marginalized populations in the United States.46  
 
This report is a description of the foundation for a community driven resource to identify and investigate future 
genetically derived drug targets in an open-source context. Ultimately, we are working on creating a network tool 
that incorporates multi-omic data, disease GWAS summary statistics, drug data, and other relevant data types to ease 
research such as this study, eliminating barriers to drug discovery and drug repurposing and potentially enabling 
precision medicine in the NDD space. Using multi omics integration methods, deep learning techniques, and most 
importantly, community input to better parse and interpret the data presented by the platform we aim to make our 
community resource a robust tool for NDD research. 
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Figure 1: Graphical representation of research workflow and results. Panel a is a graphical representation of the 
general workflow used in conducting our analyses. NDD = Neurodegenerative Disease, SMR = Summary-data-
based Mendelian Randomization b. Graphical Summary of Results. Panel b is a Sankey plot depicting the flow of 
candidate genes into their respective tier. On the left, we highlight novel genes, but the remainder of the plot 
visualizes all 159 candidate genes regardless of the final classification tier. 

Figure 2: Network Visualization of Novel and Difficult genes companion genes and drugs. Graph network 
visualization of both novel (green nodes) and difficult (purple nodes) genes and their SIGNOR curated partners (blue 
nodes). Drugs that interact with companion genes are denoted by orange-colored diamonds while those FDA 
approved for use in NDD treatment are colored pink. Connecting arrows indicate the direction from regulator gene 
to target gene. 

Figure 3: scRNA-seq expression for significant genes (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). Expression of a 
given gene within each cell type is categorized as being expressed highly (dark blue, top 10% of all genes), 
intermediately (green, middle 80%) or not at all (orange, bottom 10%). Genes that had off mean expression 
percentile rank values across all tested cell types were excluded from the heatmap. Cell types found to be enriched 
in AD and/or PD are marked by an asterisk. 

 

Tables with Legends 

 
Gene Diseases Omics 

ARL17B AD, PD Cerebellum eQTL, Cortex eQTL, Spinalcord eQTL 

KAT8 AD, PD Cerebellum eQTL, Whole Brain meta-analysis mQTL, Cerebellar Hemisphere eQTL, Cortex eQTL, Tibial 
Nerve eQTL, Skeletal Muscle eQTL, Hypothalamus eQTL, Whole Brain eQTL, Cerebellum eQTL, Spinalcord 
eQTL 

LRRC37A2 AD, PD Hippocampus eQTL, Cortex eQTL, Frontal Cortex BA9 eQTL, Prefrontal Cortex eQTL, Caudate Basal Ganglia 
eQTL, Skeletal Muscle eQTL, Multi Ancestry, Whole Brain Meta-analysis eQTL, Hypothalamus eQTL, Liver 
eQTL, Anterior Cingulate Cortex BA24 eQTL, Putamen Basal Ganglia eQTL, Amygdala eQTL, Whole Brain 
eQTL, Cerebellum eQTL, Nucleus Accumbens eQTL, Basal Ganglia eQTL, Spinalcord eQTL, Hippocampus 
eQTL, Substantia nigra eQTL 

KANSL1 AD, PD, 
PSP 

Whole Brain meta-analysis mQTL, Whole Blood mQTL, Cortex eQTL, Multi Ancestry Whole Brain Meta-
analysis eQTL, Spinalcord eQTL, Anterior Cingulate Cortex BA24 eQTL 

ARL17A AD, PD, 
PSP 

Spinalcord eQTL, Amygdala eQTL, Multi Ancestry Whole Brain Meta-analysis eQTL, Hypothalamus eQTL, 
Hippocampus eQTL, Cerebellar Hemisphere eQTL, Cortex eQTL, Caudate Basal Ganglia eQTL, Anterior 
Cingulate Cortex BA24 eQTL, Putamen Basal Ganglia eQTL, Cerebellum eQTL, Nucleus Accumbens Basal 
Ganglia 

PRSS36 AD, PD Whole Brain meta-analysis mQTL, Cortex eQTL, Cerebellar Hemisphere eQTL, Multi Ancestry Whole Brain 
Meta-analysis eQTL, Whole Brain eQTL 

MAPT AD, PD, 
PSP 

Whole Brain meta-analysis mQTL, Whole Blood mQTL 

IDUA LBD, PD Whole Brain meta-analysis mQTL, Whole Blood mQTL, Whole Blood eQTL(eQTLgen) 

TMEM175 LBD, PD Whole Blood mQTL 

ARHGAP27 AD, PD, 
PSP 

Whole Blood mQTL, Whole Blood eQTL (eQTLgen), Multi Ancestry Whole Brain Meta-analysis eQTL, 
Caudate Basal Ganglia eQTL, Nucleus Accumbens Basal Ganglia 

CRHR1 AD, PD, 
PSP 

Whole Brain meta-analysis mQTL, Whole Blood mQTL, Cortex eQTL, Skeletal Muscle eQTL 
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FMNL1 AD, PSP Multi Ancestry Whole Brain Meta-analysis eQTL, Whole Blood mQTL 

PLEKHM1 PD, PSP Cortex eQTL, Frontal Cortex BA9 eQTL, Prefrontal Cortex eQTL, Caudate Basal Ganglia eQTL, Skeletal 
Muscle eQTL, Anterior Cingulate Cortex BA24 eQTL, Putamen Basal Ganglia eQTL, Whole Brain eQTL 

WNT3 AD, PD Cortex eQTL metaBrain, Skeletal Muscle eQTL, Tibial Nerve eQTL 

SPPL2C AD, PD Cerebellum eQTL, Prefrontal Cortex eQTL 

Table 1: Candidate genes for multiple neurodegenerative diseases. This table shows genes with functional 
inferences passing multiple test corrections for multiple neurodegenerative diseases. We provide details for all the 
omics and diseases in which a given gene has significant associations. Bolded genes indicate colocalized genes. 

 

Tier Requirements # of 
Genes 

Genes 

Novel - Druggable 
- Not 
approved for 
use in treating 
NDD 

41 ADAM10, SNCA, EGFR, POU5F1, STK39, INPP5D, CRHR1, APH1B, MINK1, 
CLU, CR1, ACE, CD38, RABEP1, ERCC2, KAT8, ITGAX, GAK, STX4, EPHB4, 
EPHA1, GPNMB, STAG3, CHRNE, NDUFS2, FCER1G, VKORC1, DNTT, CKM, 
HSD3B7, BST1, STX1B, PSMC3, CDSN, MICB, MS4A2, PSORS1C1, EPHX2, 
SLC44A4, MAT1A, FBXL19 

Known - Druggable 
- Approved for 
use in treating 
NDD 

3 MAPT, KCNN4, ADORA2B 

Difficult - No known 
druggability  

115 TRIM27, PPP4C, SPI1, EFNA3, KIF1C, WNT3, CD2AP, CCNE2, KCTD13, 
C9orf72, SRCAP, CELF1, HIP1R, GRN, APOC2, ARHGAP27, MEPCE, LRRFIP2, 
COPS6, GIGYF1, BCKDK, POLR2E, EFNA4, DYDC1, ATF6B, LLGL1, MTMR2, 
GPC2, LRRC37A, ARL17B, INO80E, SNX31, CEACAM19, DGKQ, NUP42, 
LRRC37A2, KANSL1, ARL17A, ANXA11, TSPAN14, CASTOR3, ZNF232, ZNF45, 
TSBP1, TREM2, PRSS36, IDUA, CCDC158, CCDC189, ZSWIM7, PLEKHM1, 
STH, PVRIG, YPEL3, MMRN1, SPPL2C, SCIMP, PILRB, PILRA, LACTB, 
FMNL1, APOC4, ZNF646, CPSF3, ZSCAN9, ZKSCAN3, TREML2, EPDR1, UFSP1, 
FAM131B, TAS2R60, USP6NL, MS4A4A, CASS4, G2E3, SCFD1, 
PCGF3,SETD1A,DCAKD, ZNF668, AGFG2, TMEM175, TOMM40, TRIM40, 
WDR81, TMEM106B, FNBP4, SHROOM3, CYP21A2, REXO1, TNXB, MS4A3, 
AIF1, RAB8B, ZFP57, FAM200B, BTNL2, IGSF9B, HS3ST1, ZNF311, NDUFAF6, 
TMEM163, APOC1, C17orf107, EXOC3L2, DYDC2, DOC2A, ACMSD, TRIM31, 
PRDM7, TRIM10, ZAN, MS4A6A, CPLX1, SFTA2 

Table 2: Therapeutic Classification Scheme by Tier. Table providing information on the three classifications tiers in 
our therapeutic classification scheme including requirements for each tier. Bolded genes indicate colocalized genes. 
 

STAR Methods 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data   

1000 Genomes Phase 3 Reference Panel 
1000 
Genomes47 https://doi.org/10.1038/nature15393 
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"Druggable Genome" Finan et al48 
https://www.science.org/doi/10.1126/scitranslmed.aag11
66  

Drug Gene Interaction Data 

Drug Gene 
Interaction 
Database49 DGIdb (v4.2.0 - sha1 afd9f30b) 

IlluminaHumanMethylation450kanno.ilm
n12.hg19  R50 

10.18129/B9.bioc.IlluminaHumanMethylation450kanno.
ilmn12.hg19 

scRNA-seq Adult Human Brain Silleti et al6 doi: https://doi.org/10.1101/2022.10.12.511898 

eQTL data from human brain, blood, 
liver, and muscle tissues GTEx v851 GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2) 

eQTL summary data from human blood eQTLGen52 https://doi.org/10.1038/s41588-021-00913-z 

eQTL summary data from human 
prefrontal cortex 

psychENCO
DE53 synapse: syn12080241 

eQTL summary data from human blood Qi et al 54 
https://www.nature.com/articles/s41467-018-04558-
1#Sec9 

eQTL summary data from human brain 
Metabrain 
Consortium55 https://www.metabrain.nl/cis-eqtls.html 

eQTL summary data from human brain 
(multiancestry) 

Zeng, B. et 
al56 synapse: syn23204884 

mQTL summary data from human blood Qi et al 54 
https://www.nature.com/articles/s41467-018-04558-
1#Sec9 

mQTL summary data from human 
peripheral blood Mcrae et al57 

European Genome-phenome Archive under accession 
number EGAS00001000910 

pQTL summary data from human brain, 
plasma, and CSF Yang et al58 NG00102 

cis-caQTL summary data from the 
prefrontal cortex Bryois et al59 synapse: syn5321694 

Software and algorithms   

SMR Yang Lab https://yanglab.westlake.edu.cn/software/smr/#Overview 

Custom Analysis This paper 
https://github.com/NIH-CARD/NDD_SMR/tree/main; 
https://doi.org/10.5281/zenodo.8132071  

Streamlit App This paper 
https://nih-card-ndd-smr-home-syboky.streamlit.app/; 
https://doi.org/10.5281/zenodo.8132071 

Biomart python package  https://github.com/sebriois/biomart 

PyEnsembl Openvax60 https://github.com/openvax/pyensembl 

liftOver 

University of 
California, 
Santa Cruz61 DOI:10.1093/nar/gkj144; RRID:SCR_018160 

Open Targets Platform 
Open 
Targets39 https://platform.opentargets.org/ 

SIGnaling Network Open Resource 
(SIGNOR)  SIGNOR62 https://signor.uniroma2.it/ 

Other   

AD GWAS 
Bellenguez et 
al.63 GCST90027158 
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ALS GWAS 
Nicolas et 
al.64 phs000101.v4  

FTLD GWAS Pottier et al.65 https://doi.org/10.1007/s00401-019-01962-9 

LBD GWAS Chia et al.66 phs001963.v1.p1 

PD GWAS Nalls et al.67 doi: 10.1016/S1474-4422(19)30320-5 

PSP GWAS 
Höglinger et 
al.68 doi:10.1038/ng.859 

 

Resource Availability 

Lead Contact 

Further information and requests for resources and data should be directed to and will be fulfilled by the lead 
contact, Chelsea Alvarado (chelsea.alvarado@nih.gov).  
 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

● This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in 
the key resources table. 

● All original code has been deposited at GitHub, deposited on Zenodo and is publicly available as of the 
date of publication. GitHub URL and Zenodo DOI  are listed in the key resources table.  

● Any additional information reported in this paper is available from the lead contact upon request. 

Method Details 

Datasets 

Genome-Wide Association Studies (GWAS) summary statistics for each of the six NDD highlighted in our study 
were used to obtain SNPs that served as instrumental variables in the Mendelian randomization pipeline. GWAS 
used are the latest and/or largest for each corresponding disease: Bellenguez et al. (2022) for AD (n = 788,989); 
Chia et al. (2021) for LBD (n = 7,372); Höglinger et al. (2011) for PSP (n = 4,361); Nalls et al. (2019) for PD (n = 
1,456,306); Nicolas et al. (2018) for ALS (n = 80,610); and Pottier et al. (2019) for FTLD (n = 1,355)63-68.All 
GWAS summary statistics were lifted over, as needed, to hg19 (GRCh37) using University of California, Santa 
Cruz’s liftOver command line tool.61 

x-QTL Summary Statistics 
Expression quantitative trait loci (eQTL), protein quantitative trait loci (pQTL), chromatin quantitative trait loci 
(caQTL) and methylation quantitative trait loci (mQTL) were used as the exposure variables in the Mendelian 
randomization (MR) analyses. eQTLs are genetic loci that explain the variation in mRNA expression levels. Cis-
eQTL, eQTLs that act on local genes, data makes up most all x-QTL data used for our study due to the volume of 
publicly available data sources. All eQTL and mQTL data obtained, except from the sources eQTLgen, metaBrain 
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and Zeng, et al. (multi ancestry), were already in SMR format and obtained from the Yang Lab’s Data Resource 
page. 52,55,56 The eQTL sources from the Yang Lab include Genotype-Tissue Expression (GTEx) project v8 release, 
PsychENCODE, and BrainMeta v1 (formerly brain-eMeta).51,53,54 The specific tissues measured varied by data 
source but consisted of NDD-related tissues, which we have defined as brain, nerve, muscle, blood, and liver tissues. 
Liver was included due to its role in metabolizing medications, toxicity, and potential impacts on clinical trial 
progress.69  
 
mQTLs are genetic variants that affect methylation patterns of CpG sites. mQTL data sources include Brain-mMeta 
and McRae et al. (2018) which are derived from blood tissues.54,57 We included caQTLs - caQTLs alter traits by 
modifying chromatin structure - data from Bryois et al. (2018) in our analysis. 59 Blood tissues have been shown to 
have high correlation in expression levels with brain tissues, allowing blood tissues to provide a gain of power and 
ease of use in biomarker studies due to the relative ease of availability of this tissue. 54 All genome positions are 
mapped to the human reference genome build hg19 (GRCh37). 
 
pQTLs are genetic variants associated with protein expression levels. Similarly, to eQTLs and mQTLs, pQTLs can 
be used as our exposure variable. We obtained pQTL summary statistics data from Yang et al. (2021). 58 The pQTLs 
are from plasma, brain, and cerebrospinal fluid tissues (CSF) from participants with and without AD. Samples are 
on human reference genome build hg19 (GRCh37). More details on the samples and methods used can be found in 
the original manuscript.58 pQTLs were nominated for inclusion for SMR analysis if they were significant (p < 0.05) 
in at least one of the three tissues per the original manuscript. We included 453 unique pQTLs across the three 
tissues: 223 pQTLs from CSF; 159 from plasma; and 77 from the brain. 

Gene Expression Summarization 
We summarized expression ranks for genes of interest within the single cell adult human brain transcriptome data 
set adult_human_20221007.loom from Siletti et al. (2022).6 Using custom R scripts we converted feature counts into 
TPM (transcripts per million). For a given sample, feature counts were divided by maximum nonredundant intron-
removed exon lengths to correct for differences in gene length. Values were then multiplied by a sample-specific 
constant (106 / T, where T is the sum of length-normalized counts) such that the resulting unitless vector sums to one 
million. We extracted exon lengths based on annotations from the GTF file used to originally annotate the single cell 
data (gb_pri_annot.gtf). We calculated the expression percentile rank for genes of interest using the empirical 
cumulative distribution function and then calculated the mean and median expression percentile rank (EPR) value 
for each gene across cells of each tested cell type. In order to ease interpretation, we binned the EPR values into 3 
classes - off, low, and high (off: EPR < 10, low: 10 < EPR < 90, high: EPR > 90) using the mean snRNA-seq EPR 
of each gene against cell type.  
 
Gene – Gene Networks 
Data was obtained from the Open Targets.39 Open Targets provides an API to cross reference annotations and 
relationships on diseases, genes, and drugs. Companion genes were pulled from the SIGnaling Network Open 
Resource (SIGNOR) database due to the manual curation of gene interactions.62 
 
Therapeutic Drug Data 
Therapeutic drug data was obtained from various sources including Finan, et al. (“druggable genome”), and the 
Drug Gene Interaction Database. 48,49 Druggable genome data were obtained from the supplementary materials in 
Finan, et al.; The obtained data provided insight on 3000+ potential gene targets with evidence for drug targets or 
potential targets.48 DGIdb drug data (accessed January 2023) were downloaded from the DGIdc online database as 
files consisting of known gene and drug interactions as well as details such as interaction types and drug categories. 
 
Pre-processing 
All data pre-processing was carried out using custom scripts for data that was not obtained via the Yang Lab or was 
missing information such as gene symbols (see Key Resources Table). Preprocessing included gene annotation, 
BESD format preparation and conversion, and/or calculation of necessary measures such as beta values. Gene 
annotation was performed as necessary if no gene symbol was provided in the original data source. Annotation was 
conducted using both the Python biomart package and pyensembl using ENSG IDs. mQTL gene annotation was 
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conducted by obtaining Illumina 450k chip probe data using the R package 
IlluminaHumanMethylation450kanno.ilmn12.hg19.50,60,70 
 
Data sources were converted as necessary into BESD format using the flist method outlined by the Yang Lab. BESD 
format stores x-QTL summary data in a set of three files -. esi, epi, .besd. More information on the format and how 
to process data into BESD format can be found on the SMR Yang Lab website listed in the key resources table. 
 
Our multi-ancestry eQTL data originally lacked allele frequency, beta, or standard error values. Missing allele 
frequencies were obtained using the 1000 Genomes reference panel, from which we derived beta and standard error 
values using each eQTL’s random effects model z-score, allele frequency and total number of samples from the 
original study (n = 2,119). 
 
Summary data-based Mendelian Randomization 
Summary data-based Mendelian Randomization (SMR) is a MR computational tool that uses summary-level data to 
test if an exposure variable (i.e., gene expression) and outcome (i.e., 
trait) are causally associated because of a shared causal variant (i.e. instrumental variable).71  To discern potentially 
causal variants from those in linkage disequilibrium with the functional variant, the heterogeneity in dependent 
instruments (HEIDI) method was implemented using the default version which uses the top 20 SNPs at a locus.71 
Linkage disequilibrium reference data was obtained from 1000 Genomes phase 3 reference panel.47 To increase 
statistical power, we applied the SMR-multiple exposures (SMR-multi) method, a Bayesian framework for 
simultaneous testing of multiple traits or exposures on a single outcome while accounting for the correlation 
between them. SMR and HEIDI analysis were conducted using the SMR software established and maintained by the 
Yang Lab using all default parameters including those previously detailed.71,72 
 
Following SMR, we filtered results to include only protein-coding genes and removed potential associations with no 
available gene annotations or associations with genes in the major histocompatibility complex (MHC). We used a 
significance threshold of pSMR_multi < 2.95×10-6, corresponding to the Bonferroni-corrected value at α=0.05 for 
16,875 protein coding genes tested across all NDD and omic pairs. We then filtered results based on the presence of 
inferred pleiotropy via the computed HEIDI score (pHEIDI > 0.01 for inclusion in this study) .71 SNPs were then split on 
their associated genes status as a therapeutic target or as a non-therapeutic target. After initial processing, analyses 
were conducted as demonstrated in our workflow diagram (Figure 1 panel a) and explained further in our gene 
nomination workflow. In total, we tested a total of 186 omic-tissue pairs across six NDD (Supplementary Table S1). 

Gene Nomination and Drug Target Identification 
Gene nomination focused on targets shared by multiple NDD, classifying targets by inferred druggability as 
described in the introduction. Therapeutic targets were initially nominated using data from DGIdb and Finan, et 
al..48,49 Further target curation was conducted using Open Targets to verify if any approved indications included an 
NDD thus allowing us to classify drugs into either the novel or known tiers. Identified network companion genes 
upstream and downstream of the initial target identified were further categorized into groups based on therapeutic 
status and approved use in treating any NDD. Our known and difficult tiers were further investigated using gene co-
expression networks via Open Targets interaction annotations through the Signor database. Using Signor identified 
interactions we identified companion genes, i.e., those manually annotated for their causal relationships with the 
gene of interest. We additionally searched known therapeutics that target any identified companion genes to 
potentially identify proxy gene targets thus expanding the net for drug discovery and repurposing. We implemented 
custom python scripts in order to query Open Targets’ API to extract relevant annotations for this workflow. 
 

References 

1. Van Dyck, C.H., Swanson, C.J., Aisen, P., Bateman, R.J., Chen, C., Gee, M., Kanekiyo, M., Li, D., 
Reyderman, L., Cohen, S., et al. (2023). Lecanemab in Early Alzheimer’s Disease. New England Journal of 
Medicine 388, 9-21. 10.1056/nejmoa2212948. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


2. Morant, A.V., Jagalski, V., and Vestergaard, H.T. (2019). Labeling of Disease-Modifying Therapies for 
Neurodegenerative Disorders. Frontiers in Medicine 6. 

3. Organization, W.H. Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. 
4. King, E.A., Davis, J.W., and Degner, J.F. (2019). Are drug targets with genetic support twice as likely to be 

approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of 
drug approval. PLOS Genetics 15, e1008489. 10.1371/journal.pgen.1008489. 

5. Paulsen, J.S., Nance, M., Kim, J.-I., Carlozzi, N.E., Panegyres, P.K., Erwin, C., Goh, A., McCusker, E., 
and Williams, J.K. (2013). A review of quality of life after predictive testing for and earlier identification of 
neurodegenerative diseases. Progress in Neurobiology 110, 2-28. 10.1016/j.pneurobio.2013.08.003. 

6. Siletti, K., Hodge, R., Mossi Albiach, A., Hu, L., Lee, K.W., Lönnerberg, P., Bakken, T., Ding, S.-L., 
Clark, M., Casper, T., et al. (2022). Transcriptomic diversity of cell types across the adult human brain.  
Cold Spring Harbor Laboratory. 

7. Alvarado, C.X., Weller, C.A., Johnson, N.L., Leonard, H.L., Singleton, A.B., Reed, X., Blauewendraat, C., 
and Nalls, M.A. (2023). Human brain single nucleus cell type enrichments in neurodegenerative diseases.  
Cold Spring Harbor Laboratory. 

8. Seo, J., and Park, M. (2020). Molecular crosstalk between cancer and neurodegenerative diseases. Cellular 
and Molecular Life Sciences 77, 2659-2680. 10.1007/s00018-019-03428-3. 

9. Wilson, D.M., Cookson, M.R., Van Den Bosch, L., Zetterberg, H., Holtzman, D.M., and Dewachter, I. 
(2023). Hallmarks of neurodegenerative diseases. Cell 186, 693-714. 
https://doi.org/10.1016/j.cell.2022.12.032. 

10. Zhou, F., and Wang, D. (2017). The associations between the MAPT polymorphisms and Alzheimer’s 
disease risk: a meta-analysis. Oncotarget 8, 43506-43520. 10.18632/oncotarget.16490. 

11. Tobin, J.E., Latourelle, J.C., Lew, M.F., Klein, C., Suchowersky, O., Shill, H.A., Golbe, L.I., Mark, M.H., 
Growdon, J.H., Wooten, G.F., et al. (2008). Haplotypes and gene expression implicate the MAPT region 
for Parkinson disease: The GenePD Study. Neurology 71, 28-34. 10.1212/01.wnl.0000304051.01650.23. 

12. Majounie, E., Cross, W., Newsway, V., Dillman, A., Vandrovcova, J., Morris, C.M., Nalls, M.A., Ferrucci, 
L., Owen, M.J., O'Donovan, M.C., et al. (2013). Variation in tau isoform expression in different brain 
regions and disease states. Neurobiology of Aging 34, 1922.e1927-1922.e1921. 
10.1016/j.neurobiolaging.2013.01.017. 

13. Lin, M.K., and Farrer, M.J. (2014). Genetics and genomics of Parkinson’s disease. Genome Medicine 6, 
48. 10.1186/gm566. 

14. Jun, G., Ibrahim-Verbaas, C.A., Vronskaya, M., Lambert, J.C., Chung, J., Naj, A.C., Kunkle, B.W., Wang, 
L.S., Bis, J.C., Bellenguez, C., et al. (2016). A novel Alzheimer disease locus located near the gene 
encoding tau protein. Molecular Psychiatry 21, 108-117. 10.1038/mp.2015.23. 

15. Patel, D., Zhang, X., Farrell, J.J., Chung, J., Stein, T.D., Lunetta, K.L., and Farrer, L.A. (2021). Cell-type-
specific expression quantitative trait loci associated with Alzheimer disease in blood and brain tissue. 
Translational Psychiatry 11. 10.1038/s41398-021-01373-z. 

16. Futch, H.S., Croft, C.L., Truong, V.Q., Krause, E.G., and Golde, T.E. (2017). Targeting psychologic stress 
signaling pathways in Alzheimer’s disease. Molecular Neurodegeneration 12. 10.1186/s13024-017-0190-z. 

17. Zhao, B., Shan, Y., Yang, Y., Yu, Z., Li, T., Wang, X., Luo, T., Zhu, Z., Sullivan, P., Zhao, H., et al. 
(2021). Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with 
complex neuropsychiatric traits. Nature Communications 12. 10.1038/s41467-021-23130-y. 

18. Madrid, L., Labrador, S.C., González-Pérez, A., and Sáez, M.E. (2021). Integrated Genomic, 
Transcriptomic and Proteomic Analysis for Identifying Markers of Alzheimer’s Disease. Diagnostics 11, 
2303. 10.3390/diagnostics11122303. 

19. Sheikh, B.N., Guhathakurta, S., and Akhtar, A. (2019). The non�specific lethal NSL complex at the 
crossroads of transcriptional control and cellular homeostasis. EMBO reports 20, e47630. 
10.15252/embr.201847630. 

20. Linda, K., Lewerissa, E.I., Verboven, A.H.A., Gabriele, M., Frega, M., Klein Gunnewiek, T.M., Devilee, 
L., Ulferts, E., Hommersom, M., Oudakker, A., et al. (2022). Imbalanced autophagy causes synaptic 
deficits in a human model for neurodevelopmental disorders. Autophagy 18, 423-442. 
10.1080/15548627.2021.1936777. 

21. Button, R.W., Roberts, S.L., Willis, T.L., Hanemann, C.O., and Luo, S. (2017). Accumulation of 
autophagosomes confers cytotoxicity. Journal of Biological Chemistry 292, 13599-13614. 
10.1074/jbc.m117.782276. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


22. Son, S.M., Park, S.J., Fernandez-Estevez, M., and Rubinsztein, D.C. (2021). Autophagy regulation by 
acetylation—implications for neurodegenerative diseases. Experimental &amp; Molecular Medicine 53, 
30-41. 10.1038/s12276-021-00556-4. 

23. Lingling, D., Miaomiao, Q., Yili, L., Hongyun, H., and Yihao, D. (2022). Attenuation of histone H4 lysine 
16 acetylation (H4K16ac) elicits a neuroprotection against ischemic stroke by alleviating the 
autophagic/lysosomal dysfunction in neurons at the penumbra. Brain Research Bulletin 184, 24-33. 
https://doi.org/10.1016/j.brainresbull.2022.03.013. 

24. Füllgrabe, J., Lynch-Day, M.A., Heldring, N., Li, W., Struijk, R.B., Ma, Q., Hermanson, O., Rosenfeld, 
M.G., Klionsky, D.J., and Joseph, B. (2013). The histone H4 lysine 16 acetyltransferase hMOF regulates 
the outcome of autophagy. Nature 500, 468-471. 10.1038/nature12313. 

25. Wiesel-Motiuk, N., and Assaraf, Y.G. (2020). The key roles of the lysine acetyltransferases KAT6A and 
KAT6B in physiology and pathology. Drug Resistance Updates 53, 100729. 
https://doi.org/10.1016/j.drup.2020.100729. 

26. Wang, C., Telpoukhovskaia, M.A., Bahr, B.A., Chen, X., and Gan, L. (2018). Endo-lysosomal dysfunction: 
a converging mechanism in neurodegenerative diseases. Current Opinion in Neurobiology 48, 52-58. 
https://doi.org/10.1016/j.conb.2017.09.005. 

27. Kragh, C.L., Ubhi, K., Wyss-Corey, T., and Masliah, E. (2012). Autophagy in Dementias. Brain Pathology 
22, 99-109. 10.1111/j.1750-3639.2011.00545.x. 

28. David, Popovic, D., Gubas, A., Terawaki, S., Suzuki, H., Stadel, D., Fraser, Diana, Bhogaraju, S., Maddi, 
K., et al. (2015). PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and 
LC3/GABARAP Proteins. Molecular Cell 57, 39-54. 10.1016/j.molcel.2014.11.006. 

29. Lichtenthaler, S.F., Lemberg, M.K., and Fluhrer, R. (2018). Proteolytic ectodomain shedding of membrane 
proteins in mammals—hardware, concepts, and recent developments. The EMBO Journal 37. 
10.15252/embj.201899456. 

30. Chen, F., Chen, H., Jia, Y., Lu, H., Tan, Q., and Zhou, X. (2020). miR�149�5p inhibition reduces 
Alzheimer's disease &beta;�amyloid generation in 293/APPsw cells by upregulating H4K16ac via KAT8. 
Experimental and Therapeutic Medicine 20, 1-1. 10.3892/etm.2020.9216. 

31. Erekat, N.S. (2018). Apoptosis and its Role in Parkinson’s Disease. In (Codon Publications), pp. 65-82. 
10.15586/codonpublications.parkinsonsdisease.2018.ch4. 

32. Goel, P., Chakrabarti, S., Goel, K., Bhutani, K., Chopra, T., and Bali, S. (2022). Neuronal cell death 
mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 15, 937133. 
10.3389/fnmol.2022.937133. 

33. Van Den Bosch, T., Leus, N.G.J., Wapenaar, H., Boichenko, A., Hermans, J., Bischoff, R., Haisma, H.J., 
and Dekker, F.J. (2017). A 6-alkylsalicylate histone acetyltransferase inhibitor inhibits histone acetylation 
and pro-inflammatory gene expression in murine precision-cut lung slices. Pulmonary Pharmacology 
&amp; Therapeutics 44, 88-95. 10.1016/j.pupt.2017.03.006. 

34. Dekker, F.J., van den Bosch, T., and Martin, N.I. (2014). Small molecule inhibitors of histone 
acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discovery Today 
19, 654-660. https://doi.org/10.1016/j.drudis.2013.11.012. 

35. Baird, D.A., Liu, J.Z., Zheng, J., Sieberts, S.K., Perumal, T., Elsworth, B., Richardson, T.G., Chen, C.-Y., 
Carrasquillo, M.M., Allen, M., et al. (2021). Identifying drug targets for neurological and psychiatric 
disease via genetics and the brain transcriptome. PLOS Genetics 17, e1009224. 
10.1371/journal.pgen.1009224. 

36. Li, Y.I., Wong, G., Humphrey, J., and Raj, T. (2019). Prioritizing Parkinson’s disease genes using 
population-scale transcriptomic data. Nature Communications 10. 10.1038/s41467-019-08912-9. 

37. Diaz-Ortiz, M.E., Seo, Y., Posavi, M., Carceles Cordon, M., Clark, E., Jain, N., Charan, R., Gallagher, 
M.D., Unger, T.L., Amari, N., et al. (2022). GPNMB confers risk for Parkinson’s disease through 
interaction with α-synuclein. Science 377, eabk0637. 10.1126/science.abk0637. 

38. Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., Destefano, A.L., Kara, E., 
Bras, J., Sharma, M., et al. (2014). Large-scale meta-analysis of genome-wide association data identifies 
six new risk loci for Parkinson's disease. Nature Genetics 46, 989-993. 10.1038/ng.3043. 

39. Ochoa, D., Hercules, A., Carmona, M., Suveges, D., Baker, J., Malangone, C., Lopez, I., Miranda, A., 
Cruz-Castillo, C., Fumis, L., et al. (2023). The next-generation Open Targets Platform: reimagined, 
redesigned, rebuilt. Nucleic Acids Research 51, D1353-D1359. 10.1093/nar/gkac1046. 

40. Pajares, M., A, I.R., Manda, G., Boscá, L., and Cuadrado, A. (2020). Inflammation in Parkinson's Disease: 
Mechanisms and Therapeutic Implications. Cells 9. 10.3390/cells9071687. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


41. Marogianni, C., Sokratous, M., Dardiotis, E., Hadjigeorgiou, G.M., Bogdanos, D., and Xiromerisiou, G. 
(2020). Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease. 
International Journal of Molecular Sciences 21, 8421. 10.3390/ijms21228421. 

42. Matthews, D.C., Mao, X., Dowd, K., Tsakanikas, D., Jiang, C.S., Meuser, C., Andrews, R.D., Lukic, A.S., 
Lee, J., Hampilos, N., et al. (2021). Riluzole, a glutamate modulator, slows cerebral glucose metabolism 
decline in patients with Alzheimer’s disease. Brain 144, 3742-3755. 10.1093/brain/awab222. 

43. Wu, H.-C., Chen, C.-M., Chen, Y.-C., Fung, H.-C., Chang, K.-H., and Wu, Y.-R. (2018). DLG2, but not 
TMEM229B, GPNMB, and ITGA8 polymorphism, is associated with Parkinson's disease in a Taiwanese 
population. Neurobiology of Aging 64, 158.e151-158.e156. 
https://doi.org/10.1016/j.neurobiolaging.2017.11.016. 

44. Xu, Y., Chen, Y., Ou, R., Wei, Q.-Q., Cao, B., Chen, K., and Shang, H.-F. (2016). No association of 
GPNMB rs156429 polymorphism with Parkinson’s disease, amyotrophic lateral sclerosis and multiple 
system atrophy in Chinese population. Neuroscience Letters 622, 113-117. 
https://doi.org/10.1016/j.neulet.2016.04.060. 

45. Mie, R., Sara, B.-C., Mary, B.M., Oluwadamilola, O., Peter Wild, C., Oladunni, A., Kristin, S.L., Sani, A., 
Charles, A., Dan, V., et al. (2023). Genome-wide Association Identifies Novel Etiological Insights 
Associated with Parkinson’s Disease in African and African Admixed Populations. medRxiv, 
2023.2005.2005.23289529. 10.1101/2023.05.05.23289529. 

46. Program, N.I.o.H.A.o.U.R. All of Us Research Hub. https://www.researchallofus.org/. 
47. Auton, A., Abecasis, G.R., Altshuler, D.M., Durbin, R.M., Abecasis, G.R., Bentley, D.R., Chakravarti, A., 

Clark, A.G., Donnelly, P., Eichler, E.E., et al. (2015). A global reference for human genetic variation. 
Nature 526, 68-74. 10.1038/nature15393. 

48. Finan, C., Gaulton, A., Kruger, F.A., Lumbers, R.T., Shah, T., Engmann, J., Galver, L., Kelley, R., 
Karlsson, A., Santos, R., et al. (2017). The druggable genome and support for target identification and 
validation in drug development. Science Translational Medicine 9, eaag1166. 
10.1126/scitranslmed.aag1166. 

49. Freshour, S.L., Kiwala, S., Cotto, K.C., Coffman, A.C., McMichael, J.F., Song, J.J., Griffith, M., Griffith, 
Obi L., and Wagner, A.H. (2021). Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with 
open crowdsource efforts. Nucleic Acids Research 49, D1144-D1151. 10.1093/nar/gkaa1084. 

50. Hansen, K.D. (2016). IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina's 450k 
methylation arrays. 
https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450kanno.ilmn
12.hg19.html. 

51. The, G.C., Aguet, F., Anand, S., Ardlie, K.G., Gabriel, S., Getz, G.A., Graubert, A., Hadley, K., 
Handsaker, R.E., Huang, K.H., et al. (2020). The GTEx Consortium atlas of genetic regulatory effects 
across human tissues. Science 369, 1318-1330. 10.1126/science.aaz1776. 

52. Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., 
Kreuzhuber, R., Yazar, S., et al. (2021). Large-scale cis- and trans-eQTL analyses identify thousands of 
genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics 53, 1300-1310. 
10.1038/s41588-021-00913-z. 

53. Wang, D., Liu, S., Warrell, J., Won, H., Shi, X., Navarro, F.C.P., Clarke, D., Gu, M., Emani, P., Yang, 
Y.T., et al. (2018). Comprehensive functional genomic resource and integrative model for the human brain. 
Science 362, eaat8464. 10.1126/science.aat8464. 

54. Qi, T., Wu, Y., Zeng, J., Zhang, F., Xue, A., Jiang, L., Zhu, Z., Kemper, K., Yengo, L., Zheng, Z., et al. 
(2018). Identifying gene targets for brain-related traits using transcriptomic and methylomic data from 
blood. Nature Communications 9. 10.1038/s41467-018-04558-1. 

55. De Klein, N., Tsai, E.A., Vochteloo, M., Baird, D., Huang, Y., Chen, C.-Y., Van Dam, S., Oelen, R., 
Deelen, P., Bakker, O.B., et al. (2023). Brain expression quantitative trait locus and network analyses 
reveal downstream effects and putative drivers for brain-related diseases. Nature Genetics 55, 377-388. 
10.1038/s41588-023-01300-6. 

56. Zeng, B., Bendl, J., Kosoy, R., Fullard, J.F., Hoffman, G.E., and Roussos, P. (2022). Multi-ancestry eQTL 
meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nature Genetics 
54, 161-169. 10.1038/s41588-021-00987-9. 

57. McRae, A.F., Marioni, R.E., Shah, S., Yang, J., Powell, J.E., Harris, S.E., Gibson, J., Henders, A.K., 
Bowdler, L., Painter, J.N., et al. (2018). Identification of 55,000 Replicated DNA Methylation QTL. 
Scientific Reports 8. 10.1038/s41598-018-35871-w. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


58. Yang, C., Farias, F.H.G., Ibanez, L., Suhy, A., Sadler, B., Fernandez, M.V., Wang, F., Bradley, J.L., 
Eiffert, B., Bahena, J.A., et al. (2021). Genomic atlas of the proteome from brain, CSF and plasma 
prioritizes proteins implicated in neurological disorders. Nature Neuroscience 24, 1302-1312. 
10.1038/s41593-021-00886-6. 

59. Bryois, J., Garrett, M.E., Song, L., Safi, A., Giusti-Rodriguez, P., Johnson, G.D., Shieh, A.W., Buil, A., 
Fullard, J.F., Roussos, P., et al. (2018). Evaluation of chromatin accessibility in prefrontal cortex of 
individuals with schizophrenia. Nature Communications 9. 10.1038/s41467-018-05379-y. 

60. Openvax (2017). PyEnsembl. https://github.com/openvax/pyensembl. 
61. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, and David 

(2002). The Human Genome Browser at UCSC. Genome Research 12, 996-1006. 10.1101/gr.229102. 
62. Lo Surdo, P., Iannuccelli, M., Contino, S., Castagnoli, L., Licata, L., Cesareni, G., and Perfetto, L. (2023). 

SIGNOR 3.0, the SIGnaling network open resource 3.0: 2022 update. Nucleic Acids Research 51, D631-
D637. 10.1093/nar/gkac883. 

63. Bellenguez, C., Küçükali, F., Jansen, I.E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A.C., Campos-
Martin, R., Grenier-Boley, B., Andrade, V., et al. (2022). New insights into the genetic etiology of 
Alzheimer’s disease and related dementias. Nature Genetics 54, 412-436. 10.1038/s41588-022-01024-z. 

64. Nicolas, A., Kenna, K.P., Renton, A.E., Ticozzi, N., Faghri, F., Chia, R., Dominov, J.A., Kenna, B.J., 
Nalls, M.A., Keagle, P., et al. (2018). Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. 
Neuron 97, 1268-1283.e1266. 10.1016/j.neuron.2018.02.027. 

65. Pottier, C., Ren, Y., Perkerson, R.B., Baker, M., Jenkins, G.D., Van Blitterswijk, M., Dejesus-Hernandez, 
M., Van Rooij, J.G.J., Murray, M.E., Christopher, E., et al. (2019). Genome-wide analyses as part of the 
international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and 
increases support for immune dysfunction in FTLD. Acta Neuropathologica 137, 879-899. 
10.1007/s00401-019-01962-9. 

66. Chia, R., Sabir, M.S., Bandres-Ciga, S., Saez-Atienzar, S., Reynolds, R.H., Gustavsson, E., Walton, R.L., 
Ahmed, S., Viollet, C., Ding, J., et al. (2021). Genome sequencing analysis identifies new loci associated 
with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics 53, 294-303. 
10.1038/s41588-021-00785-3. 

67. Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, 
D.A., Noyce, A.J., Xue, A., et al. (2019). Identification of novel risk loci, causal insights, and heritable risk 
for Parkinson's disease: a meta-analysis of genome-wide association studies. The Lancet Neurology 18, 
1091-1102. 10.1016/s1474-4422(19)30320-5. 

68. Höglinger, G.U., Melhem, N.M., Dickson, D.W., Sleiman, P.M.A., Wang, L.-S., Klei, L., Rademakers, R., 
De Silva, R., Litvan, I., Riley, D.E., et al. (2011). Identification of common variants influencing risk of the 
tauopathy progressive supranuclear palsy. Nature Genetics 43, 699-705. 10.1038/ng.859. 

69. Vaja, R., and Rana, M. (2020). Drugs and the liver. Anaesthesia &amp; Intensive Care Medicine 21, 517-
523. 10.1016/j.mpaic.2020.07.001. 

70. Briois, S. Biomart. https://github.com/sebriois/biomart. 
71. Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgomery, G.W., Goddard, M.E., 

Wray, N.R., Visscher, P.M., and Yang, J. (2016). Integration of summary data from GWAS and eQTL 
studies predicts complex trait gene targets. Nature Genetics 48, 481-487. 10.1038/ng.3538. 

72. Wu, Y., Zeng, J., Zhang, F., Zhu, Z., Qi, T., Zheng, Z., Lloyd-Jones, L.R., Marioni, R.E., Martin, N.G., 
Montgomery, G.W., et al. (2018). Integrative analysis of omics summary data reveals putative mechanisms 
underlying complex traits. Nature Communications 9. 10.1038/s41467-018-03371-0. 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266

