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Abstract

The use of large datasets for targeted therapeutic interventions requires new ways to characterize 

the heterogeneity observed across subgroups of a specific population. In particular, models for 

partially exchangeable data are needed for inference on nested datasets, where the observations are 

assumed to be organized in different units and some sharing of information is required to learn 

distinctive features of the units. In this manuscript, we propose a nested common atoms model 

(CAM) that is particularly suited for the analysis of nested datasets where the distributions of 

the units are expected to differ only over a small fraction of the observations sampled from each 

unit. The proposed CAM allows a two-layered clustering at the distributional and observational 

level and is amenable to scalable posterior inference through the use of a computationally 

efficient nested slice sampler algorithm. We further discuss how to extend the proposed modeling 

framework to handle discrete measurements, and we conduct posterior inference on a real 

microbiome dataset from a diet swap study to investigate how the alterations in intestinal 

microbiota composition are associated with different eating habits. We further investigate the 

performance of our model in capturing true distributional structures in the population by means of 

a simulation study.
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Supplementary material
Section A summarizes the terminology used throughout the main paper with a glossary. In addition, a diagram is presented that 
helps understanding the clustering structure induced by the Common Atom Model (CAM). Section B presents the proofs of the 
theoretical results in the main paper. Section C presents more details regarding the nested slice sampler algorithm. Section D contains 
additional plots that are related to the simulation studies and the microbiome application of the main paper. Section E illustrates how 
CAM performs the density estimation for every unit in the Scenario 1 - Case A of the main article. Section F presents a sensitivity 
study showing how different prior specifications affect the recovered partitions and estimated densities. Section G compares CAM 
with some competitor models in terms of distributional clustering performance. Section H compares and discusses the models and 
implementations in terms of efficiency, measured by simulation time. Section I reports the truncated Gibbs sampler that can be used 
in place of the nested slice sampler. Section J provides a theoretical evaluation of the errors arising when the truncated algorithm is 
adopted.
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1. Introduction

The use of large datasets for targeted therapeutic interventions requires new ways to 

characterize the heterogeneity observed across subgroups of a specific population. In 

particular, models for partially exchangeable data are needed for inference on nested 

datasets, where the observations are assumed to be organized in different, though related, 

units. The borrowing of strength across units induced by these probabilistic structures 

is tailored to several applied problems. Here, we deal with a microbiome dataset made 

up of count measurements for 38 subjects (units) from both the United States and rural 

Africa, and the interest is to describe the different patterns of microbial diversity observed 

across the individuals since those patterns could inform future nutritional interventions. The 

description of microbial diversity requires investigating the structure, concentration, and 

richness of microbiota in each subject and how the distributions of microbiota abundances 

vary across subgroups of subjects. As the subgroups are typically unknown, they need to be 

estimated from the data.

The nested Dirichlet process (nDP, Rodríguez, Dunson, and Gelfand 2008) and its 

extensions have been widely employed to identify distributional subgroups in Bayesian 

nonparametric model-based approaches. For example, Rodriguez and Dunson (2014) 

proposed a generalization of the nDP for functional data analysis; Graziani, Guindani, and 

Thall (2015) investigated how the distribution of the changes of a targeted biomarker varies 

due to treatment and whether it is associated with a clinical outcome; Zuanetti et al. (2018) 

discussed a marginal nDP for clustering genes related to DNA mismatch repair via the 

distribution of gene–gene interactions. The nDP leads to a two-layered clustering: first, it 

allows grouping together similar units (distributional clustering-DC), and then, within each 

DC, it groups similar observations (observational clustering-OC). However, Camerlenghi et 

al. (2019a) recently proved that the inference obtained using the nDP may be affected by 

a degeneracy property: if two distributions share even only one atom in their support, the 

two distributions are automatically assigned to the same cluster. To overcome this drawback, 

Camerlenghi et al. (2019a) proposed a class of latent nested processes, which relies on 

estimating a latent mixture of shared and idiosyncratic processes across the subgroups. 

However, the computational burden of the resulting sampling scheme becomes demanding 

when the number of units increases.

The degeneracy of the nDP is particularly problematic when analyzing large datasets in 

genomics and microbiome studies. Here, the distribution profiles of sequencing data are 

expected to be quite similar across individuals and to vary only for a small fraction 

of differentially abundant sequences, which directly intervene to regulate the biological 

processes and their dysfunctions. Figure 1 reports a snapshot of the observed microbial 

distributions for two representative individuals from the dataset we analyze in Section 4. In 

Denti et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition to the typical skewness and zero-inflation of microbial distributions, we note that 

the two distributions considerably overlap, and they are quite similar except for the presence 

of a small set of sequences which appear with high frequency. In those applications, 

the nDP may provide unreliable inferences when comparing distributional patterns across 

individuals.

In this article, we propose a nested common atoms model (CAM) that is particularly suited 

for the analysis of nested data sets, where the distributions of the units are expected to differ 

only over a small fraction of the observations. Although our proposal could be described 

as a suitable modification of the nDP, where all the atoms are allowed to be shared across 

the subgroups, the CAM (i) does not suffer from the degeneracy issue of the nDP, and (ii) 

allows inference on large datasets with many units. Furthermore, in the nDP, observations 

can be clustered together only within units that are assigned to the same estimated subgroup. 

Thus, while the within-subgroup clustering still contributes to a compact representation of 

the data, observation level inference across subgroups is precluded. Instead, the proposed 

CAM framework naturally allows unit-level inference and clustering of observations across 

subgroups, since the structure of the common atoms allows mapping subgroup-specific 

distributional patterns to a shared support. Compared to Camerlenghi et al. (2019a), the 

proposed CAM is computationally more efficient, as it allows to conduct inference on 

a larger number of observations and population subgroups. To this purpose, we develop 

a novel nested slice sampler algorithm (Kalli, Griffin, and Walker 2011), which allows 

to target the true posterior distribution, without employing the standard truncation-based 

approximation, which is typically used for posterior inference with nDP models.

In the microbiome literature, ad-hoc solutions are sometimes adopted to address the 

challenges put forward by the analysis of microbiome data. For example, when dealing 

with the excess of zero counts, some authors simply add a small number (e.g., 1) to each 

count, thus generating “pseudo counts.” Here, we embed the proposed CAM framework 

within a rounded mixture of Gaussian (RGM) model (Canale and Dunson 2011). In this 

way, we effortlessly obtain a BNP-nested model for count data that can naturally handle 

the sparsity and the zero-inflation typical of microbiome abundance tables. The resulting 

discrete CAM allows to cluster rows of an abundance table according to their distributional 

characteristics, providing a partition of patients with similar microbiome distribution. For 

example, the proposed CAM assigns, with high probability, the two subjects of Figure 1 to 

two different population subgroups.

The remainder of the article is as follows. In Section 2 we introduce our model for 

continuous measurements, and discuss its properties. In Section 2.3 we discuss how to 

adapt the model to count data. In Section 3, we face posterior inference and outline the 

nested version of the slice sampler. Section 4 applies our model to a publicly available 

microbiome dataset in a diet swap study. Section 5 presents a simulation study to assess the 

clustering behavior of the model as the number of observations and units grow in different 

scenarios. Section 6 summarizes our contributions and discusses some future directions. We 

defer proofs, additional algorithms, and simulation studies to the supplementary material.
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2. CAM for Continuous Measurements

We consider a nested dataset, where we are provided with continuous measurements yj 

= (y1,j, …, ynj,j) observed over J experimental units. More in general, yi,j, i = 1, … , 

nj, j = 1, …, J, may take values in a Polish space X endowed with the respective Borel 

σ-field X. Similarly as in the nDP (Rodríguez, Dunson, and Gelfand 2008), our goal is to 

achieve a partition of the vectors y1, …, yj into a few, say K ≤ J, distributional clusters 

(DCs). However, Camerlenghi et al. (2019a) showed that the partially exchangeable partition 

probability function of the nDP implies that distributions collapse into a common cluster 

when they share even only one atom. This unappealing behavior can be avoided if the prior 

explicitly models the commonality of atoms between subgroups. Here, we propose a CAM 

such that distributions belonging to different clusters are characterized by specific weights 

assigned to a common set of atoms. In this section, we define the model and investigate its 

properties for analyzing large datasets. More specifically, let Gj, as j = 1, …, J, denote the 

distribution of the jth experimental unit, so that

yi, j ∣ G1, …, GJ ∼ind. Gj, (1)

independently across i = 1, …, nj and j = 1, …, J. Then, similarly to the nDP formulation, 

we assume that the Gj’s are a sample from an almost surely discrete distribution Q over the 

space of probability distributions on X, namely

G1, …, GJ ∣ Q ∼iid Q, Q = ∑
k ≥ 1

πkδGk
∗ . (2)

where Gk
∗ = ∑l ≥ 1 , ωl, k δθl, k ≥ 1, and the common atoms θ1, θ2, … are drawn from 

a non-atomic base measure H on (X, X). We further assume the Griffiths-Engen-

McCloskey (GEM) distribution for the weights, which characterizes the stick–breaking (or 

Sethuraman’s) construction of the Dirichlet process (Sethuraman 1994), that is, we consider 

vk ~ Beta(1, α), k ≥ 1, and then set π1 = v1, and πk = vk∏r = 1
k − 1 (1 − vr), k > 1, indicated as 

π = {πk}k≥1 ~ GEM(α). Similarly, we define ωk = {ωl,k}l≥1 ~ GEM(β), where ωl,k = 

rl,k, ∏s = 1
l − 1 (1 − rs, k), l > 1 and rl,k ~ Beta(1, β) for all l,k ≥ 1. The weights πk’s govern the 

distributional clustering, whereas the ωl,k’s regulate the observational clustering. In Section 

A of the supplementary material, we report a diagram that illustrates the clustering structure 

of the model, along with a summary of the terms we adopted.

Hatjispyros, Nicoleris, and Walker (2016) previously investigated the use of a common 

atoms structure to model pairwise-dependent Dirichlet processes across m known 
subgroups. Our CAM similarly employs common atoms to induce dependence across the 

Gk
∗’s, but further allows clustering of distributional units, leading to a new model of nested 

random probability measures.

Due to the commonality of the atoms at the unit level, our construction is also reminiscent 

of the Hierarchical Dirichlet process (HDP) by Teh et al. (2006). However, there are 

crucial differences between the two constructions. More specifically, the HDP does allow a 

flexible representation of each unit-level distribution Gj, j = 1, …, J, but does not induce 
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any clustering of distributions among the units. Our formulation preserves a two-layered 

clustering structure, across units (distributional clustering - DC) and between observations 

(observational clustering - OC). Thus, the proposed CAM is closer in spirit to recently 

developed hierarchical topic models, for example, the nested HDP by Paisley et al. (2015) 

and Tekumalla, Agrawal, and Bhattacharya (2015). Those formulations use the HDP as 

a base measure of an (outer) DP, in symbols Q ~ DP(α, DP(β, G0)) and G0 ~ DP(γ, 

H) and are characterized by three concentration parameters. Their goal is describing topic 

distributions which can be obtained as mixtures of separate topics (i.e., a document may 

contain words typical of both medicine and sports news), whereas our objective is to cluster 

individual distributions and the observations wherein (a patient-specific distribution is not 

obtained as a mixture of other patients’ distributions). Hence, our proposal closely mimics 

the intended purpose of the original nDP model, making use of only two concentration 

parameters. Finally, we mention an alternative semi-parametric model recently developed 

by Beraha, Guglielmi, and Quintana (2020) that also avoided the degeneracy issue of the 

nDP and allows for distributional clustering by extending the HDP of Teh et al. (2006). 

With respect to the work by Beraha, Guglielmi, and Quintana (2020), our proposal is fully 

nonparametric, yet computationally efficient, and it easily accommodates extensions aimed 

at clustering count data.

2.1. Partition Structure and Correlation

In the following, we investigate some important properties of the proposed CAM in terms of 

partition structure and correlation across subgroups. In particular, we show how the model 

does not suffer from the theoretical degeneracy of the nDP. We also discuss the implied 

dependence between pairs of observations and distributions.

The discreteness of the random probability measures in our model (1)-(2) induces ties at 

the observational level, whose corresponding partition can be described via the so-called 

partially Exchangeable Partition Probability Function (pEPPF) (see, e.g., Camerlenghi et al. 

2019b and references therein). For notational simplicity, we illustrate the main results by 

focusing on J = 2, but our strategy easily extends to the general case. We further assume 

that there are s > 0 distinct values out of J samples y1, …, yj, which will be denoted by y1
∗, 

…, ys
∗, with corresponding frequencies nj = (n1,j, …, ns,j), where ni,j indicates the number 

of times that the ith distinct value yi
∗ has been observed out of the initial sample in unit j. 

We denote by PX the space of all probability measures on X. Our first result characterizes 

the mixed moments of the random probability measures G1 and G2 as a convex combination 

of the fully exchangeable case and a situation of independence across samples (see also 

Proposition 2 in Camerlenghi et al. 2019a).

Proposition 1. Let f1 and f2 be two measurable functions defined on PX and taking values in 

ℝ+, then

E ∫
PX

2
f1(g1)f2(g2)Q(dg1)Q(dg2) = q1E[f1(G1

∗)f2(G1
∗)]

+ (1 − q1)E[f1(G1
∗)f2(G2

∗)]
(3)
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where we have set q1 ≔ ℙ(G1 = G2).

Following Camerlenghi et al. (2019b), we formally define the pEPPF as the probability of 

the observed allocation {n1, …, nj} of s > 0 distinct observations out of the available sample, 

that is,

ΠN
(s)(n1, …, nJ) ≔ E∫

Xs
∏
j = 1

J
∏
i = 1

s
Gj

ni, j(dyi
∗), (4)

with N = ∑j = 1
J nj, where the expected value in (Equation 4) is taken with respect to the 

random probabilities Gj’s, with distribution specified as in Equation (2). As a result, the 

probability of the observed allocation is driven by the distribution of the stick–breaking 

weights πk, ωl,k. We point out that the ith distinct value is shared by any two units j and κ 
if and only if ni,j ni,κ ≥ 1. If J = 1 one obtains the usual exchangeable partition probability 

function (EPPF) for an individual sample, defined by (Pitman 1995), and denoted here 

as Φnj
(s)(nj). In the case of the Dirichlet process, this coincides with the well-known Ewens 

sampling formula, Φnj
(s)(nj) = αsΓ(α)

Γ(α + nj) ∏i = 1
s (ni, j − 1)! (Ewens 1972). The pEPPF for the CAM is 

described by the following theorem, for the case J = 2.

Theorem 1. Let y1 and y2 be samples from J = 2 experimental units under the CAM (1)-(2). 

Then, the induced random partition of s > 0 distinct observations may be expressed as 

follows:

ΠN
(s)(n1, n2) = q1Φn1 + n2

(s) (n1 + n2)

+ (1 − q1)∫
Xs

E ∏
j = 1

2
∏
i = 1

s
(Gj

∗)ni, j(dyi
∗), (5)

where the expectation in (5) is taken with respect to the random probabilities Gj
∗ = ∑l ≥ 1 ωl, jδθl, 

with {ωl,j}l≥1 ~ GEM(β) and θl ∼iid H.

A closed-form expression of the pEPPF in Equation (5) is not available, due to the presence 

of the integral over Xs on the right-hand side. However, the result is fundamental to show 

that the proposed CAM does not reduce to the fully exchangeable case in the presence of 

common observations across the two samples. Indeed, we can prove the following:

Proposition 2. Assume that two samples y1 and y2 share s0 > 0 distinct observations, then

∫
Xs

E ∏
j = 1

2
∏

i = 1

s
(Gj

∗)ni, j(dyi
∗) > 0 .

Theorem 1 and Proposition 2 clarify that the pEPPF (5) of our proposal does not reduce to 

the EPPF of the full exchangeable model. Their proofs are reported in the supplementary 

material, where we also provide an explicit expression for the integral in Equation (5) (see 
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Equation B.9). The expression highlights how the integral depends on the distribution of the 

weights ωl,k’s and it is therefore positive.

Of course, ties among distributions at the outer level are still possible in view of the 

discreteness of Q in Equation (2). Indeed, if j ≠ j′ we have

ℙ Gj = Gj′ ∣ Q = ∑
k ≥ 1

πk
2 > 0, and ℙ Gj = Gj′ = 1

1 + α . (6)

Moreover, the probability of a tie between two data points in two separate units j and j′, with 

j ≠ j′, can be computed as

ℙ yi, j = yi′, j′ = 1
1 + α

1
1 + β + α 1

2β + 1 . (7)

This shows that CAM induces a two-fold clustering structure: it clusters together 

experimental units characterized by similar distribution profiles, and it also clusters together 

observations, allowing for borrowing information across the two layers. The derivation of 

Equations (6) and (7) is also deferred to the supplementary material.

We conclude this section providing an explicit expression of the correlation between Gj and 

Gj′ on different Borel sets, as j ≠ j′; the covariance and correlation are useful quantities 

to investigate the dependence across random probability measures and their suitability for 

practical applications. For any two Borel sets A, X one has

cov Gj(A), Gj′(B) = H(A ∩ B) q1

1 + β + 1 − q1

1 + 2β
− H(A)H(B) q1

1 + β + 1 − q1

1 + 2β ,
(8)

where q1 = (1 + α)−1. In particular the correlation on the same set A equals

ρj, j′ ≔ corr(Gj(A), Gj′(A)) = 1 − β
2β + 1

α
1 + α . (9)

See Section B of the supplementary material for the derivation of Equations (8) and (9). It 

is interesting to note that ρj,j′ ∈ (1/2, 1), due to the commonality of the atoms. In many 

applications, especially in genomics, distribution profiles are expected to be quite similar 

across experimental units (e.g., subjects), and to vary only for a small fraction of the 

observations (e.g., genes). For the nDP, we have that corr (Gj(A), Gj′(B)) = (1 + α)−1 > 0, 

where the expression does not depend on β: this is because the nDP assumes independence 

between atoms in separate distributions.
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2.2. Common Atoms Mixture Model

The model defined through Equations (1) and (2) assumes a.s. discrete distributions. For 

modeling continuous distributions, one could follow established literature (Ferguson 1983; 

Lo 1984) and consider a nonparametric mixture model where (1)is substituted by

(yi1, 1, …, yiJ , J) ∣ f1, …, fJ ∼ind. f1 × … × fJ
ij = 1, …, nj, j = 1, …, J

fj( ⋅ ) = ∫
Θ

p( ⋅ ∣ θ) Gj(dθ), j = 1, …, J,
(10)

where p(·∣θ) denotes an appropriate parametric continuous kernel density, and Gj ∣ Q ∼iid Q as 

in (2). In the rest of the article, we will adopt Gaussian kernels, that is, we assume p (·∣θ) 

to be Normal and θ = μ, σ2) is a vector of location and scale parameters. To simplify 

the computational algorithm, we can introduce an alternative representation using two 

sequences of latent variables, S = {Sj}j≥1 and M = (Mi,j}i≥1,j≥1, describing— respectively

—the clustering process at the distributional level and the observational level, that is, Sj = k 
and Mi,j = l if the observation i in unit j is assigned to the lth observational cluster and the 

kth DC. Thus, we deal with the following model:

yi, j ∣ M, θ ∼ N ⋅ ∣ θMi, j , Mi, j ∣ Sj = k ∼ ∑
l = 1

∞
ωl, kδl( ⋅ ),

ωk ∼ GEM(β), Sj ∣ π ∼ ∑
k = 1

∞
πkδk( ⋅ ),

π ∼ GEM(α), θl ∼ π(θl), l ≥ 1,

(11)

where we denoted with θ = {θl}l≥1. In the following, we consider a Normal-Inverse Gamma 

distribution for θl = (μl, σl
2) ~ NIG(m0, κ0, α0, β0), that is, μl ∣ σl

2 ~ N(m0, σl
2 ∕ κ0) and σl

2 ~ IG 

(α0, β0). Finally, Gamma distributions are adopted for both the precision parameters: α ~ 

Gamma(aα, bα) and β ~ Gamma(aβ, bβ).

2.3. CAM for Count Data

In Section 4, we consider an application to microbiome data, which can be represented 

by abundance tables containing the observed frequency of a particular microbial sequence 

in a sample - or subject (unit). Here, we describe how the CAM can be adapted to count 

data, characterized by skewness and zero-inflation typically observed in microbiome studies. 

Let zi, j ∈ ℕ be the observed count of microbial sequence i = 1, …, nj in subject j = 1, 

…, J. Consequently, the vector zj = (z1,j, …, znj,j) will denote the observed microbiome 

abundance vector of individual j. We embed model (1) and (2) in the rounded mixture of 

Gaussian framework of Canale and Dunson (2011). To define a probability mass function 

for the discrete measurements z, Canale and Dunson (2011) consider a data augmentation 

framework by latent continuous variables y, such that

f Z = j = ∫aj

aj + 1
g y dy, j ∈ ℕ
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for a fixed sequence of thresholds a0 < a1 < a2 < … < a∞ and for some density 

function g(·), such that ∫a0
a+∞g(y) dy = 1. Typically, the sequence of thresholds is set as 

a = {aj}j = 0
+∞ = { − ∞, 0, 1, 2, …, + ∞} and g(·) is a Dirichlet Process mixture density, to ensure 

a flexible representation of the table of counts. See also Bandyopadhyay and Canale (2016). 

Canale and Prünster (2017) showed that the rounded mixture framework provides a more 

flexible and robust specification for the distribution of count data than nonparametric 

mixtures of Poisson kernels. We propose a novel nested formulation, where g(·) is modeled 

as a CAM mixture (11). More specifically, conditionally on yi,j, we set zi, j = q ∈ ℕ if yi,j 

∈ aq, aq + 1 , where the distribution of yi,j is specified in Equation (11).

We will refer to this new setting as the discrete common atoms model (DCAM).

3. Posterior Inference

Typically, posterior samples for the nDP process have been obtained using a truncated 

version of the Blocked-Gibbs Sampler (Ishwaran and James 2001), that is, by choosing 

proper upper bounds for the infinite sums that appear in Equation (11). The model 

representation in Equation (11) can be used for such an algorithm, which we detail in 

Sections I and J of the supplementary material, where we also provide useful upper bounds 

to control the resulting truncation error. However, in this article, we develop and employ 

a novel nested version of the independent slice-efficient algorithm (Walker 2007; Kalli, 

Griffin, and Walker 2011). Compared to truncation-based algorithms, the proposed slice 

sampler has two main advantages: it allows to target the true posterior distribution and it 

considerably decreases the computational time by stochastically truncating the model at the 

needed number of mixture components. In our experiments, the use of the slice sampler has 

also resulted in improved mixing of the chains. The proposed slice sampling scheme can be 

easily extended to the nDP, and is related to the sampling scheme in Banerjee, Murray, and 

Dunson (2013), although their model is essentially different from ours. In the following, we 

focus on the Common Atoms Mixture model (11), as variations to accommodate for count 

data are straightforward.

Let p (yi,j∣θl) denote a generic density function for the observation yi,j, conditionally given 

θl, let π = {πk}k≥1 and ω = {ωl,k}k≥1 be the two sets of weights, one referred to the 

distributional clusters, the other one referred to the observational clusters. Then, we can 

write:

f yj ∣ θ, ω, π = ∑
k ≥ 1

πk ∏
i = 1

nj

∑
l ≥ 1

ωl, kp yi, j ∣ θl .

As in the classic slice sampler, we augment the model introducing two sets of latent 

variables controlling which components of the mixture are “active” and which can be 

ignored. More specifically, we introduce uD = {uj
D}j = 1

J  – where the D in the superscript 

indicates the distributional level—and, within every unit j = 1, …, J, we define an inner sets 

of latent variables, uj
O = {ui, j

O }i = 1
nj , at the level of the observations. Moreover, we also consider 
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the following deterministic sequences: ξD = {ξk
D}k ≥ 1 and, for every k, ξk

O = {ξl, k
O }l ≥ 1. Then the 

model can be rewritten as follows:

fξD, ξO yj, uj
D, uj

O ∣ θ, ω, π

= ∑
k ≥ 1

1{ujD < ξk
D}

πk

ξk
D ∏

i = 1

nj

∑
l ≥ 1

1{ui, jO < ξl, k
O }

ωl, k

ξl, k
O p yi, j ∣ θl . (12)

Notice that if we assume ξk
D = πk and ξl, k

O = ωl, k, we recover the nested version of the 

efficient-dependent slice sampler. By introducing two sets of latent labels that identify the 

distributional (S) and observational (M) cluster in which the observation is allocated, we 

get rid of the infinite sums in the previous equations. The complete likelihood for the entire 

dataset becomes

fξD, ξO y, uD, uO, M, S ∣ θ, ω, π

= ∏
j = 1

J
1{ujD < ξSj

D }
πSj

ξSj
D ∏

i = 1

n
1{ui, jO < ξMi, j, Sj

O }
ωMi, j, Sj

ξMi, j, Sj
O p yi, j ∣ θMi, j . (13)

Let ϕ(·∣θ) and Φ(·∣θ) denote the p.d.f. and the c.d.f. of a normal random variable with 

location-scale parameter θ, respectively. Then, if we assume p(yi,j∣θMi,j) = ϕ(yi,j∣Mi,j) we 

recover the CAM model in (10). Alternatively, to recover the DCAM model for discrete data 

z of Section 2.3, it is sufficient to adopt the mixing kernel p (zi,j∣θMi,j = ΔΦ(azi,j; θMi,j) = Φ 
(az+1; θMi,j) – Φ (az; θMi,j, obtained by integrating out the latent continuous variable. In a 

general framework the nested slice sampler is obtained by looping over the full conditionals 

for T iterations, according to the pseudo-code reported in Algorithm 1. For the DCAM, an 

additional step is added to update the latent continuous variable (see Step 1 of the algorithm 

in Section H. 1 of the supplementary material). The computation of Steps 5–7 is feasible, as 

we stochastically truncate the number of mixture components to a sufficiently high integer to 

ensure that the two steps can be carried out exactly. Additional details for this procedure are 

reported in Section C of the supplementarymaterial.
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Algorithm 1: 
Nested slice-efficient sampler for the CAM

4. Analysis of Microbial Distributions of African Americans and Rural 

Africans

We apply the proposed modeling framework to the analysis of a microbiome dataset. 

Here, a primary goal is to study microbial diversity, that is, how the distribution of 

microbial units varies across subgroups of a population. Typically, summary statistics 

are used to capture characteristics of the species’ distributions, for example, α-diversity 

and β-diversity metrics such as Shannon’s entropy and Bray-Curtis dissimilarity indexes, 

respectively (Whittaker 2006). However, those metrics do not fully capture the complexity 

of microbiome data, which poses distinctive statistical challenges (Mao, Chen, and Ma 

2020). In particular, the data are recorded as counts of the observed microbial genome 

sequences. The resulting histograms are highly skewed and sparse, due to the many low- 

or zero- frequency counts and to the presence of a few dominant sequences (see Figure 1). 

Indeed, when compared across subjects, microbiota abundance data show a characteristic 

zero-inflation. The taxonomical classification of microbial species is typically conducted 

based on sequence alignments, for example, through the use of 16S rRNA sequences: 

“practically identical” sequenced tags (≥ 95% of degree of similarity) are clustered together 

into the same phylotype, and referred to as an operational taxonomic unit (OTU). Thus, 

for each specimen (e.g., fecal sample) obtained from a particular ecosystem (e.g., the gut), 
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the number of recurrences of each OTU is recorded (Jovel et al. 2016; Kaul et al. 2017). 

Collecting samples from distinct individuals leads to the construction of an abundance table, 

a matrix formed by the OTU counts (taxa) observed in each sample. Let Z indicate a n × J 
abundance table where each entry zi, j ∈ ℕ is the frequency of the ith OTU observed in the jth 

subject, i = 1, …, n, j = 1, …, J, where n represents the total number of OTUs. Thus, the 

vector zj = (z1,j, …, zn,j)′ denotes the observed microbiome sample of individual j.

To understand the varying composition of the microbiome in the population, we apply the 

DCAM model proposed in Section 2.3 to the dataset from the study of O’Keefe et al. (2015), 

publicly available in the R package microbiome. The dataset contains the OTU counts of 

both healthy middle-aged African Americans (AA) and rural Africans (AF). The participants 

to the experiments were asked to follow their characteristic diet— “rural” (low-fat and 

high-fiber) for AF and “western” (high fat and low-fiber) for AA—for two weeks and 

then swap their diet regimes for other two weeks. During these two weeks, fecal samples 

were regularly collected to investigate the role of fat and fiber in the association between 

a specific diet and colon cancer risk. For our application, we focus on the abundance table 

obtained at the beginning of the experiment. Once we restrict our attention to the first 

time point, we find that 11 OTUs are absent across all the individuals. Therefore, they are 

removed from the dataset. However, since our model is designed to handle sparsity, we do 

not discard any underrepresented taxa, to avoid potential statistical power loss (McMurdie 

and Holmes 2014). Our abundance table consists of 119 taxa measured for 38 patients. 

The heatmap of the data in log-scale, stratified by nationality, is shown in Figure 3 in the 

supplementary material. The varying sequencing depths also affect the so-called library size, 

that is, the total frequencies of the observed species (OTUs) in each subject sample. Let 

Xj = ∑i = 1
n zi, j indicate the library size for subject j and let γj = X̄j denote the corresponding 

average of the OTU frequencies. We incorporate the library sizes as a scaling factor in the 

latent level of the DCAM, that is,

yi, j ∣ M, μ, σ2 ∼ N γj ⋅ μMi, j, γj
2 ⋅ σMi, j

2

γi, j

γj
∣ M, μ, σ2 ∼ N μMi, j, σMi, j

2 . (14)

Both the mean and the variance of the latent continuous random variable are decomposed 

multiplicatively into the deterministic term γj that describes the depth of the sequencing, 

and two stochastic terms that capture the intensity μMi,j and the uncertainty σMi, j
2  behind the 

OTU counts, respectively. We adopt standard prior settings for all the hyperparameters (m0, 

κ0, α0, β0, aβ, bβ). Following an empirical Bayes rationale, we set m0 and κ0 to be equal 

to the grand mean and the inverse of the overall sample variance. According to Rodríguez, 

Dunson, and Gelfand (2008), we then set β0 = 1 and α0 = aα = bα = aβ = bβ = 3. A MCMC 

sample of 25,000 iterations was collected after a burn in period of the same length.

DCs.

To obtain an estimate for the distributional clustering, we first compute the posterior 

pairwise co-clustering matrix. From this matrix, we estimate the optimal partition by 

considering a decision-theoretic approach and minimizing the expected posterior loss under 
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a specific loss function. We follow Wade and Ghahramani (2018), who proposed to rely on 

the minimization of the Variation of Information loss function developed by Meilúa (2007). 

The results are reported in Figure 2, where we also summarize the main characteristics of 

these DCs in terms of cardinality, nationality, and gender. It is remarkable how the different 

subgroups of microbiome populations are captured by our model: in fact, Cluster DC-1 

contains almost all the AA subjects, while Cluster DC-2 is composed mostly of AF. Cluster 

DC-3 contains only one subject, whose microbiome distribution is substantially unique. 

The resulting DCs capture relevant distributional characteristics and the diversity of the 

microbiomes. In particular, the Shannon index (Shannon 1948) or the Simpson index are 

often used to measure the α-diversity of a microbiome community, that is, the richness 

(number) and evenness (the frequencies’ similarity) of the different OTUs observed in a 

sample. Conditionally on the optimal configuration, we compute nine summary statistics 

for each subject. The DCs capture the different levels of α-diversity of the microbiome 

subgroups. Indeed, the Shannon Index and the Simpson Index vary substantially across 

the subgroups. In detail, the distributional cluster DC-1 is characterized by microbiome 

distributions with shorter range, lower standard deviations, skewness, and kurtosis than 

DC-2. However, DC-2 also show less richness/diversity than DC-1. See Figure 7 in the 

supplementary material. Therefore, we expect that the microbiomes clustered in DC-2 are 

more likely to contain a small fraction of highly prominent OTUs. To confirm this intuition, 

let z(i),j represent the ith highest frequence among the observed OTUs in subject j. We define 

the cumulative relative frequency (CRF) for subject j as CRFj(i) = ∑l = 1
i z(l), j ∕ ∑i = 1

n zi, j. The 

left panel of Figure 3 shows the CRFs for all the subjects colored by the DCs. The CRF 

curves in DC-2 tend to get very close to 1 within the first 25 most abundant OTUs, showing 

that the relative frequencies are dominated by few, but highly expressed taxa. At the same 

time, the CRF curves in DC-1 increase with a slower pace, meaning more heterogeneity in 

the microbiome subgroups. The CRF curve of the single subject in DC-3 increases much 

more slowly, indicating a peculiar microbiome, richer and more diverse than any other. We 

compute the median abundance of each OTU stratified by DC. In both cluster DC-2 and 

cluster DC-3, the leading OTU is the Prevotella melaninogenica. On average, it represents 

almost the 60% of the observed counts in each individual in DC-2 and the 18% in DC-3. 

Cluster DC-1 is more diverse: the two most expressed OTUs are the Bacteriodes vulgatus 
and the Oscillospira guillermondii that on average represent the 15% and the 12% of the 

subjects’ library size, respectively. Cluster DC-3 is also characterized by a high proportion 

of Faecalibacterium prausnitzii (7%).

Observational cluster analysis.

We further investigate the observational clusters (OC) induced by DCAM. Minimizing the 

Variation of Information we find 9 OCs, representing different intensities of the latent 

process underlying the counts. For a visual comparison, we report in the right panel of 

Figure 3 the boxplots of the taxa counts grouped by OC, with the value of the median 

superimposed. For simplicity, we group the 9 OCs in three macro clusters representing 

the abundance classes (Low, Medium, and High). Heatmaps showing the prevalence of 

each OTU in every abundance class are reported in the supplementary material. Finally, 

the distributional and observational results can be combined to discover more informative 

patterns, relating OTUs and subjects. Here, we investigate the co-expression structure among 
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the most expressed OTUs in DC-1 and DC-2. To do so, we first stratify the subjects by 

distributional clusters (DC-1 and DC-2) and remove the OTUs that, across all individuals, 

are always assigned to the Low abundance class. With the remaining 12 OTU, we compute 

two pairwise co-occurrence matrices (PCMk) as PCMk(l, g) = ∑ℎ = 1
nk 1{AC(g) = AC(l)} ∕ nk, that is, the 

percentage of times that OTU l and OTU g have been assigned to the same abundance class 

(AC) across the nk individuals assigned to DC k = 1, 2.

We plot two co-occurrence networks among the selected OTUs in Figure 4. Taxa l and g 
are linked if PCMk(l, g) = PCMk(g, l) > 0.5. The nodes are colored according to the modal 

abundance class. The Prevotella malaninogenica and the Prevotella oralis are both highly 

expressed and co-occurent in DC-2, while in DC-1 they fall in the Low abundance class 

and are not linked. In DC-1, highly and co-occurent taxa are the Bacteriodes vulgatus and 

Oscillospira guillermondii. The latter is also highly expressed in DC-2. These results are 

in line with well-established results in the literature, since subjects with a preponderance 

of Prevotella spp. are more likely to consume fibers, while diets richer in protein and fat—

typical of western diets—lead to a predominance of Bacteroides spp. (Graf et al. 2015; 

Preda et al. 2019).

5. Simulation Study

We show the performances of the proposed methodology for continuous (CAM) and discrete 

measurements (DCAM) within a simulation study composed of three scenarios. For every 

scenario, we generate the units containing the observations from highly overlapping mixture 

densities. We first want to assess our model’s ability to recover the ground truth by 

recognizing the units sampled from the same mixture density (i.e., identify the distributional 

clusters—DC) and the observations generated from the same mixture component (i.e., 

identify the observational clusters—OC), for increasing number of observations in each unit, 

nj, or for increasing number of units, J. The model hyperparameters are set as in the case 

study, except for the fact that we set α = β = 1 to facilitate comparisons. We estimate the 

best partitions by minimizing the Variation of Information given the MCMC output. Each 

scenario articulates into six configurations, that we now explain:

Scenario 1—CAM. We define six different distributions of the simulated data Yh, as

Y ℎ ∼ ∑
g = 1

ℎ 1
ℎN(mg, 0.6), where mg ∈ {0, 5, 10, 13, 16, 20}

and ℎ = 1, …, 6 .

From each of these distributions, we sample two units, therefore J = 12. The true number 

of DCs and OCs is 6 in both cases. To assess how the model behaves with asymmetries in 

the units’ sample sizes, we follow two different approaches. Case A: all the units have the 

same cardinality nj = nA, where nA ∈ {25, 50, 75}. Case B: each unit has cardinality nj 

proportional to the number of mixture components it contains. Specifically, nj = nB · j for j = 

1, … , 6 and nB ∈ {5, 10, 20}.

Scenario 2—CAM. Four highly overlapping mixtures are considered
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Y 1 ∼ 0.75N(0, 0.6) + 0.25N(3, 0.6),
Y 2 ∼ 0.25N(0, 0.6) + 0.75N(3, 0.6),
Y 3 ∼ 0.33N(0, 0.6) + 0.34N( − 2, 0.6) + 0.33N(2, 0.6),
Y 4 ∼ 0.25N(0, 0.6) + 0.25N( − 2, 0.6) + 0.25N(2, 0.6)

+ 0.25N(10, 1) .

The true number of DCs is 4 and there are five OCs, corresponding to the five different 

normal distributions that constitute the mixtures. We keep the number of observation per unit 

constant, equal to nj = 40 for any j. Instead, we vary the number r of units obtained from 

each distribution, considering six cases. We denote the number of sampled units in each case 

by Jr = 4 · r, with r = 1, …, 6. In other words, the total number of units in each experiment 

ranges from J1 = 4 (one unit sampled from each distribution) to J6 = 24 (six units sampled 

from each distribution). In this way, we can investigate the estimated DC structures as the 

total number of units increases.

Scenario 3—DCAM. First, let δx denote a point mass placed on point x and let Ud q, Q
represent a uniformly discrete distribution over the set of integers {q, …, Q} ⊂ ℤ. We 

consider three different discrete mixtures, from which we sample J = 10 units:

Y g ∼ ∑
b = 1

2
ωbδb − 1 + ω3 Ud 0, Qg with g = 1, 2, 3

and Qg ∈ {10, 50, 100},

with ωg = ng ∕ ∑l = 1
3 nl, g = 1, 2, 3 denoting the mixture weights. We set ω1 = ω2 by 

generating n1 = 50 observations equal to zero and n2 = 50 equal to one to simulate a case 

of low value inflation. We investigate the performance of the model in 6 cases, distinguished 

by the number of observations assigned to the third mixture component, that is, n3 ∈ 
{10, 15, 25, 50, 75, 100}. We design this simulation study to test how DCAM performs 

on distributions that are similar to typical microbiome samples, raising the same type of 

challenges. The number of true DCs is fixed equal to 3. However, there is no clear number of 

true OCs in this case. To assess the grouping at the level of the observations, we assume the 

following sets as ground truth, mimicking the segmentation in abundance levels of Section 

4. We postulate four OCs, where the first set contains “low-expressed” observations (i.e., 

constituted of zeros and ones). The remaining three groups are obtained partitioning the 

support into abundance classes corresponding to the intervals [2, 10], (10, 50] and (50, 100].

For each scenario and configuration, we run our model on 30 simulated datasets. In Figures 

5 and 6, we assess the goodness of the estimated optimal partition by comparing the adjusted 

Rand index (ARI - Hubert and Arabie 1985) between the estimated optimal partition and 

the ground truth. Moreover, we also compare the normalized Frobenius distance (Horn 

et al. 2013) between the estimated posterior pairwise co-clustering matrices and the true 

co-clustering structures, defined as follows. Given two p × p matrices A = {aij}i, j = 1
p  and 

B = {bij}i, j = 1
p , we define NFD(A, B) = ∑i, j = 1

p (aij − bij)2 ∕ p2.

From the pattern of the boxplots, we appreciate how the model can recover the ground truth, 

even for small sample sizes. In particular, the NFD between the DC structures approaches 
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zero as the sample size increase. The same holds for the ARI index, that shows how the truth 

is recovered by the estimated best partition when enough data points are provided. We see 

how CAM misassigns a few observations in the wrong OCs in Scenario 2. This is due to 

the fact that the different mixture components are highly overlapping. Nevertheless, CAM 

and DCAM perform really well in Scenarios 1 and 3, respectively, where the true OC are 

well separated. Overall, the NFD computed for the OC is satisfactorily small across all the 

configurations of Scenario 2.

Furthermore, we have performed additional numerical studies for comparing the CAM with 

the nDP and the nested hierarchical DP (Paisley et al. 2015; Tekumalla, Agrawal, and 

Bhattacharya 2015). The CAM achieves better performances than its competitors in terms 

of distributional clustering recovery and efficiency. The reader can find the details of those 

comparisons in Section G and H of the supplementary material. Additionally, we have also 

investigated the sensitivity to different hyperprior specifications (Section F) and the accuracy 

of the within-unit density estimation (Section E).

6. Discussion

We have introduced a nested nonparametric model that allows investigating distributional 

heterogeneity in nested data. The proposed CAM allows a two-layered clustering at the 

distributional and observational level, similarly to the nDP of Rodríguez, Dunson, and 

Gelfand (2008). By construction, our model formulation allows the sharing of atoms with 

different weights across distributions, and it does not suffer from the degeneracy properties 

that occurs in the nDP, as noted by Camerlenghi et al. (2019a) whenever there is a tie 

between atoms. The CAM specification is appealing and convenient for a variety of reasons: 

it is simple, allows a more refined description of DCs, and it is computationally efficient 

thanks to the implementation of a nested version of the independent slice-efficient sampler. 

We have extended the methodology to take into account the modeling and clustering of 

discrete distributions, by considering a rounded mixture of Gaussian kernels as in Canale 

and Dunson (2011). We applied our methodology to a real microbiome dataset, aiming 

to cluster individuals characterized by similar taxa distributions. Controlling for each 

subject’s library size, we grouped the data minimizing the Variation of Information loss 

function, and showed how the model detects clusters catching main differences among 

the distributions. In our application, the distributional clustering we recover distinguishes 

among dietary patterns, discriminating African high fiber from Western high fats diets. 

The observational clustering provides insights about the abundance levels among taxa and 

helps the identification of co-expression networks. We also assess the performance of our 

modeling approach through a simulation study where the data are simulated from highly 

overlapping distributions.

The application of the proposed model to the real dataset is limited by the type and 

number of clinical and demographic covariates that are available. If additional covariates 

were available, then they could be used to define more complex dependencies, for 

example, by constructing dependent random measures with covariate-dependent weights 

as in MacEachern (2000) (see, also Barrientos, Jara, and Quintana 2012) or to build 

risk-prediction models. Another interesting extension considers the incorporation of a 
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time dimension and the study of how DCs vary across time. Finally, to handle datasets 

with hundreds of thousands of observations, it will be important to explore the use 

of approximate inference techniques, for example, via Mean Field Variational Bayes 

algorithms. We leave those directions to future investigation. The code employed for this 

article is openly available at https://github.com/Fradenti/CommonAtomModel

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the microbiome populations of two subjects in the study of O’Keefe et al. 

(2015). The distributions of the two units appear very similar and extremely skewed.
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Figure 2. 
Left: pairwise posterior probability matrix of co-clustering among the 38 subjects. A 

partition of the subjects’ distributions into three clusters is obtained after minimization 

of the posterior expected Variation of Information loss function. Right: Table reporting the 

clusters’ characteristics.
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Figure 3. 
Left panel: Cumulative relative frequency of the OTU abundances, sorted by decreasing 

order. Each color represents a DC. The lower the line, the richer and more diverse is 

the microbiome. Right panel: Boxplots of microbiome abundance counts stratified by 

observational clusters. We can recover three macro-clusters, with Low, Medium, and High 

level of expression. The count median of each category is superimposed.
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Figure 4. 
Co-expression networks among OTUs reporting a subset of most expressed microbes for 

DC-1 (left panel) and DC-2 (right panel).
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Figure 5. 
Distributional clustering (DC) performance for CAM and DCAM across 30 simulations, 

evaluated according the number of the adjusted Rand index (ARI) and the normalized 

Frobenius distance (NFD) between posterior pairwise co-clustering matrices.
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Figure 6. 
Observational clustering (OC) performance for CAM and DCAM across 30 simulations, 

evaluated according the number of the adjusted Rand index (ARI) and the normalized 

Frobenius distance (NFD) between posterior pairwise co-clustering matrices.
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